
28 Concurrent Execution And Operating System Services Chap. 2

for((i=1 ; i<=2000 ; i++)) {

wait((consumed));

n++;

signal((produced));

}

}

/*--

* cons2 - Print n 2000 times, waiting for it to be produced

*--

*/

void cons2((

sid32 consumed,

sid32 produced

))

{

int32 i;

for((i=1 ; i<=2000 ; i++)) {

wait((produced));

printf(("n is %d \\n", n));

signal((consumed));

}

}

2.9 Semaphores And Mutual Exclusion

Semaphores serve another important purpose, mutual exclusion. Two or more
processes engage in mutual exclusion when they cooperate so that only one of them ob-
tains access to a shared resource at a given time. For example, suppose two executing
processes each need to insert items into a shared linked list. If they access the list con-
currently, pointers can be set incorrectly. Producer–consumer synchronization does not
handle the problem because the two processes do not alternate accesses. Instead, a
mechanism is needed that allows either process to access the list at any time, but
guarantees mutual exclusion so that one process will wait until the other finishes.

To provide mutual exclusion for use of a resource such as a linked list, the
processes create a single semaphore that has an initial count of 1. Before accessing the
shared resource, a process calls wait on the semaphore, and calls signal after it has com-
pleted access. The calls to wait and signal can be placed at the beginning and end of
the functions designed to perform the update, or they can be placed around the lines of
code that access the shared resource. We use the term critical section to refer to the
code that cannot be executed by more than one process at a time.

