used with a battery-operated device, such as a smart phone, that uses lower voltages to reduce power consumption.

To a programmer, the most important abstractions are the items visible to software: the representations used for data and programs. The next sections consider data representation, and discuss how it is visible to programs; later sections describe how instructions are represented.

3.3 Definitions Of Bit And Byte

All data representation builds on digital logic. We use the abstraction binary digit (bit) to describe a digital entity that can have two possible values, and assign the mathematical names 0 and l for the two values.

Multiple bits are used to represent more complex data items. For example, each computer system defines a byte to be the smallest data item larger than a bit that the hardware can manipulate.

How big is a byte? The size of a byte is not standard across all computer systems. Instead, the size is chosen by the architect who designs the computer. Early computer designers experimented with a variety of byte sizes, and some special-purpose computers still use unusual byte sizes. For example, an early computer manufactured by CDC corporation used a six-bit byte, and a computer designed at BB\&N used a ten-bit byte. However, most modern computer systems define a byte to contain eight bits - the size has become so widely accepted that engineers usually assume a byte size equal to eight bits, unless told otherwise. The point is:

Although computers have been designed with other size bytes, current computer industry practice defines a byte to contain eight bits.

3.4 Byte Size And Possible Values

The number of bits per byte is especially important to programmers because memory is organized as a sequence of bytes. The size of the byte determines the maximum numerical value that can be stored in one byte. A byte that contains k bits can represent one of 2^{k} values (i.e., exactly 2^{k} unique strings of 1 s and 0 s exist that have length k). Thus, a six-bit byte can represent 64 possible values, and an eight-bit byte can represent 256 possible values. As an example, consider the eight possible combinations that can be achieved with three bits. Figure 3.1 illustrates the combinations.

000	010	100	110
001	011	101	111

Figure 3.1 The eight unique combinations that can be assigned to three bits.

