
HyperFile, a Database Manager for Documents

Christopher Wade Clifton

A Dissertation

Presented to the Faculty

Of Princeton University

In Candidacy for the Degree

Of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

June 1991

 Copyright by Christopher Wade Clifton 1991
All Rights Reserved

Abstract

Documents, pictures, and other such non-quantitative information pose interesting new

problems in the database world. Such data has traditionally been stored in file systems,

which do not provide the security, integrity, or query features of database management

systems. We have developed HyperFile, a data server that provides query facilities (as

well as some other database features) while maintaining the flexibility and efficiency of a

file system.

HyperFile is based on the hypertext notion of free-form objects connected by links. Hyper-

text systems “query” their database by browsing (reading objects and following links.) We

present a query interface that maintains much of the flavor of browsing, allowing the user

to specify a single query rather than manually following links. This eliminates the

repeated user interactions of hypertext browsing, and allows the hypertext model to be

extended to larger and less structured databases.

An algorithm for processing HyperFile queries is presented. We also show how to extend

this algorithm for distributed query processing, and present experimental results from a

distributed HyperFile server.

Another issue explored is indexing. In HyperFile, searches are often demarcated by

pointers between items. Thus the scope of the search may change dynamically, whereas

traditional indexes cover a statically defined region such as a relation. This demands new

indexing techniques. Some ideas on indexing in HyperFile are presented, as well as

experiments in a large HyperFile database.

Also presented is a sample HyperFile application. This is a “browser” that uses menus to

guide the user in constructing HyperFile queries.

Keywords: Database, Hypertext, Indexing, Query processing.

iii

Acknowledgements

I owe thanks to many who have provided help and inspiration with this work. I will not

try to list everyone, however a few stand out:

Hector Garcia-Molina, as my advisor, has been involved in this work from the start. He

has done more than simply oversee this work, however. He has taught me much about the

responsibilities of a faculty member; I hope that I have learned enough to see me through

the next phase of my career.

The database and distributed systems community at Princeton has provided a framework

for my ideas; many design decisions have been influenced by their work. I will not

attempt to name everyone, however Rafael Alonso had provided many suggestions both

where my work relates to his and as a reader of this dissertation.

Andrew Appel also deserves credit for the comments he has made as a reader of this

thesis. I hope I have incorporated all of his suggestions, as the thesis has been substan-

tially improved by his comments.

Neal Young has allowed me to bounce ideas off of him and pick his brain when my work

pushed the boundary of “systems” research (and my expertise), as well as providing

technical help on numerous occasions. For this I thank him.

Finally my family, who have tried to keep me sane and convince me that someday this

work would be done. In particular I wish to dedicate this thesis to my grandmother

Evelyn Bonney, who strongly influenced my decision to pursue the course that has

brought me to this point.

iv

Table of Contents

Abstract .. iii
Chapter 1: Introduction ... 1
Chapter 2: Model and Interface Definition ... 5

1: Document Model .. 6
2: HyperFile Interface Language ... 8

2.1: Set operations ... 9
2.2: Basic filters .. 9
2.3: Basic operations ... 10
2.4: Set filters .. 11

Chapter 3: Previous Work .. 19
1: File Systems .. 19
2: CODASYL Systems ... 20
3: Information Retrieval Systems ... 20
4: Relational Systems .. 21
5: Advanced Database Systems .. 21

6: G+ ... 21
7: Hypermedia systems ... 22

Chapter 4: Query Processing .. 23
Chapter 5: Distributed HyperFile .. 29

1: Distributed Query Processing .. 29
2: Distributing the Data ... 32

2.1: Naming issues ... 32
2.2: Distributing within an Object ... 34

3: Query Termination .. 35
4: Reliability ... 37

4.1: Replication .. 37
4.2: Availability .. 38

5: Costs .. 39
6: Experiments .. 41

Chapter 6: Indexing ... 48
1: What is indexed ... 48
2: Structure of the index ... 50
3: Multiple Indices ... 52
4: Chained Indices ... 52
5: Single Multiple-Attribute Index .. 54
6: Cost Comparison .. 56

6.1: Update Costs ... 66

v

6.2: Index Placement .. 68
7: Experimental Results .. 69
8: Graph Structured Databases .. 74

8.1: Directed Acyclic Graphs ... 74
8.2: Directed Graphs .. 75

Chapter 7: Other Issues ... 76
1: Versions .. 76
2: Large Memories ... 79
3: Data Types .. 80

3.1: Key field types .. 80
3.2: Data field types ... 82

4: Triple types .. 84

Chapter 8: A Browsing Application for HyperFile .. 86
Chapter 9: Conclusions ... 93
Appendix A: BNF description of HyperFile Interface Language 96

vi

CHAPTER 1

Introduction

HyperFile is a back-end data storage and retrieval facility for document management appli-

cations. The goal of HyperFile is not just to store traditional documents containing text.

It also supports multimedia documents containing images, graphics, or audio. In addition,

it must support hypertext applications where documents are viewed as directed graphs and

end-users can navigate these graphs and display their nodes. 1 Another goal is to provide

a shared repository for multiple and diverse applications. For example, it should be possi-

ble for a user running a particular document management system to view a VLSI design

stored in HyperFile. Similarly, a user running a VLSI design tool should be able to refer

to a document that describes the operation of a particular circuit.

File systems are currently used to store data for most of the applications we are consider-

ing. We would like to have some server search functions, but still preserve the simplicity

and flexibility of a file interface. This is precisely the goal of HyperFile. The philosophy

is that HyperFile will not understand the contents of objects, except for some key proper-

ties (defined by the application) that will be used for retrieval. Examples of properties

may be the title of a paper, the clock speed of a particular chip, the objects that are refer-

enced (hypertext links), or the previous version of a program (pointer to another object).

Searches based on these properties will be performed by HyperFile, usually with a single

request and retrieving only the data of interest. More complex searches (e.g., find all

chips that have a race condition) will involve additional processing by the application.

The fundamental idea is that HyperFile is powerful enough so that, for the applications of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 Much of the motivation for this work comes from the needs of hypertext researchers at Xerox
P.A.R.C.[Hala87, Hala88]. Some of the ideas described in this thesis were initially developed at
Xerox in discussions with Robert Hagmann, Jack Kent, and Derek Oppen. I would like to ack-
nowledge their contribution.

1

interest, most of the searching can be done at the server, while at the same time being

straightforward enough to have a simple and efficient implementation.

Given our requirements, it makes sense to implement HyperFile as a back-end service, as

shown in Figure 1.1. Although not essential, we do expect that in many cases applications

and HyperFile will run on separate computers. This is because:

1: HyperFile represents a shared resource so it is important to off load as much work as

possible.

2: The applications probably have different hardware requirements (e.g., color graph-

ics displays) than the service (e.g., large secondary storage capacity, high perfor-

mance IO bus.)

3: Separate machines enhance the autonomy of the applications.

Given that we wish to provide a data server, the most important question is what interface

to provide the applications. There is actually a spectrum of possibilities. At one end we

have a file interface. In this case, the server only understands named byte sequences. The

server does not understand the contents; it can only retrieve a file given its name or store

a new file. From one point of view, this is a good model: it makes the data server simple,

off loading all of the interpretation of the data to the application. One could even argue

that it facilitates sharing because it does not impose a particular data model that may be

inappropriate for some applications. On the other hand, a file interface increases the

number of server-application interactions and/or the amount of data that must be
hhh

application application application ... application

HyperFile Server

server
node

server
node ... server

node

Figure 1.1: HyperFile as a back-end service.

2

transmitted. For example, say we want to search for a book with some given properties,

e.g., published between May 1901 and February 1902. Since the server does not under-

stand publication dates, the application will be forced to retrieve many more books than

are actually required. Of course, the application could also build index structures for

some common queries, but then these indexes do not cover all cases, plus traversing the

index structures also requires interactions with the server.

At the other end of this server spectrum we have advanced databases, such as extended

relational and object-oriented. These provide added functionality, but at the expense of

increased complexity and rigidity. Advanced databases typically add structure (e.g. rela-

tions, object schemas, attribute inheritance) that makes it hard to manage irregular data or

data that does not follow the (predefined) schema. This increased complexity also intro-

duces a performance overhead (more complex algorithms, schema processing, advanced

type checking.) Users who do not need the higher functionality must still pay these costs.

HyperFile avoids these problems by providing loose structure and a limited set of

features. This allows HyperFile to act as a high speed data server; added functionality can

be provided by the applications.

In our server interface spectrum, there are of course other options in addition to files,

advanced database systems, and HyperFile. We feel that they do not meet the goals we

have for a data server. Other options are surveyed in Chapter 3, we will first give a more

detailed overview of HyperFile in Chapter 2. Nevertheless, at this point we do want to

stress that we are not ruling out other interfaces for different applications (or even for

document processing ones). As a matter of fact, other interfaces (such as an object-

oriented database or a file system) could be implemented at the server next to (or even on

top of) HyperFile. Our point is that HyperFile represents an interesting point in the inter-

face spectrum, providing the right mix of facilities and simplicity for many document

management applications.

Following Chapter 3 we discuss key aspects of HyperFile in detail:

g A Query Processing algorithm for HyperFile queries is given in Chapter 4.

g Distributed HyperFile is discussed in Chapter 5. This includes extensions to the query

processing algorithm, as well as the mechanics of keeping track of distributed data.

g Indexing of HyperFile queries is discussed in Chapter 6.

3

g Chapter 7 discusses certain other issues, such as version mechanisms, and ideas on

how to best implement a “production” HyperFile system.

g User interface ideas and experiences are given in Chapter 8.

A prototype HyperFile server has been built. The Eiffel object-oriented language was

used as an implementation vehicle; this has given us considerable flexibility in modifying

the prototype as we have developed new ideas. This prototype runs on a variety of plat-

forms and has been used for experiments with various aspects of HyperFile. Section 3 of

Chapter 5 gives results of experiments with a distributed HyperFile server. In Section 7 of

Chapter 6 we discuss results of experiments with indexing. Chapter 8 also makes use of

this prototype in conjunction with a sample application.

We do not discuss all of the issues that would need to be addressed in building a produc-

tion HyperFile; many problems such as crash recovery and data integrity are not substan-

tially different from existing database systems and discussing the approach taken in

HyperFile would introduce little that is novel. We instead concentrate on problems where

HyperFile requires different solutions than existing systems.

Note: Some of the work in this dissertation has been previously published. In particular,

Chapter 2 contains some information that appeared in[Clif88]; Chapters 4 and 5 include

material from[Clif91]; and Chapter 6 contains work that was presented in[Clif90].

4

CHAPTER 2

Model and Interface Definition

The goal of HyperFile is to provide a shared repository for diverse types of data. In order

to meet this goal, we must not constrain what may be placed in the database. This require-

ment leads to the data model of a file system; data as simply a stream of bits. We wish to

provide more capabilities than a file system, however this requires some understanding of

the data. We cannot hope to have the data server understand the underlying representa-

tion of all of the information we wish to put in a HyperFile database; new data representa-

tions may be invented well after HyperFile is created (for example, video compression

techniques.) We instead allow objects that are a collection of searching information, which

is understood by the server; along with unstructured “bit streams”.

One of the primary capabilities provided by HyperFile is a query facility. These queries

are based on the browsing idea of hypertext systems. Browsing involves looking at an

object, and following a link based on the contents of that object. This seems to be an

appropriate technique for loosely-structured information. Browsing does not scale well,

however. As a hypermedia database grows the paths to the desired information may

become long, requiring repeated user interactions (and potentially following many “dead

ends”) in order to find the desired data. Careful construction of the database to avoid this

problem defeats our goal of providing a flexible data repository. Instead HyperFile pro-

vides queries (described in Section 2.4) that allow specifying what one would do if brows-

ing the database; search for specific properties, follow certain types of pointers, etc. The

query then retrieves the desired objects using a single interaction with the data server.

This Chapter gives the data model and query interface language for HyperFile. The inter-

face described here is not for user-level interactions; it is instead the language that

governs communications between applications and the data server. The actual user inter-

face will be application dependent, although multiple applications (and thus multiple user

5

interfaces) may be used to generate queries for a single HyperFile database. The goal of

this interface is to be able to represent the queries and structure that should be handled

by the data server (primarily locating and retrieving data) while limiting the complexity

of query processing at the server. Complex processing of the data is the responsibility of

the application, and should not be performed by the server.

1. Document Model

A HyperFile object consists of a set of triples. Each triple contains a type, a key, and a data

item. The triple type serves two functions: it identifies the purpose of the triple and

defines the actual types of the key and data fields. The key is a structured field used for

searching. The data field may be used for searching in some cases, but may also contain

unstructured data such as text or pictures. The following is a sample document:

{ (string, "title", "The Design of a Document Database")
(string, "author", "Chris Clifton")
(keyword, "hypertext", 35)
(keyword, "database", 76)
(keyword, "hypertext", 83)
(pointer, "reference", <pointer to a document>)
(integer, "pages", 15)
(text, "Introduction", "Lots of text goes here...")
(contents, <pointer to a subsection>, 1)
(contents, <pointer to a subsection>, 2) }

The first two triples record the fact that this document has two properties of type string.

These properties are named (for search purposes) "title" and "author." The triple type

string defines that both the key and data fields are strings, with the key probably being a

short string of fixed length. This definition of the triple type string is stored by the system

in a catalog (discussed in Chapter 7, Section 4.) These definitions are application depen-

dent (rather than predefined by HyperFile), although type definitions extend across the

system to encourages sharing between applications. The types are in some sense the

“schema” of a HyperFile database, but serve as suggestions rather than constraints and

thus preserve the flexibility we desire. The primitive types that are provided for key and

data items are also discussed Chapter 7.

To demonstrate, in the preceding sample document the triple type keyword specifies that

the triple contains a keyword (short string) and its relative importance to the object

(integer percentage.) Note that HyperFile treats the third field simply as an integer, and it

6

is up to the application to interpret this as a percentage. These keywords probably appear

somewhere in the text triple, but HyperFile is not aware of this. The application is respon-

sible for maintaining consistency between the text and the keywords.

The data model we are proposing here is relatively simple. One reason is that our objec-

tive is a common model for different applications, a type of “common denominator”. This

means that we cannot expect a HyperFile server to understand the semantics of each

object property. A second reason is efficiency. If the HyperFile server is to quickly exam-

ine large numbers of objects, the properties used for searching must be simple and com-

pact. A third reason is that the complexity of the query interface is proportional to the

complexity of the model. Since we desire a simple language (to be described in the next

section), we require a simple model. Nevertheless, in spite of the model simplicity, we

believe that it is sufficiently powerful to support the types of queries that will be of most

interest on HyperFile data.

To illustrate these points, consider the pointer triple illustrated in our sample document.

The pointer has a simple label that can be used for searches, but contains no other struc-

ture. If the application does attach more information to links (as in some hypertext sys-

tems), it can define a complex link type consisting of a simple pointer (in the key field) and

an unstructured data field that encodes the desired information. When the application

wishes to examine a link, the data field can be retrieved and examined. With this

approach, however, the system cannot search on these link properties. If this is desired, a

second option is to make the link an object in itself. In this case, the original object con-

tains a simple pointer to the link object. The link then contains the relevant properties

(e.g., date, name, color, etc.) as well as one or more pointers to other objects. In summary,

applications that require a richer structure than what is provided by the basic model can

provide it for themselves.

Note that objects are represented as sets, so triples are not ordered within an object. This

restriction substantially simplifies our language. Ordering can be obtained by linking the

components together (e.g., part A points to part B points to part C). As an alternative, ord-

ering can be indicated by the key or data field, as illustrated by the last two triples of our

sample document.

7

2. HyperFile Interface Language

The HyperFile Interface Language (HIL) is used to represent queries. We have discussed

the overall objectives of the system. The queries we wish to support fall into two primary

types:

g Searches for objects meeting particular criteria. These are related to conventional

database queries. The queries will look for specifics like document keywords. They

may also look for types of relationships between objects (particular patterns of

pointers to other documents.)

g Retrieval along pointer chains. This is important both for references and for retrieving

parts of objects. These queries are the major difference between hypertext and conven-

tional databases.

In order to achieve these goals we combine ideas from two areas. We start with the idea

(from information retrieval) of taking an initial set of objects, and restricting this set

based on specific properties of the object (keywords, presence of a video track, etc.) to

obtain a smaller set of objects. In the information retrieval model, the initial set is often

the entire database (such as a library card catalog.) Although we do not rule out such

sets, we believe that HyperFile databases will often have smaller initial sets such as the

papers one is working on or all of the material belonging to a particular research project.

We also incorporate the hypertext/browsing idea of following pointers; this is used to

extend the set of interesting objects.

In addition to queries that retrieve entire objects, we need queries that retrieve selected

triples from within an object. For example, we may desire abstracts rather than entire

documents.

Most query operations take an object (or set of objects), and return a new object (or set)

without modifying the original. Changes to an object are made with functions that

operate on a single item.

It must be remembered that the HIL is a query interface, where the HIL queries are gen-

erated by an application program. The HIL is not in itself a “complete” programming

language. It can be used as an embedded programming language, where the object

identifiers are actually stored in variables in the host language. As an example of another

approach, we have implemented a HIL parser that ties into the Eiffel language. This was

8

used in developing the Browsing interface to be described in Chapter 8. With this

approach, the application generates a string containing the HIL query. The parser then

sends this as a query, and returns objects that contain the results and appropriate variable

bindings. A short example of this will be given at the end of this Chapter. It must be

remembered that the HIL is not intended as a user interface. It is a query interface

between HyperFile and the application.

We will first discuss some of the basic operations of the language. These are not particu-

larly novel, nevertheless they are included at this point for completeness and as back-

ground material for the more interesting types of queries. The language features used to

form more interesting queries, those that provide queries that extend the idea of browsing

a hypermedia database, will be described in Section 2.4.

2.1. Set operations

Since objects are structured as sets, the basic set operations of union (∪) intersection (∩)

and difference (−) are provided. Each binary operator takes two objects, and returns a new

object (set of triples) as appropriate for the operation.

For example, A ∪ B would return a new document consisting of all the triples contained in

A and all the triples in B. Note that A and B are variables in the host language, not the

actual documents; the statement

A ∪ B → B

places the object identifier of a new object into B; this new object is the union of the

objects (sets of triples) originally pointed to by A and B. The original objects are

unchanged.

The query operators are divided into two types; those that operate on single triples, and

those that manipulate sets of documents. Most of the queries are built around filters.

These process existing documents, creating new ones based on certain selection criteria.

2.2. Basic filters

These are operations that take an object, and return a new object that includes a subset of

the triples in the original. They operate by looking for particular triples, primarily based

on the triple type and key, and adding these to the new object.

9

Filters are based on triple selection using pattern matching. Perhaps it is easiest to start

with an example. Given a document D (where D is a variable in the host programming

language containing an object identifier) we can construct a new object consisting of just

the authors of the original document as follows:

D(string, "author", ?) → document id

This is the triple selection filter. Note the use of the ?. This is a pattern matching charac-

ter, which in fact matches any data item. It can also be used in the key or type fields.

Filters can also be joined using and, or and not. For example,

D((string, "author", "Chris*") OR (string, "author", "Hector*")) → document id

returns author triples in D that have either Chris or Hector as the prefix of the data.

2.3. Basic operations

The filter operations only provide for selecting documents, not modifying (or even creat-

ing) them. In addition to queries, there is a simple functional interface to the system. The

simplest of these functions is create document, which returns a document identifier. The

actual operation is:

Create → object identifier

The result of this function may be used in any manner appropriate in the host language;

assignment to a variable would be a common use. Note that deletion is handled via gar-

bage collection; for a created object to become permanent (after a “session” with an appli-

cation terminates) it must be pointed to by something. The exception to this is a “Root”

object. In typical databases, the Root will be a set of various application (and user)

specific base sets, so that each user and application will have their own view of the data-

base. This is in some sense similar to a hierarchical file system.

Note that copying can be accomplished by a basic filter with no selection criteria:

Source → Copy

There are also operations that can be used to make changes to existing documents. These

work at the triple level. The basic ones are add and delete triple.

add_triple(document id, triple_type, key, data)
delete_triple(document id, triple_type, key, data)

A modify operation for triples could be added; currently this is done using delete and add.

10

2.4. Set filters

We can now present the queries that serve as the meat of the HyperFile interface

language. Set filters are queries used to select items meeting particular criteria. For

example, we may wish to find all documents by a particular author, or search through all

documents referenced by a given paper. These operate by selecting objects out of a set,

rather than the entire database. In many cases, a HyperFile database will contain a root set

of all the objects in the database, much like a library card catalog. This allows searches

over the entire database. The use of sets, however, allows the scope of queries to be res-

tricted if desired. For example, we may have a set of just the programs and documentation

of a particular software project, allowing queries about just that project.

Sets are actually a type of object. This is done using triples containing pointers. A set is

simply an object containing pointers to other objects. S in Figure 2.1 is an example of a

set containing the items A, B, C, and F. This representation has a number of advantages

over using a separate data type for sets:

g The language has a single set of operators. Every object in the system is built on the

same model.

g Sets can be permanent, in the same manner that an object is permanent.

g It is easy to build annotated bibliographies; since a set is an object, associating text,

keywords, and other information with it is simple.
hhh

S

pointer
.
.
.
.
.
reference

.

.

.

.

.

pointer
.
.
.
.
.
reference

.

.

.

.

.

pointer
.
.
.
.
.
reference

.

.

.

.

.

pointer
.
.
.
.
.
reference

.

.

.

.

.

A

string
.
.
.
.
.

author
.
.
.
.
.

Chris ...

pointer
.
.
.
.
.
reference

.

.

.

.

.

B

string
.
.
.
.
.

author
.
.
.
.
.

Hector ...

pointer
.
.
.
.
.
reference

.

.

.

.

.

C

keyword
.
.
.
.
.

cat
.
.
.
.
.

35

pointer
.
.
.
.
.
reference

.

.

.

.

.

D

string
.
.
.
.
.

Title
.
.
.
.
.

Design ...

. . .

E

. . .

F

pointer
.
.
.
.
.

Biblio...
.
.
.
.
.

...

Figure 2.1: Set of documents.

11

g A paper that contains references can also be used as a set of the referenced documents.

This allows easy “literature search” operations.

The set operations described in Section 2.1 for single documents also have the appropriate

meaning for sets of documents defined in the above fashion. Since two sets S and T are

actually sets of triples, where each triple points to an object in the set, S ∪ T produces a

new set of triples that points to all of the objects in either S or T. In fact the primary use

of these operations is likely to be on objects that are considered to be “sets of documents”

rather than on individual items.

The basic filters of Section 2.2 select individual triples from an item based on the proper-

ties of those triples. With sets, we want to select objects from the set based on properties

of the object pointed to. For example, in Figure 2.1 a query on set S would create a new

set based on properties of A, B, C, and F rather than on properties of triples in S. This

requires a different filter operation. These queries use the || operator, combined with

filters that are similar to the basic filters discussed in Section 2.2. As an example, to select

those documents from the set S that were written by either Chris or Hector we could use:1

S | ((string, "author", "Chris*") or (string, "author", "Hector*")) → object id

An equivalent statement would be:

((S | (string, "author", "Chris*")) ∪ (S | (string, "author", "Hector*"))) → object id

Note that we are using regular-expression style matching in the strings within a specific

filter. This is a function of the underlying data type for that field. Chapter 7 contains a

more complete discussion of the supported data types. Wild cards (?, described in Section

2.2) can also be used.

The || operator allows us to chain various filter parts. Each stage will “pass” only the

objects which meet that particular criteria. The preceding example shows the triple selec-

tion filter, which selects objects containing the desired triple. (Following sections

describe filter parts other than the triple selection filter.) One note: This Chapter gives an

overview of the interface language, to serve as a framework for the rest of this thesis.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 The syntax used for our examples is what we use to represent the HIL. An implementation for a
particular host programming language could use a different representation for HyperFile queries.
What we are trying to describe here is the types of queries supported by HyperFile, rather than any
specific representation of those queries.

12

Informal descriptions and examples are used to describe the semantics of the language.

Those desiring a more rigorous treatment may wish to refer to Chapter 4, which describes

the algorithm for processing these queries.

Here are additional examples of queries that use the triple selection filter:

Select objects in S with keyword "cat" and place them in document T.
S | (keyword, "cat", ?) → T

Select objects with keyword having prefix "ca" .
S | (keyword, "ca*", ?) → T

Select documents having keyword matching "?a?" with greater
than 30% relevance to the object.
S | (keyword, "?a?", >30) → T

Select documents with either "cat" or "dog" as a keyword.
S | (keyword, "cat", ?) OR (keyword, "dog", ?) → T

Select documents having both "cat" and "dog" keywords.
S | (keyword, "cat", ?) | (keyword, "dog", ?) → T

In the above query we could have used AND; using two filters has
the same result (first select documents with "cat",
then from that set choose those that have "dog".)

Select documents having "Princeton" as keyword or in the title.
S | (keyword, "Princeton", ?) OR (string, "title", "*Princeton*") → T

2.4.1. Matching variables

Related to wild cards are pattern matching variables. These are wild card characters that

must match at various points in an expression. For example the following query (on a

sample software engineering database) chooses programs that are being maintained by

their author:

S | (String, "Author", ?X) | (String, "Maintained By", X) → T

In the portion of the query ... "Author", ?X) ... X becomes a set of all of the Authors of the

object, and later these are compared against the values of Maintained By tuples for that

object. If any of these matches a value in X the expression evaluates true and the program

“passes” the query. Note that matching variables are used to compare values within a sin-

gle object, not between objects.

More complex comparisons are allowed. For example, we may wish to find papers with

multiple authors:

S | (String, "Author", ?X) | (String, "Author", X≠?) → T

If an object has only a single Author tuple, X will be set to the name in the data field of

that tuple. The second part of the filter will also select the same tuple and bind ? to the

13

data field. Since X=?, the tuple does not match, and as there are no other author tuples the

document does not pass this filter. In the case of a document with two author tuples (with

names Chris and Hector) the first part of the query will bind each name to X. The second

part of the filter will test a tuple (say the one with author Chris) and find that there is a

binding for X (Hector) that is not Chris; this tuple matches. Since at least one tuple

matches, the document passes the filter and is placed in the result set T.

The occurrence of the variable preceded by ? specifies that it is a binding occurrence,

without the ? it tests for matches. Filters are evaluated left to right, hence the leftmost

occurrence of a variable should be a binding occurrence (otherwise nothing will match.)

Further binding occurrences add to the set of possible values for the variable for that

object.

The actual semantics of pattern matching variables are similar to Prolog

unification[Robi65]. The variables are bound to any pair of triples that may cause them to

match. However, the filters restrict the scope of triples available for matching. This

simplifies the problem of finding matches efficiently. Their use is also related to joins in a

relational database. However, since matching variables only operate within an object the

processing is simplified; “expensive” join queries do not exist. Another way of thinking

of matching variables is that each instance of an object passing through a filter has its

own matching variables. Each variable is a set of values corresponding to the bindings

for that object. An expression using the variable is true if any of the values in the set

would make the expression true. Chapter 4, which gives the query processing algorithm,

formally describes how matching variables work.

2.4.2. Pointer operations

One of the defining features of HyperFile is the presence of pointers in the database. In

order to allow following of pointers, two dereferencing operations are provided. These are

↑X and ↑↑ X, where X is a matching variable. The first is a simple dereference; it returns

the object pointed to. The second gives both the item pointed to and the original object.

These are best shown by example:

S | (pointer, "reference", ?X) | ↑X → T1

produces the items referenced by objects in S. T1 is itself a set (object containing

pointers), and can be operated on in the same manner as S. Using the set S in Figure 2.1,

14

we see the query would result in T1 containing D and E. If we wish to include the pointing

objects in the result we use a ↑↑ :

S | (pointer, "reference", ?X) | ↑↑ X → T2

returns the documents referenced to by documents in S and the referencing documents.

Note that this is not all of the documents in S. The first filter removes documents that do

not contain references. Using S from Figure 2.1, T2 would be { A B C D E }. Note that F is

not in the set, as it does not contain a reference pointer.

This allows us to simulate the browsing model of hypertext by interspersing pointers with

other types of filters. We can construct arbitrarily complex queries that look for objects

meeting specific criteria, follow certain pointers from those objects, and so on. The set-

based approach of filtering queries allows us to do this without the manual navigation and

repeated user interactions of a standard hypermedia system. Additional examples of

queries incorporating pointers:

Place documents bibliographically referenced by documents in S into T.
S | (pointer, "Bibliographic", ?X) | ↑X → T

Documents referenced with either Bibliographic or foo references.
S | (pointer, "Bibliographic", ?X) or (reference, "foo", ?X) | ↑X → T

References of documents with keyword "cat".
S | (keyword, "cat", ?) | (pointer, "reference", ?X) | ↑X → T

Documents that are references of documents in S, where the referenced
document has the keyword "cat".

S | (pointer, "reference", ?X) | ↑X | (keyword, "cat", ?) → T

The dereferencing operations can be chained as well; we can follow pointers, look for

selection criteria, follow other pointers based on these criteria, etc. This chaining allows

applications to build complex queries out of a few “canned” application specific query

parts.

Pointer operations can also be used with basic filters; for example

D (pointer, "reference", ?X) ↑X → T3

produces the documents referenced in D. Note that T3 is the union of the items referenced

by D (that is, it contains all of the tuples of those items.)

2.4.3. Iteration

Sometimes we may want to follow pointers repetitively. To handle this, an iteration opera-

tion is provided. For example, we can find the papers referenced by those papers

15

referenced by a given set S (two hops away from the given document) as follows:

S [| (pointer, "reference", ?X) | ↑X]2 → T

The operations within [] are repeated as many times as indicated by the number given

after the second bracket; the above statement is equivalent to:

S | (pointer, "reference", ?X) | ↑X | (pointer, "reference", ?Y) | ↑Y → T

Note that this is not quite syntactically equivalent; the matching variable X is rebound

each time through the iteration.

When used with the ↑↑ X operator, the query finds all documents within two hops (that is,

the document, those one link away, and those two links away):

S [| (pointer, "reference", ?X) | ↑↑ X]2 → T

Note that we are apparently processing the original documents twice. In the first itera-

tion, we find all of the documents one link away from those in the set. The second time,

we repeat this, as well as finding documents two links away. Since the result is a set, the

duplicates are eliminated. It should be remembered that this is a semantic model; the algo-

rithm is clever in processing such a query and in fact only processes each object once.

If we want to find all objects within a tree rooted at the current set (transitive closure), we

can use the * operation:

S [| (pointer, "reference", ?X) | ↑↑ X]* → T

This repeats the operation in brackets until the result reaches a fixed point. At first

glance, the following query would find all the leaves of the graph rooted at S:

S [| (pointer, "reference", ?X) | ↑X]* → T

This would return the empty set, however, as it would continue until there were no more

referenced objects. All of the referencing objects would be thrown out by the derefer-

ence, the pointed to objects would be run back through the iterator and be discarded when

dereferenced. If we wish to find all of the leaves we use the following:

S [| (pointer, "reference", ?X) | ↑↑ X]* | NOT (Pointer, "reference", ?) → T

This gathers all of the items, and discards those that don’t reference another (the leaves.)

2.4.4. Transferring Data to Applications

We have not yet shown how to actually manipulate the data items found with filters. This

is because such manipulation is left to the application, and as such should be written in

16

the language used to write the application. The data must be available to the host

language, however. One way to accomplish this is simply to request an entire object from

HyperFile (or part of an object, using a basic filter.)

Another method for transferring data to the application is with a method similar to pattern

matching variables. Rather than the ? used to set a matching variable, a →→ is used. For

example →→X (where X is defined in the host programming language) will set X to the

values of the appropriate field. Note that multiple values for X may exist. In the Eiffel

implementation, X is a set valued variable.

As another example, we could embed the HIL in C in a manner similar to QUEL[Allm76].

Using this method a section of code is executed once for each value, with the variable

bound to a new value for each execution. This is probably easier to understand with an

example. If we wished to display individually all of the titles of documents in written by

Chris Clifton we could issue the query:

n = 1;
S | (String, "Author", "Chris Clifton") | (String, "Title", →title) → T

{ printf("Title %d: %s\n", n++, title) }

Note that these are exactly the documents in T (which is set immediately on return from

the query, before the printfs are executed); T can be used as an initial set for further

queries.

Here is an example of the same query using the Eiffel implementation. More code is

required than the above C version, however this implementation does not require a

preprocessor (as would the C version.)

hyperfile_server.send_query(
"S | (String, \"Author\", \"Chris Clifton\") | (String, \"Title\", →title)");

result := hyperfile_server.get_result; -- Note that send was non-blocking.
T := result.result_id; -- T is an object id.
title := result.result_table.item("title"); -- title is a LIST[STRING]
from title.start

until title.offright
loop

putstring("Title "); putint(title.position); putstring(": ");
putstring(title.item); new_line;
title.next

end;

The → operator may also be used with a basic filter, for example to retrieve the names of

all authors of an object.

17

This gives an overview of the data model and query interface. The next Chapter gives a

short comparison with other data management systems. Following that we will discuss a

number of technical details and innovations of HyperFile.

18

CHAPTER 3

Previous Work

In this Chapter we briefly compare HyperFile to some other data storage systems. While

many of these could be used instead of HyperFile as back-end storage facilities, we will

argue that for document processing they do not strike the right balance between off load-

ing application-dependent data processing to the front-end and performing functions that

are purely search and retrieval at the back-end.

1. File Systems

HyperFile is probably most similar to a file system, particularly one with self-describing

data records[Wied87]. In these systems records of a file contain tags stating what informa-

tion is contained in the record, as opposed to either a heavily structured file (where each

record contains the same type of information) or totally unstructured files.

Most electronic documents are currently stored in file systems, rather than databases.

This is because of the flexibility allowed in the contents of a file. This freedom is neces-

sary for documents, due to the combination of text, drawings, and other media. Many

other applications require this as well; databases for software engineering systems, CAD

tools, and other such applications are often custom-designed or built on file systems. In

addition, most documents, although structured, are not rigidly structured; variations are

acceptable when necessary.

File systems allow this flexibility, but provide little structure in places where it is desired.

Items can be grouped in directories, and often hierarchical structure of the directories is

allowed, but references and other pointers that are a part of many objects are not recog-

nized by file systems. As discussed in the Introduction, file systems are inefficient for

search and retrieval. In a large (and particularly distributed) system, this problem is

magnified. HyperFile can be viewed as a powerful file server: It provides for storage of

19

unstructured data, but allows much more powerful queries based on the properties of files

(objects) and their relation to other objects.

2. CODASYL Systems

HyperFile is similar to CODASYL[DBTG74] in that they both provide objects and

pointers. A major difference between HyperFile and CODASYL, however, is that

CODASYL pointers must be used in a very structured way, as parts of predefined sets. The

database schema determines where pointers are allowed and what they may point to. All

items in a set are of the same type. HyperFile does not place such restrictions on the

structure of data. Pointers may be used freely, wherever the user or application desires.

Although there are difficulties in providing this flexibility (for example, indexing becomes

a much more difficult problem, as discussed in Chapter 6), we feel that the tradeoff is

worthwhile for our applications.

Another difference is the query language. The CODASYL query language only allows

searches over a fixed set; the scope of a search can be determined from the database

schema. We allow queries that arbitrarily follow pointers. This allows for fewer server-

application interactions. For a query that covers the transitive closure of a portion of the

graph of pointers, CODASYL may require many such interactions, where HyperFile would

require only one.

3. Information Retrieval Systems

HyperFile is also similar to conventional information retrieval systems[Salt83] such as

those for library applications. These systems allow filter queries similar to ours (e.g., find

books with a given title), and indeed, our language was inspired by them. However, con-

ventional information retrieval systems do not understand pointers. The ability to follow

pointers within a query is essential to us, especially to support hypertext applications.

Also, information retrieval systems typically do not support non-text data.

We view information retrieval systems as likely candidates for HyperFile applications.

Ideas from these systems, combined with hypertext methods, can be used to form a gen-

eral interface to a HyperFile database. Information retrieval research into automatic

indexing[Salt88] and natural language[Crof87] can also be used to generate properties for

textual objects.

20

4. Relational Systems

Relational systems[Codd70] provide a regular structure for data. This is both a blessing

and a curse. Applications that involve homogeneous data often map nicely into a rela-

tional structure. These systems can then provide powerful queries on this data, as well as

integrity constraints, transactions, etc. Not all data maps nicely into a relational struc-

ture, however. Although work has been done on placing text items in a relational

database[Ston83, Smit86], creating a relational database that can support a variety of

heterogeneous types of data is difficult.

HyperFile supports data that does not fit into a regular structure. Heterogeneous objects

map easily into HyperFile objects. Another problem is that conventional relational sys-

tems do not support pointers; this is a serious shortcoming for our applications. Steps

have been taken to address some of these problems in “advanced” relational systems

(pointers, flexible data types, etc.), but we address these below.

5. Advanced Database Systems

Advanced database systems (such as object oriented[Maie86, Woel86, Wein88] and

extended relational[Ston86, Schw86, Dada86]) provide many of the facilities of HyperFile

(objects, pointers, queries), but also provide a lot more (like a full programming language

or an inferencing engine). We feel that these systems may provide too much for a back-

end document data server.

In particular, an advanced database system could open the door for doing much of the

application processing at the back-end. We feel that this can create unreasonable pro-

cessing loads at the shared server. Of course, one can restrict the general interface to

allow only certain queries and a simple model for objects. But if this is the case, there is

no need to have a full and complex schema and programming interface at the back-end!

Restricting the interface, as in HyperFile, makes it much easier to perform efficiently the

queries that are allowed.

6. G+

G+ is a graph query language developed at the University of Toronto[Cruz87]. It has com-

mon goals with HyperFile, and provides a more powerful query language. Like HyperFile,

21

G+ provides for graph based transitive-closure queries. Computing some G+ queries can

be NP-hard, however[Mend89]. This defeats our goal of providing a simple and efficient

back-end data storage service. We have tried to keep our language simple, so that all

queries will be computationally feasible. Our query processing algorithm (to be discussed

in the next Chapter) is in fact linear in the number of objects processed.

7. Hypermedia systems

The initial motivation for HyperFile came from hypertext research. We view hypermedia

systems as data presentation systems rather than data management systems. In other words,

hypermedia systems are applications that will be used to access a HyperFile database.

Nevertheless, existing hypermedia systems do provide some data management features

(perhaps due to the lack of a HyperFile data server.) It would be remiss to not discuss

these. Most systems, such as KMS[Aksc88] Hypercard[Good87], and NoteCards[Hala87]

provide little in the way of query facilities (beyond browsing, the shortcomings of which

have already been discussed.) Some of these shortcomings, many addressed by HyperFile,

are discussed in[Hala88]. Work has been done on improving the navigational aspects of

browsing[Niel90], but this does not concentrate on the problems of scale addressed by

HyperFile queries.

There has been work done on hypertext specific database[Tomp89, Smit86]. These only

look at the data requirements of existing hypertext systems. HyperFile is a general pur-

pose server for loosely structured data, and is intended to support a wide variety of appli-

cations in addition to hypermedia.

22

CHAPTER 4

Query Processing

Basic filters and other basic operations are straightforward to process. The algorithm for

processing filtering queries is more interesting. It is worth noting that the design of the

query language has allowed a simple and efficient processing algorithm for filtering

queries, as described in this Chapter.1

First let us introduce a notation for representing queries. Let a query Q be:

Q : S i F 1 F 2
. . . F n → S θ

where S i is the initial set of objects, S θ is the result set of objects, and each F i is a filter

operation of the form:

F i : (type , pattern , pattern) ;; Selection of tuples
↑ matching_variable ;; Dereference
↑↑ matching_variable ;; Dereference retaining referencing object
Ij

k ;; Iterator starting at F j , ending at F i ,
and repeating k times.

The pattern in the tuple selection filter operation varies depending on the type of the

value. It may be a string, a range of numbers, or a matching variable.

Let us look at a sample query: Take all of the items in the set S and choose those that

contain the keyword Distributed. In addition, follow reference pointers for three levels

searching for objects that meet these criteria.

S [| (pointer, "Reference", ?X) | ↑↑ X]3 | (keyword, "Distributed", ?) → T

In the above query, F 1 = (pointer , Reference , ?X) is a selection operation that sets the

matching variable X. F 2 = ↑↑ X, a dereference of the matching variable. F 3 is the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 We have not addressed query optimization. Some optimizations, such as reordering selections to
perform highly selective operations early, may make sense in HyperFile. In some cases existing
query optimization work may be able to be applied to HyperFile in a straightforward manner. We
do address a related problem, indexing, in Chapter 6.

23

iterator I1
3 , which starts at F 1 and causes pointers to be followed for up to three levels.

The last filter F 4 = (keyword , Distributed , ?) does simple pattern matching: Any object

containing a tuple with type keyword, key Distributed, and any value for the data field will

pass this section. The initial set S i is S, and T will be bound to the result set S θ.

Certain temporary information will be associated with each object O that is processed by

a query. These are:

O.id The unique Object id (used to retrieve the object.)
O.next The index of the next filter F i to process the object.
O.start The first filter to process the object. For objects in the initial

set S i this is 1. Objects reached as a result of a dereference
will have their .start set to the filter following the dereference.

O.iter# The current iteration of an iterator; this corresponds to the
length of the pointer chain used to reach O from the initial set.

O.mvars A table of bindings of matching variables for the object. This
is a function O.mvars(X) → {values for X}.

The basic means for processing queries is to create a working set W containing objects in

the original set S.2 An object is taken from the set and passed through the query from left

to right. At each stage it can pass or fail to pass a filter, and may add new objects to the

working set. At each stage the object is processed using the function E:

E(F i , O) → {O x,
. . . } , [O]

E takes a filter and an object; and returns a (possibly empty) set of objects obtained

through dereferencing, and either the initial object (if it passed the filter) or null. The

actions of E are determined by the type of the filter F i:

g If F i is a selection (pattern matching) operation, such as F 4 in the example query, the

return set of dereferenced objects is empty. Each tuple of O is processed as follows: If

the type field of the tuple matches the type field of the filter, the key and data fields are

checked. If these fields match, the object passes the filter. The pattern can be a variety

of things, “Matching” depends on what the pattern is:

The pattern may be a simple comparison (such as a regular expression
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 The choice of data structure for the working set will determine the search order for the algorithm,
for example a queue will give a breadth-first search. In any case the algorithm uses a node-based
search. Work by Sarantos Kapidakis shows that a node-based search (processing each node entire-
ly rather than, for example, following edges to new nodes before completing processing of the
current node) will be fastest and require the least space in the average case[Kapi90].

24

for strings, or a range of values for a number). In this case matching
involves equivalence of the pattern and the field in the tuple. The
meaning of equivalence depends on the type of the field.

The pattern may be a ?, such as in F 4 . This matches anything.

The pattern may set a matching variable. An example of this is F 1 .
The ?X adds the value of the field of the tuple to the bindings for X (if
the other fields match.) More formally,
O.mvars(X) =O.mvars(X) ∪ { field_value}. The field matches re-
gardless of the field value, as with ?.

A matching variable may be used, as described in Section 2.4.1. In
this case the field matches if any of the values of the matching vari-
able match the field value; that is, f ield_value ∈ O.mvars(X).

To be more precise we will give pseudocode for the E function in the case of a selec-

tion filter. The details of pattern matching are not important to this discussion; match-

ing is a function of the data type involved. Data types are discussed in more detail in

Chapter 7.

E((type_pattern , key_pattern , data_pattern) , O) :
for each tuple t ∈ O

if t. type = type_pattern and
t.key matches key_pattern and
t.data matches data_pattern then

match = true
Modify O.mvars if key_pattern or data_pattern

sets a matching variable.
if match then

O.next =O.next +1
return {} , O

else
return {} , null

g F i can be a dereference (↑ or ↑↑). An example of this is F 2 in the above query (↑↑ X).

In this case E returns a set of all of the pointer values of X. With ↑↑ , O is also returned.

E(↑ X , O) :
Result_set = {}
for each x ∈ O.mvars(X)

if x is an object id then
create an object P for processing
;; The following lines initialize P.
P.id =x, P.start =O.next +1, P.next =O.next +1,

P.iter# =O.iter# +1, P.mvars = {}
Result_set =Result_set ∪ {P}

if the filter is a ↑↑ then
O.next =O.next +1
return Result_set , O

else

25

return Result_set, null

Some of the initialization of P in the above needs explanation. P.next is set to the filter

after the dereference. P.mvars starts empty; the set contains no bindings. The use of

P.start and P.iter# will be explained in the next paragraph.

g If F i is an iterator Ij
k, one of two things can happen. If the object has already passed

through the entire body of the iterator, or if it is the result of a k length pointer chain,

it continues processing with F i +1 . Otherwise processing continues at the beginning of

the iterator (F j). Note that iterators do not actually cause objects to be processed

repeatedly. Operations in the query language are idempotent; passing an object

through the same filter many times will not change the result. Iterators instead control

how often pointers are followed.

O.start is used to determine if an object has passed through the entire iterator. If

O.start is greater than j, the beginning of the iterator, then O must return to the begin-

ning of the iterator. O.iter# stores the length of the pointer chain used to reach O. For

example, if an object P is reached by dereferencing O, P.iter# =O.iter# +1. This is done

as part of the dereferencing operation shown in the previous section of pseudocode for

E. If O.iter# ≥ k, O is the result of a pointer chain of length at least k and is not run back

through the iteration.3

E(Ij
k , O) :
if O.start≤ j or O.iter#≥k then

O.next =O.next +1
else

O.start = j ;; So that O will pass the iterator next time.
O.next = j

return {} , O

Actual processing occurs by creating a working set and filling it with the objects in S i .

The .next and .start indexes for each of these objects is initialized to 1 (the first filter.)

Iteration numbers are also set to 1, and the .mvars bindings are initially empty. Each

object is then taken from the set, and pushed through the filters (using the E function)

until they either reach the end or fail to pass part of the filter. Dereferencing operations

may add objects to the set. The query terminates when the working set is empty.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 O.iter#≥k is not tested if k =* . * may be thought of as ∞.

26

To give a short example, let us assume that we have a set S containing an object A. A has a

reference pointer to B, B has a pointer to C, and C has a pointer to D (see Figure 4.1.) We

will run the following query (described at the beginning of this section) on the set S:

S [| (pointer, "Reference", ?X) | ↑↑ X]3 | (keyword, "Distributed", ?) → T

The object A (the only thing in S) is processed. A.iter# is initialized to 1. In F 1 the match-

ing variable X is set to the pointer (object id) B. F 2 dereferences this, setting B.start and

B.next to 3, and B.iter# to A.iter# +1, or 2. The initialized B is then added to the set W.

Next A continues processing with F 4 , which checks for a keyword distributed and adds A

to T if the keyword is found. Then B is then removed from the set, and starts processing

at the iterator F 3 = I1
3 (as B.next =3.) Since B.start > 1 and B.iter# < 3 we realize B is new to

the iterator and the result of a short chain of pointers, so B goes to F 1 (with B.start =1.)

Here X is set to C. In F 2 X is dereferenced; C is initialized with C.start =C.next =3 and

C.iter# =B.iter# +1 =3 then placed in W. Next B reaches F 3 , but this time B.start ≤ 1 so it

continues processing with F 4. When C begins processing (at F 3) C.iter# ≥ 3 and C exits the

iteration (continuing with F 4 .) Thus the query terminates before examining D (which is 4

levels deep.)

So far we have assumed that iterators are not nested. We do not expect nesting to be com-

mon, but it is handled with a slight extension to the above algorithms. The iteration

number associated with an object O (O.iter#) is actually a stack of iteration numbers.

Where O.iter# is used in the above algorithms, we actually use the topmost iteration

number, which corresponds to the innermost iterator. When a dereference occurs, the

new object is initialized by copying the stack, and incrementing only the top iteration

number.

Queries that cover the transitive closure of a graph of pointers (queries that contain an

iterator [<query part>]* pose a potential problem: cycles in the graph of pointers could

cause cycles in the processing, preventing termination. This is handled by marking
hhh

S

pointer
.
.
.
.
.
Reference

.

.

.

.

.

A

pointer
.
.
.
.
.
Reference

.

.

.

.

.

B

pointer
.
.
.
.
.
Reference

.

.

.

.

.

C

pointer
.
.
.
.
.
Reference

.

.

.

.

.
D

Figure 4.1: Chain of References.

27

objects as they are processed (actually, noting the object id in a table of used items); if a

marked object is found in the working set it is ignored.

There is one important subtlety, however. Consider a query Q = S i F 1 F 2 F 3 F 4 S θ. Say

a particular object O is in the initial set S i , but fails to make it through filter F 1 . Some

other object containing a reference to O makes it through F 1 , and in F 2 (a dereferencing

filter) the pointer to O is dereferenced. Now we must realize that even though O was seen

earlier (at F 1), it still needs to be processed starting at F 3 . Thus, our mark table will

record not only the identifiers of objects seen by a query, but also where in the query they

were seen. In particular, mark_table(object_id) will store a set of filter numbers. In our

example, after processing O at F 1 , mark_table(O) = {1}. After O is processed at F 3 ,

mark_table(O) = {1, 3}. Figure 4.2 gives the complete query processing algorithm.

Note that there is no global state to be maintained between processing of each object in the

set other than that in the work set W and the mark_table. In fact, the matching variable

table O.mvar and “next filter” O.next are only needed while the object is being processed;

O.mvar always starts as {} and in all cases O.next is initially equal to O.start. The only

state that must be maintained in W are the object id, iteration number and starting point in

the query. This eases the task of parallel processing; to process an object in the set all

that must be known is the original query Q, the information in the object O and the

mark_table.
hhh

For each object_id x ∈ S i do ;; Initialize W with objects in S i .
create an object O for processing.
O.id =x, O.start =1, O.next =1, O.iter# =1, O.mvars = {}
append O to W.

While not empty(W) do
O = head(W) ;;remove O from the set
If O.start ∈/mark_table(O.id) then

While not null(O) and O.next≤n do
mark_table(O.id) =mark_table(O.id) ∪ {O.next}
s , O = E(F O.next , O)
W =W ∪ s ;; add all dereferences to the set.

If not null(O) then
S θ =S θ ∪ {O} ;;add O to the result set

Figure 4.2: Query Processing Algorithm

28

CHAPTER 5

Distributed HyperFile

There are two main concerns in distributing HyperFile; how to describe references to

non-local objects, and how to process queries that involve non-local objects. We will dis-

cuss query processing first. The implementation of remote pointers is discussed in Sec-

tion 2. For now it is enough to assume that there is some way of mapping a pointer into

both a location and the object at that location.

This Chapter also discusses some other issues involved in distributing HyperFile, as well

as some experimental results from running queries on a distributed HyperFile server.

1. Distributed Query Processing

The filtering queries of HyperFile are simple to process in a distributed system. This only

requires a slight extension of the processing algorithm presented in the previous section.

The basic idea behind processing a reference to a remote site as part of a query is to send

the query, not the data. The remote machine processes the query, and returns any results

to the originating site of the query. We expect objects in our system to be long relative to

the size of a query, so sending the query results in a considerable savings in communica-

tion cost over sending the unprocessed objects to the originating site. In addition, pro-

cessing can continue at the originating site, taking advantage of the parallelism inherent

in a distributed system.

Each site keeps a local context for queries it is processing. This context is a set of queries

{Q1, Q2,
. . . } where for each Q i we have:

29

Q.id An identifier for the query (assigned by the originating
site.) Combined with Q.originator, this forms a globally
unique identifier for the query.

Q.originator The site that issued the query.
Q.body The body (F 1, F 2,... , F n) of the query.
Q.size The length n (number of F i) of the query.
Q.mark_table The set of objects already processed (the mark_table

described in the previous section.)
Q.W The working set for this query.
Q.result The set of results of the query.

A query is processed as follows:

g The originating site sets up a context Q for the query.

g The algorithm of Figure 4.2 is run, with the context Q used for the working set W,

filters F i , mark_table, and result set S θ.

When the E function returns a set s containing a reference to an object O at a remote site

R, that object is not added to the working set Q.W. Instead the query and reference are

sent to the site R. Specifically the message includes Q.id, Q.originator, Q.body, and Q.size

from the query context, and O.id, O.start, and O.iter# from the object being dereferenced.

When site R receives the message, it tests if Q.id@Q.originator is already in its set of

query contexts. If not, Q is added to the local query context, with Q.result, Q.mark_table,

and Q.W set to {}. Then O is added to Q.W, with O.next set to O.start and O.mvars set to {}.

If the algorithm of Figure 4.2 is not already running (that is, O is the only object in Q.W) it

is started. Upon termination of the algorithm, Q.result is sent to Q.originator, and Q.result

is reset to {}.

Note that after a site has emptied Q.W and sent results to Q.originator, another derefer-

ence message for Q may arrive. Since the context Q is still in place, the “setup cost” asso-

ciated with the query is only required once at each involved site. The context Q is dis-

carded only on global termination of the query (to be discussed in Section 3.)

Note that all sites run an identical algorithm. The message setup time for a remote

dereference is minimal: Q.id, Q.originator, Q.body, and Q.size are fixed for each query; and

O.id, O.start, and O.iter# must be determined for both local and remote dereferences.

Thus the cost of processing a distributed reference (at the “pointing” site) is just the cost

of sending a message.

30

The originating site will also receive result messages. Since results are sent directly to

Q.originator, no intermediate site need be involved in handling the results. Result mes-

sages are tagged with Q.id so that the originating site can place them in the proper result

set. There are two types of results:

g Object identifiers for objects that have passed all of the filters. These are put into the

result set S θ (Q.result) at the originating site. Further queries may use this set as a

starting point (initial set S i .)

g Tuple values returned using the → operator, as described in Section 2.4.4. These are

sent to the originating site with a tag noting which → they belong to, so they can be

bound to the proper variable in the application.

Cycle detection and marking are handled locally at each site. The information kept in

Q.mark_table at each site refers only to objects processed at that site. If a site R has

already processed an object O, and later another pointer to O is dereferenced, a message

will be sent to R requesting that O be processed. Object O will be placed in the set W at R,

but when it is removed from the set the “already processed” mark will be found in

Q.mark_table and O will not be processed. Assuming data is not replicated, this is entirely

adequate and prevents any repeated processing. Processing of replicated data will be dis-

cussed later.

This method does allow messages requesting that already processed objects be processed.

Eliminating the extra messages (the second and later ones asking that O be processed)

would require a global mark table. We believe the cost in communications and complex-

ity of such a global table would outweigh the cost of the extra messages generated by the

algorithm we use.

Following is pseudocode for the distributed parts of the query processing algorithm.

Auxiliary Data Structures (at each site) :
Table of Queries: Query → Marked Documents, Working Queue

Send Message (Query, Point in Query, Reference) :
send(to Reference.machine, Query, Reference, Point in Query)

Receive Message :
If message.Query not in Table of Queries:

Create Working Queue
Add Table of Queries.message.Query := {}, Working Queue

add reference, point in query to Working Queue.

31

if Process Queries not active, run Process Queries

Process Queries :
While Working Queue not empty do

mark document
if document passes filters, send_result(document_id)
if any references result, either add to queue or send_message

Send results (document) :
If query asks for results other than the object id (selection
query, or query contains the → operator) then

send(Query.originator, requested portion of document)
else

send(Query.originator, document.id)

Although we have covered the case of a distributed HyperFile server, it is important to

note that our algorithms are also applicable to a shared memory, multi-processor server.

In this case all available processors can share the same general query information, mark

table, and working set. Each processor must have space for local information, such as

matching variables, while it is processing a particular document. Given this, each proces-

sor independently runs the algorithm in Figure 4.2. Termination requires that the set be

empty, and that no processors are still working on the query. Note that this is similar to

processing of the Linda language[Carr86]. Also notice that it is not necessary to have a

strict locking mechanism to prevent two processors from working on the same document.

Duplicate processing may create some duplicate answers but not incorrect ones, due to

the set-based nature of the result.

2. Distributing the Data

A major problem in creating a distributed database is where to place the data. This is

highly dependent on the individual database, however, and must take into account the

structure of the data, usage patterns, and possibly even legal and social issues (such as

ownership of the data.) We can address the question of how to distribute the data. This

issue deals with the mechanics of handling pointers to objects at remote sites.

2.1. Naming issues

Pointers form an important part of the database. Each object (set of tuples) has a unique

object id, which can be used as a pointer to the object. Distributing the data requires a

naming scheme so that these pointers can cross machine boundaries. There are two parts

32

to this; ensuring that object identifiers remain unique, and translating pointers (object ids)

into the site containing the object. For the latter we need some function

F(Pointer) → Location. There are a variety of ways to do this, such as global name

servers[Birr82] or including the name of the host site as part of the pointer. There are a

number of tradeoffs in the choice of a naming strategy:

g Storage cost of pointers.

g Execution time and message cost to follow a pointer.

g Costs associated with moving an object. This can be broken down into two types of

moves: changing the site where the “pointed to” object is stored, and moving an object

containing a pointer.

The following paragraphs describe the naming strategy of HyperFile, as well as discussing

some alternatives.

Name servers can add to the cost of dereferencing a pointer, particularly if the name

server is at a remote site. The obvious alternative of including the host site as part of the

pointer seriously increases the cost of moving an object, as all pointers to the object must

be updated if it changes sites. We use a variant of the method of R*[Lind81] that includes

the birth site of an object in the name.

A HyperFile object id consists of the birth site of the object, and a unique identifier (we

use a sequence number) assigned by that site. This solves the problem of maintaining

system-wide unique object ids. Each site has a cache that maps this object id into a

presumed site. This allows most pointer references to proceed directly to the site of the

document. If the referenced object has been moved, the message will be forwarded to the

birth site. The birth site must always know where any document it has created is located,

but no other site must be notified if a document is moved. Cached pointers that are out of

date are updated when they are used. The cache at a site A does not have to have

presumed sites for all pointers from objects at A; “missing” pointers can be directed to the

birth site just like misdirected messages. This simplifies moving an object; only the birth

site need be notified. Costs to update pointers from moving either a referencing or refer-

enced object are delayed until the pointers are used. Three extra messages are required

on a miss; one to the birth site to obtain the new location of the item, one to pass the mes-

sage from the birth site to the correct current site, and one to update the pointer at the site

that originated the message.

33

In a very large distributed system, the size of the birth site portion of the object id may be

large. Storage space can be saved by abbreviating local references. For example,

object_A located at site_X could have pointers to object_b@site_X, object_c@site_X, and

object_b@site_Y. The first two could be abbreviated to object_b and object_c; the current

site would default to site_X. HyperFile uses a variant of this; rather than abbreviating

pointers to the current location we abbreviate pointers that have the same birth site as the

pointing object. The above example shows the abbreviations used if object_A was born at

site_X (that is, its full name is object_A@site_X) regardless of its current location.

The advantage to this method (over abbreviating references to the current location) is that

abbreviations need not be expanded when an object is moved. Its birth site is unchanged,

so the abbreviated pointers are still correct. In addition, many pointers in an object will

refer to items with the same birth site (parts of a document, subroutines of a program, etc.)

We expect more pointers will be abbreviated using our method than abbreviating refer-

ences to the current site (for objects not located at their birth site.)

We may also desire hierarchy of names: In addition to local and global names, we may

have “cluster” names that are good within a small subset of the system (such as a single

organization.) References within the same cluster could be abbreviated. This is not

implemented in HyperFile, however.

Another issue is foreign references: Those to objects not in the HyperFile database. For

example, this thesis contains a list of references. Many of these would not be available in

a “Princeton-wide” database. We would like to be able to handle these references in as

close a manner as possible to normal pointers. This is done using stub documents, which

contain bibliographic information. Information on where to find the desired object would

be provided in lieu of displaying the object itself. This can be done entirely by the appli-

cations, with no special treatment by HyperFile.

2.2. Distributing within an Object

In some cases it may make sense to place different parts of an object at different sites. For

example, one machine may be optimized for storing and processing video, where another

may be useful for keyword and text searches. In such a case, an object containing both

types of data would best be stored at multiple sites. We currently handle this by making a

separate object at each site. The applications are responsible for handling the

34

distribution. Making this type of distribution transparent to the applications is an area for

further research. This would require some special handling in query processing; possibly

“active objects” that when queried would trigger queries at remote parts of the document.

3. Query Termination

With only a single site, a query terminates when its working set becomes empty. With

multiple sites, however, all of the working sets must be empty. Determining when this has

happened is an instance of the Distributed Termination Problem[Fran80], which has been

the subject of considerable research.

The problem of distributed termination is to determine when a distributed computation

has finished. The computation starts at some originating site, and parts of the computation

may be sent to remote sites. The computation is complete when no sites have any process-

ing left to do. Note that it is difficult for a site to determine on its own when it is done.

Even though it may have nothing left to process locally, another site may later send it a

message that will cause it to resume processing.

An obvious solution is to have all sites report completion to the site (or sites) that sent

them a piece of the computation. Each message (pointer dereference) generates a task; the

task is complete only when all local processing related to the task is complete, and all sub-

tasks at other sites generated by processing of the task have reported completion. This

generates a “tree of tasks”, and requires that considerable state information be kept to

determine if a task has finished, or is waiting for more tasks to complete. A single site

may contain multiple tasks, for example if site A sends a reference to site B, and site B

later sends a reference back to A. Site A must tell B that the task from the second message

is complete before B can report that the task from the first message is complete.

With this method the number of messages sent for each query is doubled; each outgoing

message requires a return completion message. A larger difficulty with this solution is the

time required; the total delay required to detect termination from the time that termination

occurs may be O(m), where m is the number of messages sent in the original computation.

More efficient algorithms have been developed. These require less time, less local state

information, and in some cases fewer messages than the above solution. We plan to use

the weighted messages algorithm[Huan89, Roku88]. This algorithm works as follows:

35

g The original site starts with some positive weight W.

g Any message (query) sent to another site must include some positive weight w, which

is subtracted from the weight of the sending site and added to the weight of the receiv-

ing site.

g When a site (other than the original) is done, it sends a message with its remaining

weight back to the originating site.

g When the originating site is done, and its weight is back to W, the computation (query)

is complete.

Note that the only increase in message traffic is due to the “I’m finished” messages. In

many cases, these can be piggy-backed on the sending of results.

In our HyperFile implementation, there are two particular issues that must be covered:

g Precision (how to divide weights when sending messages.) With a fixed-length

representation of weight, a site can be left with the smallest possible unit of weight.

The site would then be unable to send messages. This is unacceptable for our imple-

mentation. Existing versions of the weighted messages algorithm either ignore this

problem[Huan89] or propose a mechanism that generates more messages (request addi-

tional weight from the originating site[Roku88].) Our solution is to use variable-length

encoding; weights are sent as rational numbers, with the numerator and denominator

stored as binary integers. This allows infinite division of weight, at some expense in

message length. This shouldn’t be a problem in practice -- reasonable choices of how

to split weights (based on the expected number of messages to be sent) will limit

lengths to a few bytes.

g Too many control messages. Every time a site empties the queue of objects to be pro-

cessed for a query, it sends a control message to the originating site. It may then be

restarted if another message is received. This is inefficient if sites become idle and are

reactivated frequently. To handle this, each site can delay for some δ time units before

sending the done message. This would allow for replies to be “batched together”. This

length of δ would have to be determined by simulation or experience with the system,

and would reflect the expected amount of time between a processor emptying its queue

and a new reference arriving.

36

4. Reliability

There are two reliability issues specifically related to distributing HyperFile. One is the

problem of maintaining data integrity in the face of media failures; replication can be

used to help this. Another issue is availability; allowing queries to progress in the event of

failure.

4.1. Replication

A distributed database allows us to ensure the overall integrity of the database in the face

of media failures by keeping copies of the data at different sites. Replication can also

improve query performance by allowing queries to access the “closest” copy of a data.

This is a well-studied problem[Mahm76, Elli77, Garc81]. We present one scheme that is

appropriate for HyperFile, and fits nicely with the query processing algorithms (although

we do not rule out other methods.)

Replicated data could cause inefficiencies in both storage space and query processing

time, depending on how replication is implemented. One option is for applications to han-

dle replication; an object would contain tuples with pointers to all copies of a referenced

object. The problem with this is that queries will follow all of these pointers, instead of

querying a single copy. This is unnecessary. In addition the storage space requirements

increase, as pointers to replicated objects are replicated as well.

A similar solution is to store multiple pointers to a replicated object within a single tuple.

This would be invisible to the application. Pointers to a replicated object could be

dereferenced in a standard order, so only one copy of each object would be processed.

The underlying communications protocol would have to notify HyperFile if a message

could not be delivered, so the failed dereference could be sent to the next copy. This still

has the problem of requiring storage space for the extra pointers.

We use a variant of this solution. Each reference only contains a single pointer. A site

caches one (or more) current locations for an object. If this site (or sites) has failed, the

message is sent to the birth site of the object. The birth site is responsible for knowing of

all copies of the object. Note that this is the same action taken if the sender did not know

the current site of the referenced object to begin with. Updates must all pass through the

birth site to ensure reaching all copies (an expensive solution, but cost-effective given a

high read to write ratio.) If the birth site is lost, it can be reconstructed by broadcasting a

37

request for the location of all copies of an object. If this is too expensive, backups for the

birth site may be kept (these would act as surrogates if the birth site is lost.)

This method allows for a variety of tradeoffs. Reliability can be improved by making

more copies of an object; this also gives potential for improvement when reading the

object but increases the expense of updating the object. Note that this choice can be made

on an object by object basis. Another advantage to this scheme is that no global control is

required; the birth site of an object is in effect the manager of that object, and can make

decisions as to what degree of replication is desirable. This autonomy may be particularly

appropriate in widely distributed databases that span multiple organizations.

It is okay for different pointers to an object to be translated into different copies. This

encourages use of local copies of a replicated object. In some cases this may cause

inefficiencies, however. For example, during a query a pointer in object A is followed to

copy 1 of an object C, and a pointer in B is followed to copy 2 of C. Both copies of C are

processed. Any pointers from C are followed twice, requiring extra messages. Happily

this is only a minor problem. Even if a replicated object is processed at multiple sites, the

results obtained from each site will be the same. The originating site eliminates the dupli-

cate results.

Allowing this redundant processing of replicated copies will cause some increase in mes-

sage traffic over non-replicated data. The references from A and B would still have

required messages to the same (single) copy of C, so this portion of the traffic will not

increase. However, messages generated by following pointers from C would be dupli-

cated if two copies of C were processed. The end result is that replication will often

decrease the time required to obtain first results, but time to termination may be

increased. No changes to the algorithms are required, other than message forwarding by

the birth site. If a message for a remote reference cannot be delivered, it will be sent to

the birth site. The birth site will attempt to find an accessible copy of the object.

4.2. Availability

Availability concerns keeping the database usable in the face of failures of part of the sys-

tem. In our case we are interested in failures of some of the sites that contain objects

needed as part of a query. One of the issues of increasing availability, making objects

available even if the machine they are on fails, is handled using the replication scheme of

38

the preceding section. If the cached current site (or sites) is not available, the message is

sent to the birth site. Although this method does not tolerate failures of all of the cached

current sites and the birth site, each site can decide how much space (in terms of caching

additional current sites) it is willing to use to increase fault tolerance. Handling more

failures without expanding the space requirements of the cache would require either some

sort of a global locating service, or broadcasting the request for the object. The former

gives up some of the independence and autonomy of our scheme, while the latter could be

too expensive in a widely-distributed system where the number of copies may be large

and the time for a broadcast considerable.

Another issue is what to do with a reference to an object that cannot be reached. Related

to this is what to do with a query that encounters unreachable references. We report

pointers that cannot be followed to the originating site. This leaves the originating site

with two options: Abort the query, or report the problem to the application. The latter

solution allows the application to decide if an abort is necessary. The query will report

results received, as well as giving a list of unreachable references. For some applications,

such as a looking for specific information on a topic, this may be adequate. For example, a

query might ask for specifications on a VLSI chip. This could return many kinds of infor-

mation; timing diagrams, pin-outs, power requirements, etc. The desired information may

be contained in the available results, and the user could proceed even though part of the

query could not complete.

A more serious problem is what happens if a machine fails while it is processing a query.

The distributed termination solution outlined in Section 3 is not particularly robust. In

particular, if a site fails while it still has some weight w, that weight will never be returned

to the originating site. Thus the query will never terminate. HyperFile times out if the

query seems stalled, and reports partial results to the application in the same manner as

with unreachable pointers. More robust distributed termination protocols exist[Lai86],

but they are also more complex and expensive. These could easily be placed in HyperFile

in a distributed system where the timeout method is inadequate.

5. Costs

We have said that this is an efficient means of processing distributed queries, to justify

this we will discuss some of the costs of processing distributed HyperFile queries. We

39

will examine two types of costs: The increase in local processing cost, and the generated

message traffic.

As discussed previously, the local cost of sending a remote query is insignificant: The

query and associated fixed information is only built once at the originating site, and then

the message is reused for all further remote queries. The remaining cost in building the

message; the reference, point in the query, and iteration information; must be determined

in order to place in the queue for a local query. The only difference is placing it in a mes-

sage to be sent rather than in the working queue. Receiving a remote query involves some

cost: The local data structures to hold the query and working queue must be built. This

need happen only once at each site, however. The cost per-reference is only putting the

reference information into the queue. This is comparable to the cost required to enqueue

the reference if it were local.

Another cost that cannot be ignored is the translation from the global naming scheme into

local names. This, however, is inherent in the distributed system and not due to the query

processing algorithm.

Communications costs can be significant. Each message is small (except possibly results,

but that can’t be helped), but there may be many messages. The messages are divided into

two types: Pointer messages, and control messages for the termination algorithm. The

number of pointer messages can be as large as the number of items processed by the

query. Alternative algorithms could store messages and send them as a group, cutting the

number of messages to something on the order of the number of sites involved. This

would complicate query processing, however, and we feel that it would not be necessary

in practice. Unless some special information about the global structure of the database is

kept at each site, the number of pointer messages is worst-case optimal. A simple demons-

tration is to imagine a traversal of a linked list, where each odd element of the list is at the

originating site, and each even element is at the remote site. After the first document is

processed, nothing can happen until a message is sent to the remote site (as the original

site doesn’t know that it has more documents to be processed locally.) The remote site can

either process the second document, or send it to the original site. The latter case costs a

message immediately, but no further message is required to process the third document.

The former case delays the cost of this message until the second document is processed,

but it is still required.

40

This worst case demonstration isn’t all that applicable in practice. It is easy to imagine

cases where our algorithm is not optimal. For example, complete processing of the queue

on the original site could cause numerous references to a remote site. Under our algo-

rithm, these would be sent individually. These could be bundled and sent as a single mes-

sage. This could be incorporated into our algorithm, but the decreased message cost

would also result in decreased concurrency. This is a tradeoff that could be figured out

for each system.

The cost of control messages (to detect termination) ranges from the number of pointer

messages to the number of involved sites, depending on how the termination algorithm is

run (as described in Section 3.) Other algorithms could possibly eliminate this cost or

assume it entirely within other messages. However, this would increase the complexity of

the algorithm. We feel the cost of the potentially large number of messages is a

worthwhile tradeoff for the simplicity of the query processing algorithm.

A broadcast from the originating site to all sites involved in the query is also needed once

termination has been detected. This allows the remote sites to forget the processed object

mark table and other information pertinent to the (now complete) query.

6. Experiments

One of the advantages of the distributed query processing algorithm is that it needs little

central control. The downside to this is that it is difficult to predict just how it will per-

form. As a result we have run some experiments to test how HyperFile operates under

various situations.

We have implemented this algorithm in a prototype HyperFile server, distributed over a

network of IBM PC/RTs connected by an ethernet. The RTs run Berkeley 4.3 UNIX; UDP

and TCP/IP are used for inter-process communication.1 Each machine has a single server.

This is a main memory database (as will be described in Chapter 7); although large objects

are stored on disk none of our test queries required disk access. The implementation is

not particularly efficient; we have concentrated on extensibility rather than speed. An
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 This implementation was done using the Eiffel object-oriented language. The version of Eiffel
used (v2.2) did not support inter-process communication; we created a message based system for
communicating Eiffel objects in order to support this work.

41

optimized system would significantly decrease the times we present. Our experimental

client was a simple application that read a query from a script, submitted it to HyperFile,

received the result, and then went on to the next query in the script. The client ran at a

separate machine from any of the servers.

We ran some performance tests on this system. The goal of our experiments was to under-

stand the tradeoffs involved in handling remote pointers:

g Overhead: Extra work is involved in sending messages and processing results from

remote sites. Do queries involving remote pointers give unacceptable response time?

g Potential parallelism: Response time may improve when remote processing is started

while local processing continues.

g Problems with delays: If the last object to be processed locally contains a remote

pointer, the entire system may be idle while that message is in transit.

Note that we do not yet have a reasonable “competitor” algorithm or system to compare

our performance with. Performing similar queries in a distributed file system would

require searching entire files; this in effect results in sending all data to a central site. At

best this uses a single message for each file, the worst-case for HyperFile requires a mes-

sage for each object. Our messages send only the query (about 40 bytes for the experi-

ments presented here) versus potentially huge messages required to send a complete file.

Hypertext systems require manually “browsing” through the data, and are not commonly

distributed. Neither would be an interesting comparison.

We constructed synthetic data to use in our experiments. This allowed us to “parameter-

ize” our tests, so we could load the system in various ways and study the results. In par-

ticular, each object searched as part of our test queries contained the following:

g Five search key tuples; one guaranteed to be unique to that object, one found in all

objects, and three that were chosen from a space of 10, 100, and 1000 possible values

respectively. Changing the tuple and value searched for allowed us to vary the number

of items found by a query. For example, searching for a given key in the unique tuple

would return at most one object.

g One chain pointer that gave a linked list of all the items. In tests with more than a sin-

gle machine, these pointers were always to a remote machine. This gives the maximum

delay time; all servers are idle while each message is in transit.

42

g Fourteen random pointers. These each pointed to a randomly chosen object. They

were divided into 7 types, with two pointers of each type. The probability of a pointer

being to a local object varied from .05 to .95 depending on the type. For example, the

two pointers of the Rand.05 type were almost always to a remote object. A query fol-

lowing the Rand.05 pointers would have high message cost. However, since there were

two such pointers in each object (very likely to different machines) the query would

“branch out”, yielding some parallelism and reduced delays.

g Tree pointers that formed a spanning tree of the objects, such that the root of the tree

had a single remote pointer to all other machines, and each of these was the root of a

local spanning tree. This gives high parallelism with low message cost.

We ran tests with these items divided evenly among three machines and among nine

machines. The graphs were constructed such that the desired properties (likelihood of a

pointer being remote, etc.) were the same in both cases. In addition, the graph structure

formed by the pointers in these objects was identical regardless of the number of

machines. We also ran the tests with all items on a single machine. This gave a base case

with which to compare the cost of handling remote pointers.

Each query traversed the transitive closure of the graph formed by a particular type of

pointer, and looked for a given search key within each item in the transitive closure. For

example, the query:

Root [| (Pointer, "Tree", ?X) | ↑↑ X]* | (Rand10p, 5, ?) → T

would traverse the tree structured graph (splitting immediately to each machine, and then

tracing pointers locally on that machine.) Each object would be checked to see if it had a

Rand10p tuple with a key of 5 (Since each item had a single Rand10p tuple, with its key

value randomly distributed from 1 to 10, we would expect the result to contain about 10%

of the items in the tree.)

From our experiments we deduced a few basic times. Local processing of a single object

took approximately 8 milliseconds, plus another 20 milliseconds to add the object to the

result set (if necessary.) The added time to process a remote pointer was roughly 50 mil-

liseconds (including constructing the message, system calls for sending and receiving,

and transmission delay.) About 50 milliseconds was also required for each remote result

message. Of course, remote pointers may allow parallel processing of queries, so the

extra time to process a remote pointer does not necessarily translate into an equivalent

43

increase in client response time.

Perhaps more interesting than the above numbers is the actual query response time. We

tried a number of cases, all based on the transitive closure query shown above. The graph

structure was varied with each test; we tried extreme cases (such as Chain, giving max-

imum delay; or Tree, giving high parallelism at low message cost) as well as the randomly

created graphs with varying locality of reference. We also tried varying the quantity of

items returned (by changing the tuple in the search key.) For each test we timed 100

queries that followed the same pointers and looked for the same type of search key tuple,

but randomly varied the key searched for (so the 100 queries were comparable, but not

identical.) This time was the actual response time (wall clock) at the client.

There were 270 objects involved in the queries for which we report results. (Note that the

total database was larger; however only 270 objects were looked at by our test queries.)

As the algorithm is linear we expect using a different number of items in the query would

result in a linear change in the response time. We did construct a data set with half the

number of items; this didn’t quite cut the query time in half. This is as we would expect

(since there is some constant overhead associated with the query, regardless of size.)

Presenting more experiments with varied data set sizes would tell little of interest; our

primary concern is how remote pointers affect performance.

Running the query shown above (a transitive closure over 270 items, with approximately

27 in the result set) took 2.7 seconds when all the objects were at a single site, when fol-

lowing either tree or chain pointers.

When the worst case delay scenario (following chain pointers) was tried in the distributed

case (on either three or nine machines) the query took 15 seconds. The delay and message

cost of such a query is high, however pointers with such a structure can probably be

avoided in practice. When we instead followed tree pointers a query averaged 1.5 seconds

using three machines, and 1 second using nine machines. We obviously gain from paral-

lelism in this query; times are significantly less than the for a single site.

The above two cases are extremes. To study “normal” situations we ran tests on the ran-

domly constructed pointers. Although still synthetic data, they are probably more

representative of real situations. The results of these tests are graphed in Figure 5.1.

Each data point represents a test using the graph formed by the pointers with the given

44

0 50 100

1

2

3

4

5

6

Time

(sec)

Probability of reference being local

____ Single Machine
...... Three Machines
----- Nine Machines

g

g
gg

g
g

g

g.
........g.

........g.............g.
................g..............g.

..
....

...g

g

g

g
g

g

g

g

Figure 5.1: Query time with increasing probability of local references.

hhh

probability (x axis) of being local (two such pointers per object.) The cases at the far right

of the graph generate fewer messages, however they also are less likely to make full use

of the available parallelism. The cases at the far left generate too much message traffic

for our system; although parallelism is increased, much of the time is spent receiving and

sending messages rather than processing queries.

It would be reasonable to expect that the single-machine case would be constant. This is

not the case. The reason is that the pointers in these tests were created randomly (within

the local/remote guidelines), and the transitive closure of a given pointer type was not

guaranteed to include 270 objects. The single machine case gives a measure of the

number of items actually covered, so it is perhaps more relevant to look at the difference

between the dotted or dashed line and the solid line, rather than the absolute times. This

has been done in Figure 5.2; here we see the relative speeds of the various cases. The

points are the actual data, the lines are a linear least-squares fit to the data points. The

best case would have the three and nine machine cases approach 1/3 and 1/9, respectively

(representing perfect speedup as communication costs go to zero.) As we decrease the

number of remote references, however, the likelihood of machines sitting idle increases,

which is why we do not achieve perfect speedup. This implementation achieves the best

response time with over 90% local references. An implementation with a more efficient

45

0 50 100

0.5

1

1.5

2

2.5

3

Time

Relative

to a

Single

Site

Probability of reference being local

____ Single Machine
...... Three Machines

(∗ actual data points)
----- Nine Machines

(+ actual data points)

.∗
∗

∗
∗

∗

∗

∗

+++
+

+

+
+

Figure 5.2: Query speedup with increasing probability of local references.

hhh

communication system (relative to processing cost) would achieve its best response time

with a lower percentage of local references.

The user response time is actually improved in distributed HyperFile as long as most

references are local (a reasonable assumption.) We also see that with more machines we

are capable of handling a higher percentage of remote references. This is good, as a more

highly fragmented database will probably have more remote references.

Another interesting result concerns the number of items returned by a query. Increasing

the number of items returned significantly increases the query processing time. Given

two queries that follow the same pointers, a highly selective query may be faster in the

distributed case, but a less selective query may run faster when the entire database is on a

single server. For example, the case in Figure 5.1 where 95% of the pointers are local

takes an average 1.1 seconds when run on three or nine machines, and 1.5 seconds when

run at a single site. Note that this is returning an average 10% of the items in the transi-

tive closure. If we instead select all of the items (using a key that is found in all of the

objects) the single site time jumps to 5.1 seconds. For three and nine sites we have 6.4 and

5.7 seconds. This is illustrated in Figure 5.3. Sending results is expensive in our system;

we would have to make changes if queries with low selectivity are frequent. We expect

this will not be the case, as the goal of most queries is to find a few interesting objects.

46

0.1 1 10 100

1

2

5

Time

(sec)

Percent of Database returned by Query

(log scale)

95% probability of local reference

____ Single Machine
..... Three Machines
----- Nine Machines

g

g
ggg

g......................................g...................g..........g.........g

g

g

ggg

Figure 5.3: Query time with varied number of returned results, 95% local references.

hhh

There is a straightforward modification that would help this problem. In the case of

queries that only construct a new set (as opposed to returning specific fields from objects)

the result could be left as a “distributed set”. Each server would send back the number of

local result items, rather than pointers to the items themselves. If this number is large, the

user will probably want to further restrict the results using a query rather than look at the

returned items. The portion of this set at each site would be used to initialize the working

set at that site for the new query. This method would probably be employed only when

the size of the results exceeded some threshold.

Given that the goal of this system is efficient distributed query processing as opposed to

parallel processing, the results are reasonable. In all but extreme cases, remote pointers

do not significantly increase response time. The cost of processing messages and the

transmission delay are substantially offset by the gains in parallel processing. We see

that the cost of distribution is low (with respect to response time, normally the most

important measure to the user of an interactive system.)

47

CHAPTER 6

Indexing

As with many large databases, some HyperFile queries can take considerable time to pro-

cess. A query that searches every item in the database can take time that an interactive

user would consider unreasonable. Indexing is commonly used in traditional databases to

speed up these searches by effectively “precomputing” parts of common queries. We use

indexing in HyperFile for the same reason.

Indexing in HyperFile demands some new techniques. This is because the scope of a query

is determined by the pointers in the data, rather than being statically determined by the

database schema. Our indexing technique starts with the simple idea of attaching an

index to an object in the database. The index allows lookup of items based on a particular

attribute type (the property of the query), and covers objects that could be reached from

that node following a particular type of link in a “browsing” interface (the scope of the

query.)

The indexing methods described here may have applications other than HyperFile. In par-

ticular, any transitive queries on hypertext-like data may benefit from this work. There

may also be applications in object-oriented database. This is an area for further study.

Our indexing technique starts with the simple idea of attaching an index to an object in

the database. The index allows lookup of items based on a particular attribute type (the

property of the query), and covers objects that could be reached from that node following

a particular type of link in a “browsing” interface (the range of the query.)

1. What is indexed

The choice of a key for indexing can be quite varied; just about any type of data will

serve. This is no different from indexing in a traditional database. Specifying the scope of

the index, however, is different. Rather than specifying a relation or set that is to be

48

indexed, we must specify a portion of the graph: a place from which queries will start,

and a type of link to follow. Creating an index will thus require specifying three parame-

ters: The anchor point (node) that the index is to be connected to, the search key for the

index, and the link type that determines the scope of the index.

Figure 6.1 is a sample database consisting of two types of links (solid and dashed) and a

single attribute (noted as key.) An index has been created at node root on the attribute key

and the link type solid. A few interesting points to note about the index are:

g Item D is not in the index, even though it has a key of interest. This is because the

index is for items reachable through solid links, and D is reached by a dashed link.

g Item I is pointed to by a solid link. Since it is not reachable from root via solid links,

however, it is not in the index.

g Item G is in the index, even though its parent (C) does not appear in the index. Node C

is in the scope of the index, but does not appear since it has no key attribute.

The index of Figure 6.1 will speed up searches whose scope is the solid-link tree rooted at

root. The Database Administrator is the one that determines that such an index is useful,

based on the expected queries. The DBA has much the same responsibility in a relational
hhh

index:

Index: key, solid
bird: E
cat: A, B
dog: A, F
fish: G

A B C D

E F G H I

key: cat, dog key: cat key: dog

key: bird key: dog key: fish key: mouse

root

Figure 6.1: Index of a tree-structured database.

49

system.

2. Structure of the index

The index itself will be structured in a similar manner to a traditional database index. B-

trees, hashing, and other such techniques are all applicable. Certain special information

is required, however. In addition to pointers from the index to relevant objects, objects

will be required to have back pointers to indexes that potentially include them. This is

necessary in order to properly maintain the index. For example, in Figure 6.1, C will have

a back-pointer to ensure that updates that add keys to it will be reflected in the index.

Items D, H, and I do not need back pointers, as changes to these objects will not result in

their being reachable, and thus they will not be in the index. If the dashed links are

changed to solid, the presence of pointers to the index in the parents of the links will

point to the need for including D, H, and I in the index.

In a relational database, information about what indexes may potentially reference a given

record can be determined easily from the definition of the index, due to the static nature

of the scope of the index. In HyperFile system, determining what indexes a data item is in

may be as difficult as building the index (in terms of number of items referenced), as the

scope is determined by information contained in the objects themselves (pointers.) We

use back-pointers to cut the costs of maintaining the indexes when data items are

modified. In addition, when a data item is added to the database the indexes that refer to it

can be determined from the index links of the parent of the item. We also need back

pointers from all nodes in the scope of the index (even if they are not in the index, such as

C in Figure 6.1) to support deletion. Deletion of a node or link may require changes in the

index to deal with nodes below that point.

Following are pseudo-code descriptions for the various operations relevant to indexes.

These will work only on tree-structured databases; the extensions necessary to operate on

arbitrary databases will be discussed later.

Create_index (node, key, link)
Create an empty index data structure.
Add a pointer to node noting the presence of the index.
add_index (index_structure, node, key, link)

Add_index (index, node, key, link)
Add all appropriate key items of node to index.

50

\/— children of node via link
add_index (index, child, key, link)

Find (node, key_type, key_item, link)
if node has a pointer to an index on key_type and link then

index_find key_item
else

if key_item present at node then
Result := node

\/— children of node via link
Result := Result ∪ Find (child, ...)

Add_link (parent, new_node, link)
Add link to the database in the normal manner.
\/— index back-pointers in parent

if index.link = link then
add_index (index, new_node, index.key, link)

Delete_link (parent, child, link)
Delete link from the database in the normal manner.
\/— index back-pointers in child

if index.link = link then
delete_index (index, child, index.key, link)

Delete_index is analogous to add_index

Searches from a node that is not indexed can still make use of indexes. The simple case is

making use of an index that is associated with a node that is reached at some point in the

search. This is already done in the above algorithms. In some cases it may be worthwhile

to use an index located above the start point of the search. If the start point is in the

scope of the index; the index will cover a superset of the desired search. Such an index

can be found because the starting node of the search will have a back pointer to the index.

All of the items returned by the index must be checked to see if they are in the proper sub-

tree. For example, in Figure 6.1, a search from node A could use the root index, and then

check all of the objects found by backtracking from the object until either A or root is

reached. This assumes that the database provides back-pointers for all links. In many

cases this may be done for reasons independent of indexing.

This is an appropriate approach when few items are found in a search of the index, and

the subtree rooted at the search node is a large fraction of the subtree rooted at the

indexed node. The given example would be slower than a direct search for the keys cat

and dog, but would be comparable given a search on bird.

51

Determining when to use an index located above the search point is a difficult problem.

Some simple heuristics that suggest the use of such an index are:

g The index returns a relatively small number of items compared to the size of the sub-

tree to be searched.

g The desired subtree is a large fraction of the total size of the indexed subtree.

g The subtrees are relatively broad; back searches will require tracing a small number of

pointers relative to the size of the subtree.

Even if we do not use an index above the start point of the search to actually find the

desired objects, it may be of some use. If an index lookup returns no items for the desired

key, we know that the search would also return an empty result (since the index covers a

superset of the portion of the database being searched.) If searches often come up empty,

this will result in a net savings.

3. Multiple Indices

In a real system, there may be many nodes from which we often make queries. We could

build an index at each of these nodes, but this leads to space problems due to replication

of information. Figure 6.2 provides an example of this situation. Some users may wish to

query the entire database, using index root; others may only be interested in the subset

contained in the tree rooted at A. In order to allow the efficiency provided by indexing to

both sets of users, we can construct indexes anchored at both nodes (the indexes pointed

to by solid lines.) All of the functions described at the end of the previous section will

work here as well. Note that each object that is below A must have back-pointers to both

indexes.

4. Chained Indices

This naive approach has one problem. All of the items in index A are also indexed by root.

This leads to replication in the indexes. In a large database with many indexes, the size of

the indexes could in fact grow at a faster rate than the size of the database itself. Given

that the index grows linearly in the number of items indexed, a complete set of indexes on

an n node tree of depth k would take space O(n .k). A more space-efficient index structure

would help, but the indexes could still end up requiring more space than the data itself. In

addition updates to the database may take a long time because they must modify many

52

............

...................

mouse: G

Index: key, solid

index

index

root

key: mousekey: fishkey: dogkey: bird

key: dog
key: cat

GFEDC

BA

fish: E
dog: B, D
cat: A
bird: C

mouse: G
dog: B

Index: key, solid

Next Index

fish: E
dog: D

bird: C
cat: A

Index: key, solid

Figure 6.2: Tree-structured database with two indexes.
hhh

indexes.

This replication can be eliminated by requiring indexes to refer to “lower” indexes, rather

than directly indexing the entire subtree. This is illustrated by the indexes pointed to by

dotted lines in Figure 6.2 (just the ones on the left side of the Figure.) A search for all

items in the database (starting at root) that have attribute dog would first find B from the

root index. Next the search would proceed along the Next Index pointer to the index

anchored at A, where it would find D. Note that this increases the time required to find an

item. In the worst case, putting an index at every node, we end up with a linear search and

have lost the benefits of indexing. We expect the typical cost will be much smaller, how-

ever. This will be discussed in Section 6.

Update in such a system is slightly more complex, although the time required is less (due

to updating only a single index.) This complexity results from the need to remove links

between indexes when links between objects are changed, in much the same manner as

objects must be removed from the index in the basic scenario.

In some cases partial redundancy can be allowed. For example, if a new index is created

beneath an existing one, the redundant items need not be immediately removed from the

old index. This speeds the creation of the new index. The old index need be modified

only when objects it indexes are changed. These data items will already have pointers to

53

the old index. These pointers must be changed to reflect that updates to these data items

should cause them to be removed from the old index. Changing the pointers, however,

can be done as part of the creation of the new index. This adds only a constant factor to

the time required to build the new index. This is one example of the numerous time/space

tradeoffs that can be made with this indexing.

Eliminating replication may help when using indexes located above the start point of the

query. For example, in Figure 6.2 a search from B could use the index at root. A clever

implementation could note that the non-replicated index at root (pointed to by a dotted

line) indexes root + the tree rooted at B − the tree rooted at A. This is very close to an

index on B. A search from B could just use this index, and remove root from the result set.

5. Single Multiple-Attribute Index

An alternative to the previous structure is to use a single database-wide index for each

type of key. In a sense this is a multiple attribute index[Lum70]. However, the second

attribute in our system is “reachability” rather than an attribute in the normal sense. As

such, previous techniques do not apply.

Our method is to use a single primary index on the search key that returns a secondary

index. The secondary index maps the “anchor points” (nodes in the database that have

indexes) to the objects that can be found from those anchor points. The structure of the

primary and secondary indexes could be any of a number of things, including B-trees,

hash tables, sorted lists, etc. A naive implementation of the secondary indexes, where

each anchor point hashes to a list of all of the objects reachable from that anchor point,

could require O(n 2) space per secondary index (where n is the size of the database).

However, all of the objects at many anchor points are reachable from other anchors (e.g.

in Figure 6.2 all objects reachable from A are also reachable from root.) This fact was

used to eliminate replication in the previous section. In the secondary index we can asso-

ciate with a given anchor point only those objects for which it is the “closest” anchor

point, cutting the space considerably (worst case O(n).)

For example, Figure 6.3 is a sample index containing entries for a few keywords based on

the database of Figure 6.2 (with anchor points at root and A.) Note that the secondary

index for “dog” only associates B with the anchor root, even though a query on “dog” from

root would also find D. Node D is associated with the anchor point A. The reachability

54

graph on the anchor points is used to determine which anchors can be reached from the

desired “start” anchor point. The result set of data items is then the union of all of the

nodes found from all of these anchors (in the chosen secondary index.) To illustrate a

search, say that we wish to find all of the objects reachable from root that contain the key-

word “dog”. We use the primary index to find the secondary index associated with “dog”.

We also need all of the anchor points reachable from root (done using the reachability

graph, these are root and A.) Next we find all of the objects reachable from these anchor

points using the secondary index. The objects B and D are the result of our search. More

formally, the Find procedure is:

Find (node, key_type, key_item, link)
S = find_secondary_index (key_item, link)
let T = transitive closure of node in reachability graph for link

Note that the previous two steps can occur in parallel.

\/— anchors A in T
Result := Result ∪ S(A) (Objects in A in secondary index T.)

As written this assumes that the current node has an index. Extending it to the general

case is straightforward, and can be seen from looking at the Find operation of Section 2.

Lookup time for the reachability graph (finding transitive closure) is worst-case linear in

the number of anchor points. Improving this time requires precomputing the transitive

closures, which could take quadratic space (and is also expensive to compute[Ullm90] .)

There are better options, however. A number of transitive closure algorithms suitable for

our secondary indices are given in[Jaga90]. A technique for a tree-structured graph (or
hhh

bird

A

root

Reachability Graph

dogcat

Primary index

Anchor: ObjectsAnchor: Objects
Secondary IndexSecondary Index

A: D
root: B

A: A

...

Figure 6.3: Single Multiple-Attribute Index.

55

tree-structured parts of the graph) expresses reachability as a range of integers. To do this,

we name the anchor points by preordering the tree. With each anchor point, we store its

number and the number of its right sibling. From a node i with right sibling j, the reach-

able anchor points are those numbered i to j-1. This cuts the “transitive closure” opera-

tion on the reachability graph to constant time with space linear in the number of anchor

points.

Up to this point we have ignored different link types. Using the methods of the previous

sections we have to construct a new index for each type of link. With this method we may

reuse the primary index, however. Each key value will have a different secondary index

for each link type, and there will be a separate reachability graph for each type of link.

Also note that an index on a different key attribute can reuse existing reachability maps.

Updates to the database that change the key attribute of a data item will require that it be

moved to a new secondary index. This requires no extra links; Finds in the primary index

can be used to return the old and new secondary indexes. The node is then removed from

the appropriate anchor point list in the old index, and added to the list for the same

anchor point in the new index. Deletions and additions are similar. Changes to links are

somewhat more difficult. For this we still need the back pointers from nodes to anchor

points (as in Sections 2, 3, and 4) and from anchor points to the secondary indexes. Delet-

ing or adding a link will require modifying some of the secondary indexes, and in some

cases may require rebuilding part of the primary index (for example, if a new value for the

key attribute appears.) In addition, the reachability graph may have to be changed.

6. Cost Comparison

The methods of indexing we have introduced (single indexes, indexes with replication,

indexes without replication, and multiple-attribute indexes) each have advantages and

disadvantages. A simple estimate of the time and space costs for each technique on a

regularly-structured database is given in this section. This provides for a reasonable

basis of comparison of the indexing methods.

First we will set out the assumptions and terms used in these calculations. Although the

techniques work for an arbitrary directed-graph structured database, we continue to

assume that the data is tree-structured. The structure of data in a hypermedia database is

likely to be oriented towards a tree more than, for example, a randomly-created directed

56

graph. We feel that worst-case costs derived for tree-structured data will reflect practical

costs better than an analysis on arbitrary graph-structured data. Another assumption is

that searches will only use indexes at or below the start node. The analysis for using

indexes located above the start node is too complex to present in detail here.

For the purposes of this discussion we will assume that the data and pointers to be

indexed form a complete tree with constant branching factor (each parent has the same

number of children.) This restriction significantly simplifies the analysis, and we feel the

analysis on this structure will reflect performance on more varied data. The Tektronix

HyperModel Benchmark[Ande89] uses such an arrangement as one of its three “hierar-

chies”. In the next section we present experiments on less regularly structured data, and

compare the results with the results of the analysis.

We will use indexes placed at the root and at all nodes halfway down the tree. This pro-

vides a uniform placement of indexes (each index has an equal number of nodes located

“directly” beneath it.) Such an arrangement is an intuitively reasonable example. We will

also look at a single index placed at root, as described in Section 2. Allowing a more

varied placement of indexes increases complexity significantly; we felt the knowledge

gained would not justify the increased effort. We need to define the parameters that we

will use:

T(n) Time required to do an index find operation on an index containing n elements.

This will typically be logarithmic, and is determined by the choice of index (B+

trees, tries, etc.)

E(n) Time required to search through n nodes without using an index. This will basical-

ly be linear, although the function could be complex if the data items are stored on

disk.

c s Space required to store a search key in an index. Some index structures, such as

tries or C 0 trees[Orla88] do not require linear space for the keys. Such structures

would complicate this analysis considerably, but would be of most benefit to the

single multiple-attribute indexes.

c p Space required to store a pointer in an index.

57

c r Space required for each item in the reachability graph of the single multiple-

attribute index described in Section 5.

t r Time required to lookup an item in memory, such as in the reachability graph or in

a linear search of the secondary index.

K Total number of possible search keys.

P Probability that a given key attribute value appears in a given data item. KP gives

the expected number of key attributes per data item.

B Branching factor. This is the number of children of any given data item (except

for leaf nodes.)

j Depth of the second (non-root) layer of indexes. The total depth of the tree is 2 j.

We will consider root to be at level 0, and the leaves to be at level 2 j −1.

N Number of indexable items in the database. This is equal to B 2 j −1.

Note that there are B j second level indexes. Each of these indexes has B j −1 data items

located beneath it. We have not put in a separate space cost for back-pointers from data

items to the index. There will be one such pointer for every pointer from an index to a

data item, so this is included in c p .

We will use three queries in this analysis, each reflecting a different start point. From

these three, we can predict results for queries from any start point. The queries are:

F 1 Find time for searches starting at the root node (which contains an index.)

F 2 Searches starting at a child of the root node. These will progress through half the

depth of the tree before they are able to use second level indexes (if any.)

F 3 Finds starting at level j. These will be able to make use of a second level index

directly (if one exists.)

Note that searches starting from below level j (below F 3) will take the same time for all of

the methods, as no index will be used. Searches from between level 2 and j will take

between F 2 and F 3 time, but will vary at the same rate for each of the three indexing tech-

niques. We will use F it to denote the time required for search F i (where i is 1, 2, or 3)

using index type t (where t is s for a single index at root, r for fully replicated indices, u

for unreplicated (linked) indexes, and m for the single multiple-attribute index.)

As a quick example, for a single index located at root we have F 1s =T(k), where k is the

number of keys in the index; plus the retrieval time E(r) for the r items found by the

58

index. Given K total possible keys, P probability that a given node will contain a given

key, and N nodes, we can see that the expected number of keys in the index (k) is:

k = K(1 − (1 −P) N)

keys. The expected number of items to be retrieved r is PN. Therefore the expected

retrieval time for a search from root is:

F 1s = T(K(1 − (1 −P) N)) +E(PN)

Searches from below the root require searching the entire subtree from the start point

(which includes the object retrieval time):

F 2s = E(B 2 j −1 −1)

F 3s = E(B j −1)

As to the space requirement, note that an index will require c s k +c p d storage space,

where k is the number of keys in the index (as determined above), and d is the number of

items indexed. Also, a given database item will have pointers to it in the index KP times,

so we have an expected value for d of nKP. This gives us a storage space requirement for

an index of size n of

S(n) = c s K(1 − (1 −P) n) +c p nKP

Therefore the space requirement for a single index at root is

S s (N) = c s K(1 − (1 −P) N) +c p NKP

Using multiple indexes without eliminating replication gives the fastest lookup time of

any of the three indexing methods described. Starting at the root we get:

F 1r = F 1s = T(K(1 − (1 −P) N)) +E(PN)

If we start at level 1 things are somewhat worse. We have to first search all of the nodes

between the start point and the relevant second level indexes (B j −1 −1 nodes), and then

use each of the indexes beneath this point.

F 2r = E(B j −1 −1) +B j −1 T(K(1 − (1 −P) B j −1)) +E(P(B j −1))

Finally, at level j we need search only a single index on B j −1 items:

F 3r = T(K(1 − (1 −P) B j −1)) +E(P(B j −1))

59

This method requires the most space. To the space requirements for the single index we

must add B j smaller indexes at level j. Thus the total space requirement for the replicated

multiple index technique is:

S r = S(N) +B j S(B j −1)

= c s K(1 − (1 −P) N) +c p NKP +B j K(c s (1 − (1 −P) B j −1) +c p P(B j −1))

Eliminating replication saves space at some expense in time for searches from root. For a

search from root we now have to search the top index, and then each of the lower indexes:

F 1u = T(K(1 − (1 −P) B j −1)) +B j T(K(1 − (1 −P) B j −1)) +E(PN)

= (B j +1) T(K(1 − (1 −P) B j −1)) +E(PN)

Searches F 2 and F 3 are the same as in the replicated case.

The space required for each of the indexes at level j is the same, but the unreplicated top

level index requires only space S(B j −1).

S u = (B j +1) S(B j −1)

= (B j +1) K(c s (1 − (1 −P) B j −1) +c p P(B j −1))

The Find operation for the single multiple-attribute index of Section 3 is a multi-step algo-

rithm. The first step, finding the secondary index, is T(K(1 − (1 −P) N)) time regardless of

where we are in the database. The transitive closure of the reachability graph is

inherently linear; for a search from root it will require time O(B j) from root, and constant

time for the other searches.1 Finding the appropriate objects in the secondary index can

be done in two ways. If we are looking for objects reached from a large number of anchor

points, a simple linear search may be desirable. If only looking for a few anchor points,

we can use a typical index and perform a number of searches each of time T(n), where n is

the number of anchor points in the secondary index. Note that an anchor point will occur

in a secondary index with probability (1 − (1 −P) d), where d is the number of objects

directly beneath that anchor point. In our example, d =B j −1 for all the indexed locations,

so n = (B j +1)(1 − (1 −P) B j −1). Adding these up gives a find time of:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 We have described a technique where a tree-structured reachability graph can be replaced by
ranges in a preorder numbering of the database. This would give constant, as opposed to linear,
time and space requirements. Since this only applies to tree-structured data, we are not using this
optimization for this analysis.

60

F 1m = T(K(1 − (1 −P) N)) + t r B j + t r (B j +1)(1 − (1 −P) B j −1) +E(PN)

This is assuming that we make a linear search of the secondary index, otherwise the third

term would change:

F 1m = T(K(1 − (1 −P) N)) + t r B j +B j T((B j +1)(1 − (1 −P) B j −1)) +E(PN)

Searches from children of root require the same time as the previous methods to get to the

indexed locations, but beyond this we can make some optimizations. We only need to do

the search in the primary index once. We will need to look at the reachability graph and

perform a lookup in the secondary index once for each of the indexed nodes we reach.

This gives a time of:

F 2m = E(B j −1 −1) +T(K(1 − (1 −P) N)) +B j −1 (t r +T((B j +1)(1 − (1 −P) B j −1))) +
E(P(B 2 j −1 −1))

Searches from the bottom indexed locations also require the primary lookup, as well as a

single check of the reachability graph and secondary index.

F 3m = T(K(1 − (1 −P) N)) + t r +T((B j +1)(1 − (1 −P) B j −1)) +E(P(B j −1))

The space requirement here is a bit more complex. The reachability graph requires space

proportional to the number of anchor points: c r (B j +1). The primary index takes space

for each search key, as well as a pointer to each secondary index: (c s +c p) K(1 − (1 −P) N).

Each secondary index will take space determined by how many anchor points are found in

the index and how many data items have the corresponding search key. The expected

number of anchor points in an index is (B j +1)(1 − (1 −kprob) B j −1), and the expected

number of data items is NP. The space required for each item will be c p , the cost of a

pointer to a data item or anchor point. There will be one secondary index for each entry

in the primary index. This gives a total space figure of:

S m = c r (B j +1) + (c s +c p) K(1 − (1 −P) N) +
K(1 − (1 −P) N)(c p NP + (c p NP +c p (B j +1)(1 − (1 −kprob) B j −1)))

= c r (B j +1) +K(1 − (1 −P) N)(c s +c p (1 +NP + (B j +1)(1 − (1 −P) B j −1)))

To understand the tradeoffs between the various indexing techniques it is helpful to graph

the performance results on a particular scenario. There are many possible scenarios,

corresponding to the values of the parameters on Pages 57 and 58. Given our space

61

limitation, we will look at one representative scenario (a different scenario is presented in

the experiments of the following section.) Therefore these graphs should be interpreted

as illustrative only.

The graphs in the rest of this section are based on complete trees with a branching factor

of five. We did try varying the branching factor; the results varied by an equivalent factor

for all of the indexing methods. The values of K and P are given above each graph. T(n),

the time for a lookup in an index, is logarithmic. E(n), the time to search through n nodes

in the database, is linear. We assume a main-memory database; with increasing memory

sizes it is reasonable to cache “short” information, such as links and keywords, for each

node in the database. Thus E(n), the time to search through n nodes in the database, takes

time t r
.n. T(n), the time to lookup a key in an index of size n, is logarithmic: t r log 2 (n).

The factor t r corresponds to memory lookup time, for these graphs we simply assume unit

time.

Figure 6.4 shows the find time for each of the indexing methods, for a find over the entire

database (F 1). We use K =1000 and P = .001, this provides an expected value of 10 search

keys per node.

hhh

10 100 1000 10000 100000 1e+06

10

100

1000

10000

100000

K = 1000, P = .001

Time requirements
(steps)

Search from Root
Includes data retrieval

(log scale)

Number of items in Database
(log scale)

_ _ Unindexed
---- Unreplicated indices

___ Single Multi-Attribute index
.... Fully replicated indices

(also Single index at root).
. .. .

. . ..
. . .

.. . .
. .. .

. . .

Figure 6.4: Find Time vs. Number of Data Items, search over entire database.

62

100 1000 10000 100000 1e+06

1

10

100

1000

10000
K = 1000, P = .001

Time requirements
(steps)

Search from below Root
Includes data retrieval

(log scale)

Number of items in Database
(log scale)

_ _ Unindexed
(also Single index at root)

.... Fully replicated indices
---- Unreplicated indices
___ Single Multi-Attribute index

. . .
. . .

. . .
..

Figure 6.5: Find Time vs. Number of Data Items, search from just below root of database.
hhh

Figure 6.5 shows the expected time for queries from just below the root of the database

(F 2 , encompassing one fifth of the database.) Otherwise this figure corresponds exactly to

Figure 6.4. The gains provided by indexing are substantial.

Figure 6.6 compares the effect of the number of distinct keys on the time required for a

find. This is for the F 2 find, starting just below the root node. It does not include the

actual object retrieval time, as this is the same for all of the indexes. The expected

number of keys per node is constant (10); the more total keys, the fewer items will be

returned for a given key. Note how the single multiple-attribute case performs better than

the other methods with a large number of keys. Let us first explore what is happening

with the fully replicated and unreplicated indexes. As the number of distinct keys grows,

the size of each index grows. This increases the time required to search the indexes. This

is also true with the multiple-attribute index, if we simply look at the search time for the

primary index. However, the cost for the multiple-attribute method also includes a search

based on the secondary index, and as the number of keys increases the size of each secon-

dary index decreases. The cost of searching the secondary indexes decreases faster than

the cost of searching the primary index increases. When the number of distinct keys

approaches the size of the database, the cost of searching the secondary indexes becomes

insignificant. At this point the cost of a single search in the (large) primary index of the

63

10 100 1000 10000 100000 1e+06

4000

6000

8000

10000

N = 107 , P = 10/K

Time requirements
(steps)

Search from
below root

Number of possible keys (K)
(log scale)

.... Fully replicated indices
---- Unreplicated indices
___ Single Multi-Attribute index..

..
...

..
..

...
..

...
..

..
...

..
...

..
..

...
..

...
..

..
.. .

. .
.. . .

.

Figure 6.6: Find Time vs. Number of Keys, search from just below root of database.
hhh

single multiple-attribute technique becomes less than the cost of searching many lower-

level indexes with the replicated and unreplicated methods.

The remaining figures show space requirements for the various methods. Figure 6.7 is

space versus number of items in the database. We have assumed that c s = c r = c p = 1
hhh

0 5000

0

50000

100000

150000

200000

250000
K = 1000, P = .01

Space
requirements

(index entries)

Number of items in Database

.... Fully replicated indices
___ Single Multi-Attribute index
---- Unreplicated indices
_ _ Single index at root

. . .
. . .

. .. .
. . .

. . ..
. . .

. . .
.. . .

. . .
. .. .

. . .
. . ..

. . .
. . .

.. . .
. . .

. .. .
. . .

. . ..
. . .

. . .
.

Figure 6.7: Index Space vs. Database Size.

64

word. For example, for a single index at root on a database of 5000 nodes takes 50,000

words, or about 10 words per object in the database. The database itself would take at

least 75000 words, as each object would require a minimum of 15 words (10 keys and 5

links.) In practice a node will have much more information (such as text, other types of

links, etc.), so the relative space cost of the index will be small.

Figure 6.8 corresponds to Figure 6.6, and shows space relative to the number of possible

keys. This shows an interesting behavior; although the indexes grow as the number of

distinct keys increases, the pattern of this growth is not obvious. If we look at the single

index at root, we see that the space is relatively constant until the number of keys is com-

parable to the database size. Before this point, the size of the index is dominated by the

storage of pointers to data items. Beyond this point, the cost of storing the keys dom-

inates (as there are few data items per key.) With the unreplicated indices, the keys begin

to dominate earlier, as each index covers a smaller area. Note that the curve for the fully

replicated index is roughly the sum of the curves for the unreplicated indices and the sin-

gle index at root. With the single multiple-attribute index, the space for the secondary

indexes grows as well, resulting in the divergence between this method and the unrepli-

cated indices.
hhh

100 1000 10000 100000 1e+06 1e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

N = 107 , P = 10/K

Space
requirements

(index entries)

Number of Possible Keys (K)
(log scale)

.... Fully replicated indices

---- Unreplicated indices

___ Single Multi-Attribute index
_ _ Single index at root

.
. .

.. .
. .

.. .
. .

..
. .

Figure 6.8: Index Space vs. Number of Keys.

65

From these graphs we can make a few interesting generalizations as to which index struc-

ture is best. The decision as to which index structure to use depends on the expected

types of queries and how much storage space is available. The number and distribution of

keys also has an effect on which method should be used. A single index uses the least

space, but is only useful for F 1 type queries (unless searches use indexes above the start

point, which was not considered by our analysis.) Replicated indexes provide the best or

close to the best search times in most cases, at an expense in storage costs (about three

times the space for a single index in our scenario.) The non-replicated indexes would be

most useful when the majority of the searches start from low in the tree and space is at a

premium. A multiple-attribute index strikes a balance between replicated and non-

replicated indexes: It performs adequately on searches starting at root (F 1), but is slower

for low starting queries (F 3). The space requirement is close to that of the non-replicated

indexes.

6.1. Update Costs

Up to this point we have only discussed the cost of searching an index. Building and

maintaining the index are very real costs, and cannot be ignored. The motivation for our

work has come from databases that are dominated by reads, so we have concentrated on

the search times. We do feel it is important to say something about the costs of building

and updating indexes, however.

Building an index requires accessing every node reachable from the anchor point of that

index. This is the same as the number of nodes accessed by a query using the index. If

the cost of inserting an item into an index is not too large (logarithmic in the size of the

index is a reasonable value), building an index will result in a net savings after running

only a few queries.

Maintaining these indexes can be expensive. In some cases the cost of keeping an index

coherent with a database update is as expensive as building the index. This depends on

the type of update. The following paragraphs give time estimates, assuming that back

pointers from data items to the index already exist (this cost was included in the space

analysis above.) The costs are in terms of “number of index updates”. The time for a sin-

gle index update varies with the type of indexing method; many of the methods in the

literature may be used.

66

Adding or deleting a key from an item:

Replicated indices

This could require many updates: Every index that might reference the item must be

modified, and an item is in the scope of every index on the path from root to that

item.

Unreplicated indices

In this case, only one index points to any given data item, thus requiring only a sin-

gle update.

Single multiple-attribute index

Here the object must be removed from or added to a secondary index, at a cost of a

secondary index insert or delete, and a primary index find or insert (for insertion

only.)

Adding or deleting a link:

Replicated indices

This could be expensive, as all indexes located above the changed node must be

modified. If the change is small (such as adding or deleting a leaf), only an index

insert or delete would be required. If a major portion of the graph is changed, how-

ever, the change could be as expensive as rebuilding each index from scratch.

Unreplicated indices

Here only a single index need be changed, but again the cost of that change varies.

Single multiple-attribute index

This requires modifying the reachability graph (a quick operation), and possibly

modifying a number of secondary indexes. The number of secondary indexes to be

modified would be the sum of all of the data items below the changed link, but above

anchor points, plus all of the anchor points that are “first in line” beneath the

changed link.

One factor to consider when judging the time “cost” of building and maintaining an index

is the human factor. If an index is only used once, the cost to build it will outweigh the

savings in terms of computer time; however the human cost of a delay in an interactive

query may be substantial. Spending considerable off-hour batch time building indexes

may be worthwhile even if the indexes are rarely used. Keeping an index coherent with

67

updates can also be done off-peak; an index can simply be invalidated when an update

occurs that might affect it.

6.2. Index Placement

So far in our cost analysis and experiments we have assumed a fixed index placement,

with indexes at the root and halfway through the database. We tried experiments with

randomly placed indexes, but performance was (not surprisingly) poor, as index “cover-

age” often overlapped and portions of the database were left unindexed. In a real data-

base indexes would be placed at frequent search points, as determined by the user or

Database Administrator. These points may not correspond to the index locations used in

this analysis. Much of this analysis would still be relevant, but it is worthwhile to note

one pitfall. With the non-replicated and multiple-attribute techniques, performance can

suffer if too many indexes are used. In the non-replicated index case, this is because we

have to search many small indexes. With the multiple-attribute method, the cost is in

searching the reachability graph and secondary index. In practice this may not be a prob-

lem, as most searches may start from a few locations. Whoever (or whatever)[Fink88] is

responsible for placement of the indexes must understand this in order to maximize the

performance of the system.

It is possible to figure out how many indexes is “too many”, in terms of actually decreas-

ing performance. As an example, assume that we have one distinct key per item in the

database, and a binary tree index (parameters T(n) = log 2 (n) +c, E(n) =n, t r =1, K =N, and

P =1/N.) Assume I index points with a roughly uniform placement (in the sense that each

index directly covers the same number of items, which is true for the previous analysis.)

This would give us an expected number of items that we have to directly search (before

reaching anchor points in all directions) of
2I
Nhhh .

With unreplicated indices, searching each index will take time T(N/I). If we assume the

query covers n total items, we can expect to search
N
nhhI indexes. This gives a total cost for

the indexed search of:

total search(I) = E(
2.I
Nhhhh) +

N
nhhI .T(

I
Nhh)

68

ts(I) =
2.I
Nhhhh +

N
nhhI .(log 2 (

I
Nhh) +c)

We now need to find the value for I that minimizes the above function. We could do this

by differentiating with respect to I, this gives:

dI
d(ts(I))hhhhhhhh = −

2I 2
Nhhhh +

N
nhh (c + log 2 (

I
Nhh) − log 2 (e))

Finding the Roots of this function is a bit difficult. We can use numerical methods, how-

ever, to find minimums for ts(I) for particular scenarios. For example, if we assume

N =107 , and a query that covers roughly 10% of the data (n =106), we find that perfor-

mance drops off after about 2050 indexes.

With the multiple-attribute technique best we need not worry about the cost of searching

the primary index (as it is done once regardless of the number if anchor points.) We have

the same cost as above to reach all of the anchor points (
2I
Nhhh), plus the cost of the reacha-

bility graph (t r
.

N
nhhI), and finally the lookup in the secondary index (

2I
Nhhh , assuming a linear

search.) This gives:

ts(I) =
I
Nhh +

N
n .Ihhhh

We can find roots for this. Differentiating gives

dI
d(ts(I))hhhhhhhh = −

I 2
Nhhh +

N
nhh

This has a root at

I =
√ddn
Nhhhh

(The other root is with negative I, and is therefore uninteresting.) This technique

encourages more indexes than with the non-replicated multiple indexes.

7. Experimental Results

The previous discussion of costs assumes a very regular database. Practical databases

will have a more varied structure. We believe that the cost functions of the previous sec-

tion will be reasonably close to costs on practical databases. We have performed

69

experiments using our prototype query processor/main memory database on less regularly

structured databases to verify this. The query processor was modified to detect queries

that performed a transitive closure on a particular pointer type followed by a selection on

a particular key; these queries then used any appropriate indexes. We include graphs in

this section that plot the experimental results alongside predicted results from the

analysis of the previous section.

The experiments presented here were run on a DEC 5410. As it is our goal to keep all

search information in main memory, we wanted to run the experiments on a large memory

machine to allow large databases (where indexing is most needed.) The IBM RTs used for

the distributed experiments didn’t have the memory we wanted for these experiments; the

128MB on the DEC allowed considerably larger tests.2

The experiments presented here serve two purposes:

g To verify our analysis.

g Perhaps more interesting, to explore how well we can predict indexing performance on

data that does not hold to the strict structure of the analysis (complete trees with a

fixed branching factor.)

In order to perform these experiments we must first calibrate the model, that is, determine

the values for the time constants listed on Pages 57 and 58 that correspond to our proto-

type. We assumed that the time to search through the database (without an index) was

linear in the size of the database; based on this we determined that E(n) = n .1.5ms. The

index used for our experiments is a balanced binary search tree. We determined that the

time to lookup an item in an index of size n is T(n) = log 2 (n) .750µu.

In order to test our analysis relative to databases without a regular structure we per-

formed experiments on randomly constructed databases. Note that the databases used in

the experiments are not entirely random collections of nodes and links. We expect large

hypertext databases to have a structure that resembles a tree more than, for example, a

completely connected graph. Therefore our experiments are based on data with a some-

what regular structure. We constructed two types of databases, trees and Directed
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 It is worth noting that our prototype required no code changes to move to this new platform. We
have also set up a distributed HyperFile database across a variety of hardware platforms, although
we have run no controlled experiments in such a heterogeneous environment.

70

Acyclic Graphs. The databases were built within the bounds of the following parameters:

g Each node contains a single key, randomly selected from a space of 700 distinct keys.

g The number of outgoing branches from each node varies randomly from 1 to 7.

g Each path from the root to a leaf node is at least of length four.

g For the tests on indexed databases, each database has an index at root, and indexes at

each node “halfway” between the root and the leaves (using the fully replicated index

method described in Section 3.)

The following graphs contains data points for identical sets of queries run with and

without indexing. Each data point corresponds to a different database, and represents an

average time of forty queries on that database. Note that each point represents an average

of queries on a single database rather than an average over several databases of the same

size; we are interested in seeing the deviation in a particular database from the prediction

of the analysis. The lines represent the theoretical results from the analysis of the previ-

ous section, with a branching factor B =4 (the parameters on key placement are K =700

and P =1/K, which correspond exactly to the experimental databases.)

Figure 6.9 gives results of F 1 queries (searches from root) performed on a tree-structured
hhh

100 1000 10000

0.01

0.1

1

10

100

Type F 1 Query

Time (sec)
(log scale)

Number of items in Database
(log scale)

____ Unindexed
(+ experimental)

.... Fully replicated indices
(∗ experimental)

.

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

Figure 6.9: Queries from root on a tree-structured database.

71

100 1000 10000

0.01

0.1

1

10

100

Type F 2 Query

Time (sec)
(log scale)

Number of items in Database
(log scale)

____ Unindexed
(+ experimental)

.... Fully replicated indices
(∗ experimental)

.

+
∗

+
∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

Figure 6.10: Queries from just below root on a tree-structured database.
hhh

database built to the above constraints. Figure 6.10 is for F 2 queries (searches from a

node below the root) on the same data. The results for queries using indexes on small

databases seem surprisingly low. Our best guess is that this is also partially a result of the

machine architecture; we probably have a significant increase in the cache miss rate once

the database exceeds a certain size.

We also tried queries on databases that were not tree-structured. To the databases used

for Figures 6.9 and 6.10 we added links that form a directed acyclic graph rather than a

tree. Specifically, from each node N in the database we added a number of links to chil-

dren of the siblings of N. Note that this corresponds to the PartOf relationship of the Tek-

tronix HyperModel benchmark[Ande89]. The number of outgoing links from each node

was selected randomly from 1 to 7. We assigned a different link type to these new links;

the experiments on these databases used only links of the new type.

Figures 6.11 and 6.12 show the results of queries run over these databases. The variation

between the predicted and actual values is larger here than with the tree-structured data-

base, however the predictions seem reasonable, particularly for larger databases. Of more

importance, the prediction of performance improvement appears quite close; if the experi-

mental index is slower than predicted, so are the experimental results without an index.

72

100 1000 10000

0.01

0.1

1

10

100

Type F 1 Query

Time (sec)
(log scale)

Number of items in Database
(log scale)

____ Unindexed
(+ experimental)

.... Fully replicated indices
(∗ experimental)

.

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

Figure 6.11: Queries from root on a DAG structured database.

100 1000 10000

0.01

0.1

1

10

100

Type F 2 Query

Time (sec)
(log scale)

Number of items in Database
(log scale)

____ Unindexed
(+ experimental)

.... Fully replicated indices
(∗ experimental)

.

+
∗

+
∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗

Figure 6.12: Queries from just below root on a DAG structured database.
hhh

The trends in the experiments coincide relatively well with the predictions from the

analysis. The model we developed in Section 6 cannot be used to predict the exact perfor-

mance of indexes on a particular database. Nevertheless, the model can be used to study

tradeoffs and general trends.

73

8. Graph Structured Databases

The previous algorithms have been presented in the context of a tree-structured database.

Directed Acyclic Graphs and arbitrary Directed Graphs present new problems. Figure

6.13 contains an example of the extensions we are talking about. Using only the solid

lines gives us the familiar tree structure. Adding the dashed links gives a DAG, and

adding the dotted links gives a DG. Index creation is relatively easy, as we need only

mark items as being in the index when they are first inserted. Updates to the primary

attribute are unchanged, but link deletion becomes more difficult. This is not a serious

problem as it is related to Garbage Collection, which has been studied

extensively[Cohe81]. We will briefly summarize some possible solutions.

8.1. Directed Acyclic Graphs

With DAGs, we can attach a reference count to the back-pointer from an object to an

index noting how many ways it is directly reached from that index. The reference count of

an object is the number of parents it has that are in the index, regardless of the reference

counts of the parents. When an item is told by its parent that the parent is no longer in the

index (or the link between the parent and child is broken), it decrements its reference

count. Only when the count reaches 0 is the object deleted.

hhh

... ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.................

.

E

C

D

B

A

Figure 6.13: Arbitrary directed graph database.

74

8.2. Directed Graphs

The problem here is with cycles. A simple solution to deletion in this case is to re-create

the index any time a link is deleted. This is only necessary when the deleted link may

have been part of a cycle. In other cases, the reference count mentioned for the DAG case

is sufficient. Cycles, and the deletion of links therein, are probably infrequent enough

that this will be adequate in practice.

75

CHAPTER 7

Other Issues

We have discussed the major issues in designing HyperFile. In this Chapter we touch on a

number of minor issues, such as version management and implementation concerns.

1. Versions

Keeping track of updates to an object is an interesting problem. In many situations it is

desirable to maintain a version history. We will outline a method that allows versions and

historical/version queries to be represented within the HyperFile model presented in

Chapter 2.

An object O becomes “versioned” by adding a tuple (version, <timestamp>, <pointer to

previous version>) to the object. Initially, the previous version pointer is null, and the

timestamp is the creation time of the object. When an update to is made to O, the applica-

tion first looks for a version tuple. If one exists, a copy O ′ is made of object O. The origi-

nal O is updated in place, and its version tuple is modified: The timestamp gets the current

time and the pointer points to the old version O ′. Note that pointers to O always point to

the latest version. An example is shown in Figure 7.1.
hhh

Current

version pointer
.
.
.
.
.

June 1
.
.
.
.
.

Version

current pointer
.
.
.
.
.

.

.

.

.

.

O

version
.
.
.
.
.

June 2
.
.
.
.
.

O’

version
.
.
.
.
.

May 10
.
.
.
.
.

Figure 7.1: Versioned object.

76

We can use this to provide two types of pointers to versioned objects: Those that point to

the latest version (the standard ones we have used so far), and those that point to a specific

version of an object. For example, the working version of a paper would have pointers to

the latest version of each section. A submitted paper would be “frozen”, the pointers

would be fixed to the current version of each section. Updates could continue on the

working draft, however.

Pointers to a specific version are created using a tuple (version pointer, <timestamp>,

<pointer>). Such a tuple is dereferenced with a query that first goes to the latest version

(pointed to by <pointer>), then checks the version tuple in the object to see if its times-

tamp is before the timestamp of the version pointer. If not, the pointer in the version tuple

is followed. This continues until the proper version of the object is found. To be more

precise, the algorithm to dereference a version pointer tuple is as follows:

Dereference(version pointer, Vp_timestamp, Vp):
Select ("version", time, previous) from object Vp
If tuple does not exist or ;; Not a versioned object

time≤Vp_timestamp then ;; Proper version
return Vp

else
return Dereference(version pointer, Vp_timestamp, previous)

Note that this does not require a change to the semantics of the language, simply a

slightly more extensive query. For example, the basic query to find all items pointed to by

items in the set S is:

S | (version pointer, ?, ?x) | ↑x → T

Note that this assumes we are only following version pointers. This will give the latest

version, regardless of the timestamp of the version pointer. However, we can also issue a

query that will in fact give the desired version:

S | (version pointer, ?ts, ?x) [| ↑↑ x | (version, ? > ts, ?x) OR (version, ?, ?)]*

| (version, ? ≤ ts, ?) → T

This first sets and dereferences the version pointer. The dereferenced object is checked

to see if it is newer than the desired one, if so the pointer is dereferenced (the OR clause

allows the correct version to slip through without setting a pointer for dereferencing.)

Finally, all versions newer than the desired one are thrown out, leaving the correct ver-

sion.

77

Even though the fundamental model supports versions with no change, it may be useful

for an implementation to provide special support for versions. Requiring pointers to old

versions to go through the timestamp dereferencing process, as opposed to pointing

directly to the old version, allows old versions to be stored as “∆’s” (differences from the

current version.) The complete old versions can be built as part of the dereferencing pro-

cess.

Queries can also choose specific versions manually; for example

S [| (version, ? ≥ 10:00, ?x) | ↑↑ x]* → T

chooses all versions of objects in S that were in effect on or after 10:00.

Versions can also be used for “historical queries”. This is done by giving version tuples

in the query an explicit timestamp (for example, “February 3, 1959”) instead of using the

timestamp of the version pointer. In some cases this will cause the final null pointer to be

followed, and no object to be returned. This makes sense, as in this case the item was

created after the time of the query.

With many simultaneous users of a large database, some form of concurrency control

mechanism is needed. Lock based transactions may be inappropriate in many cases. Long

“editing” updates would result in long-running transactions that could tie up portions of

the database for an unreasonable time. This may be unnecessary, particularly with

modifications that do not change “critical” data, such as changing the wording of a docu-

ment. Transaction management schemes that are more flexible than serializability have

been proposed[Kort88, Horn87], many of these may be applicable to HyperFile. We can

also use versions to address these problems.

Suppose a new version of a document appears while a query is running. The old version

may have been accessed as part of the query, and another pointer to the object followed

after the new version is in place. Should the new version be ignored, should the old ver-

sion be ignored, or should both be included? The last option is easy, just send out what-

ever result is obtained as soon as it has been determined to be part of the result. This

forces the application to deal with multiple versions of some objects. Using only new ver-

sions requires saving results until query termination. This eliminates one of the advan-

tages of HyperFile queries: allowing an application to begin displaying results before a

query is complete. If a new version of a processed document is installed before the query

terminates (determined by noting if the old version has been marked by the query) the old

78

version would have to be discarded and the new version processed. A greater difficulty is

with pointers that have been followed from the old version, but are not present in the new

version. These would have to be “unqueried”, leading to a cascading partial-abort of the

query. This requires maintaining considerable state beyond a simple mark of the docu-

ment. The mark would have to note which objects had referenced the marked object, so as

to determine if a partial-abort is applicable, or if the object would have been processed

through another part of the query anyway. As one of the advantages of this system is the

simplicity of query processing, we see this as a poor option.

Historical queries can solve this dilemma. All queries (or at least those that need con-

sistency) are run as historical queries. If a particular time is not given, the current time is

assigned as a query timestamp. This gives a measure of consistency; the results of a

query are as if it were executed atomically at the time of the timestamp (with respect to

versioned objects.)

In a system without globally synchronized clocks, some measure of consistency can be

obtained by placing a local timestamp on each query when it first arrives at a site, and

using only versions active at that time. This ensures consistency between objects at a sin-

gle site, requires no extra message traffic for clock synchronization, and does not require

any special guarantees (such as ordered message delivery) from the communications sys-

tem.

2. Large Memories

This research was done as part of the Massive Memory Machine project at

Princeton[Garc84]. The basis of this project is that memory is becoming less expensive;

having a gigabyte of main memory on a workstation is not unreasonable in the near

future. In particular, available main memory is likely to increase at a significantly faster

rate than processor speed, disk size, or disk access rate.

In the case of HyperFile, the availability of large memories enables us to cache most or all

of the “search” information (keywords, links, etc.) in main memory. As a result disk reads

will only occur when an application needs specific large pieces of data, which will gen-

erally be after the desired objects have been found (as opposed to a file system, where

searching through the entire text of many files is often necessary if you don’t remember

the name of the file you want.)

79

As an example, the Princeton University Library has over 4 million books[PUGS90].

Assuming a typical book has 100 pages, and about 3000 characters per page, storing all of

this data on-line requires roughly a terabyte. Compression techniques could cut this con-

siderably, however a book full of pictures will greatly expand this amount. In any case, it

is safe to assume that we are a long ways from being able to store a significant library in

main memory, and an interactive search through a terabyte of disk is not something any of

us wish to contemplate.

The key search information (Title, authors, references, keywords, etc.) for a single book

can probably be stored in less than 1k bytes, however. This allows our gigabyte worksta-

tion to store 1⁄4 of the Princeton University library; four such workstations (or a single 4

gigabyte machine) could handle all of the searching on-line. Note that this goes way

beyond the search capability provided by a typical on-line card catalog, not only are more

complex queries allowed, but the desired document is available on-line once found.

Obviously, such a system is not likely in the near future, due to social, legal, and practical

issues. Nevertheless, we can see that the technological barriers to such a system are fal-

ling.

3. Data Types

The data model provides for triples composed of items from a few basic types. HyperFile

has a limited basic type system. This is less general than, say, an object oriented system.

Unstructured types (similar to files in a files system) are provided, however. This gives a

high degree of flexibility -- it is the constraints that are limited by the “limited” type sys-

tem, not the data that may be put into HyperFile. This gives advantages in efficiency (the

server is less complex), as well as advantages in flexibility (applications do not have to fit

a predefined database schema.)

All of the operations on these types are not defined in this thesis. The appropriate opera-

tions are obvious in most cases, and this work presents no novel approaches other than

those mentioned here.

3.1. Key field types

The following data types can be operated on directly in non-trivial ways by HyperFile.

They are intended for use in the key field in a triple.

80

3.1.1. Word

Words can be thought of as short character strings. Typically these will be used for key-

words or index entries. Standard string operations will be allowed on these. In particular,

expression matching will be a common operation.

Words are not arbitrary character strings, however. By placing some restrictions on the

scope of words we can represent them more compactly and search them more efficiently

than a character string representation would allow.

To do this we make use of PATRICIA[Morr68] (a search tree algorithm) to build a two-way

hash function that allows us to map a limited set of strings to a fixed-size representation

and back. We will not describe this algorithm in detail, other than to note that it allows us

to efficiently (O(string length)) map strings of characters into integers and vice-versa,

preserving order. This allows our Word type to support some pattern matching (such as

ca* to match cat and cab, or ’cab < ? < cat’ to find cad.) A trie for the above example is

given in Figure 7.2; note how cab maps to 30, cad maps to 40, and cat maps to 50.

Carefully setting the mapping for the initial tree allows considerable flexibility in adding

new words as time goes along, for example in Figure 7.2 we have room for 9 new words

between each of cab, cad, and cat. Given a storage size of 32 bits, we can have potentially

232 Words. In practice we will not do this well, but a typical HyperFile database will prob-

ably not contain nearly so many distinct keywords. Credit must go to the on-line Oxford

English Dictionary project at the University of Waterloo for providing an example of the

use of PATRICIA in the context of document database, inspiring our ideas[Raym88].

hhh

1

30 40 50

a
. . .

d

ca
b d

b t

2
32

Figure 7.2: Trie for mapping Words to integers.

81

3.1.2. Numeric

Numeric data and standard numeric operations are supported. Currently we support a sin-

gle numeric type, although dividing this into separate real and integer types would be

straightforward. We see little use for real data as a structured part of HyperFile objects at

this time.

Other types, such as dates, can be implemented on top of numbers in a straightforward

manner. This allows some application-driven “extensibility” of the type system.

3.1.3. Pointer

Pointers are perhaps the primary thing that sets HyperFile apart from most data servers.

Note that since a pointer is actually embedded in a triple, the type and key (or type and

data) fields can be used to attach information to the link.

One method of specifying that a document contains another.
(pointer, "contains", <pointer to sub-document>)

More complex method, using triple-type to specify information.
(chapter, "One", <pointer to chapter (sub-document)>)
(Appendix, "A", <pointer to appendix>)

3.2. Data field types

The data field of a tuple can contain any of the above types, although the query process-

ing engine is optimized for searches on the key field. In addition, the data field can con-

tain larger data items. Although of variable length, most are relatively compact, the

exception being text. In our prototype, everything except text data items is cached in

memory. This speeds queries that do not require looking at text items.

3.2.1. String

Strings are intended to be short sequences of characters; at most a sentence. These will

be commonly used for titles, names, addresses, and other such data. Standard expression

matching and string operations will be allowed, but operations can be expected to be much

slower than equivalent operations on Words.

3.2.2. Short

This is a short unstructured type, where the data is of a small (although not necessarily

fixed) size. The idea is that this can be used to support extensible data types. Searches

82

will be allowed on this data by allowing the application to provide functions to determine

matches.

There are a number of possibilities for when to determine the size of short blocks. Possi-

bilities are:

g Fixed for all implementations.

g Fixed for a given site.

g Fixed for a given application.

g Fixed at the creation of the triple.

g Automatically varying.

g Application-specified, but variable (the size would be specified when the triple is

created, and an operation would be provided to “grow” and “shrink” the object.)

We prefer the last option; unstructured data items are flexible, but the application writer

is made aware of the expense of changing the size of the data. Having a fixed size would

be easier to implement, but would limit the application, and may force objects into the text

type that don’t belong there.

Since the above types will occasionally be used for searching (although not as frequently

as items in the key field), they should be cached in memory along with the rest of the

document. However, since they are not fixed length (and the rest of the data items are)

they will be kept separately.

3.2.3. Text

This is the basic unstructured type. Any operations that must be performed on text blocks

(other than creation and deletion) must be provided by the application. Text can be

viewed simply as a string of bits. Although initially intended for use as a medium for the

written word, text blocks can be used for pictures, executable code, or other data that

does not fit into the normal type system.

All data other than text will be cached in memory when possible. Thus searches on text

data will be comparatively slow. HyperFile does not operate directly on text, it only pro-

vides it to the application. This encourages the application writer to avoid using the text

data type for data that is used for searching.

83

In our prototype, text is stored as a file. This allows the use of existing tools when build-

ing applications such as editors and text formatters, as well as simplifying prototyping.

This is not simply a prototyping decision, however. Providing a file interface allows

applications to be converted for use with HyperFile by simply wrapping them in a shell

that handles the query interface, and redirects file system calls to the appropriate Hyper-

File text block.

4. Triple types

These are the actual key-data combination types, each designed with a particular purpose

in mind (although not limited to the original purpose.) The type identifies the meaning of

the triple; multiple triple types may exist that have the same underlying physical types for

the key and data.

Individual applications define triple types as appropriate. Types extend across the entire

database, however, and thus conflicts must be resolved between applications that wish to

use the same type name to mean different things. This conflict resolution also serves to

encourage the sharing of data between applications. The definition of triple types is in

some sense the “schema” of a HyperFile database.

In order to ease the problem of type definition, each database has a “reserved” catalog

document. This contains the actual specification of each triple type, including the type

name and the physical types of the key and data. In addition, since the catalog is a docu-

ment, a written explanation of each type is provided. Although this does not automati-

cally resolve conflicts in the use of triple types, it does simplify human resolution of the

problems, as a textual (or even multimedia) definition of the type is contained in the data-

base. Although I hesitate to say that the schema is self-documenting, this method does

encourages whoever defines a type to document it, as the catalog must be updated in order

to make the type usable at all.

Certain types will be predefined. In particular, descriptions of the types used in the cata-

log will be always be contained in the catalog. A sample catalog is contained in Figure

7.3. A relational model would probably be better for expressing the information in the

catalog, but it should be remembered that the catalog has a primary purpose other than as

a document. It is a statement of the power of the model that this information can be

expressed at all.

84

type
.....

pointer
.....

typekey
.....

pointer
.....

word

typedata
.....

pointer
.....

pointer

type
.....

text
.....

typekey
.....

text
.....

word

typedata
.....

text
.....

text

type
.....

type
.....

typekey
.....

type
.....

word

typedata
.....

type
.....

text

. . .

Type specification for pointer,
which is a labeled pointer

to other documents.

Type specification for
text, a labeled block
of unstructured text.

Type specification for type,
used to provide documentation

for triple type definitions.

Figure 7.3: Sample Catalog.

85

CHAPTER 8

A Browsing Application for HyperFile†

It is expected that HyperFile user interfaces will be application specific. For example, the

kind of interface desired for a CAD/CAM database would be combined with a CAD design

tool; an on-line library application would likely resemble a hypertext browser. Different

applications will result in different kinds of queries, and this will change the way the user

interface is used to generate queries.

We have built an interface for gaining experience with HyperFile query generation and

use. The interface presented here is not intended as THE application for HyperFile. It is

instead an example of ideas that might be incorporated into more application-specific

interfaces. This application was written using the Eiffel object-oriented programming

language and runs under the X window system.

The interface we have developed runs in a single application window. Figure 8.1 contains

a sample screen. (All figures showing the application window are actual screen dumps.)

Conceptually we have divided this window into three horizontal regions. The top region

of the window contains an area for menus, as well as a “prompt message”. The center

region is used for display of results; in a production system this would be application

specific, for example it could be a traditional hypertext browser. The lower region of the

screen contains a number of sets (Root, Set1, ...); these are used to store the results of

queries (and as starting sets for further queries.) To the right of some of these sets are

small boxes; these represent the items in the set. Clicking on the set “button” will display

the contents of the set in the center region; clicking on one of the small boxes will
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† The application presented in this Chapter was implemented by David Bloom ’91 as a Junior Pro-
ject a t Princeton under the supervision of Hector Garcia-Molina and the Author. It is included
here for completeness in describing HyperFile, but should be viewed as collaborative work rather
than original work of the Author.

86

Figure 8.1: Complete browser screen.
hhh

retrieve and display the contents of that particular item. To the right of these is a text

output window; this appears on demand to display long, unstructured (text) fields. This

would be subsumed by application-specific means of output in production systems. At the

bottom are matching variables, and variables used to retrieve fields during a query.

To demonstrate how the browser works we are going to use a database that contains this

Chapter, as well as the implementation of the browser. Note that the document is linked

to the implementation and vice-versa, thereby allowing a user reading about (for example)

the screen layout to look at the code defining this layout. We will first build the following

query to recursively find routines called by the main program of the browser (to two lev-

els):

Root [| (Pointer, ’Calls’, ?X) | ↑↑ X]2 → Z

We will then look through these routines for those written by David, and take a look at the

code of one of those routines with the following query:

Z | (String, ’Author’, "David Bloom") | (Sources, ’Eiffel’, →code)
{ display_text (code) }

Instead of typing queries, the browser lets us enter queries interactively using menus.

The menu at the top of Figure 8.1 offers a number of options:

87

g Filter Query: Search the database for objects meeting specified criteria.

g Selection Query: Choose specific tuples from an object.

g Add Triple: Add a tuple to an object.

g Create Document: Create a new (empty) object.

g Exit.

We select Filter Query and are then prompted for a set of items to start with. For our first

sample query, we start with the Root set (which contains the top level of the Browser pro-

gram, as well as this Chapter):

Selecting Root requires a simple mouse click on the button marked Root (at the bottom of

the preceding illustration.)

We now choose the criteria we wish to select on:

In this case, we will start by iterating (since we will want to follow pointers recursively.)

We are then returned to the same menu, and choose Specify Tuple. This allows us to

specify criteria that restrict the objects we are interested in; objects that do not meet this

criteria will be ignored. In this case, we want to follow Pointers to Called routines.

We are immediately prompted for the type of the tuple we wish to search on:

88

Note that the type menu is application specific; it could be hard coded into the browser or

perhaps “gleaned” from the database catalog.

Following this, we are given options for the key.

Note that we have a number of options:

Wildcard: Accept any key.

Set Matching Var: Set a variable that can be used later for comparisons (such as ?X in

the query language.)

Matching Variable: This tests the value of a matching variable.

Binding Variable: This sets a variable that can be later viewed (but not used in a query.)

Other: This is a chance to enter your own value, if none of the given options

are appropriate.

Suggestions: This is a submenu of application-defined “interesting possibilities”.

In this case, we will just pick Calls from the suggestions menu.

It is also worth noting that the partially completed query is displayed as it is constructed;

this is shown at the bottom of the preceding figure (under current query:.)

We next have to specify the data field. In most cases, this is a long field, such as the text

of a paper. As a result, comparisons will be infrequent. In the case of a Pointer tuple,

however, the data field contains the pointer to another object. Since we want to derefer-

ence this pointer (for a tuple with key Calls), we will set a matching variable:

89

An unused identifier is assigned for this variable, and inserted in the Available Variables

area (shown at the bottom of Figure 8.1.)

We have now completely specified the tuple for this filter. This returns us to the Next

Action menu. We have now picked out the pointers we want to follow, so we choose

Dereference, keep parent. This will add all of the pointers in a matching variable to the

objects being processed. Of course, we have to specify the matching variable from the list

at the bottom of the window:

Note that x was added to this list when we set the matching variable using the data menu

above.

All that remains is to specify that the loop (recursively chasing pointers) is done; to do

this we choose end iteration from the next action menu. This prompts for the number of

iterations (keyboard entry): An integer (for a fixed number of iterations) or * for a com-

plete transitive closure. We will only go two levels deep (no sense gathering the entire

code just for an example.) We are then ready to send the finished query:

The results of this query are displayed in the window at the top of Figure 8.2. The result

contains two tuples, each of which is a pointer to another object (note the contents of the

data fields.) The results are also placed in the next available set (in this case Set1) for

90

Figure 8.2: Result of recursive query.
hhh

future use. Currently “next available” is the least recently used set; other options (such as

allowing the user to specify which set) could be used. An arrow points to Set1, to show

that it is the currently displayed set (as shown in the bottom of Figure 8.2.)

Figure 8.2 also shows the next query. As previously mentioned, this is to find all of the

programs in the result of the previous query (placed in Set1, referred to by the letter Z in

the display of the query) that were written by David, and view the source code from those

programs. This is constructed in the same manner as the previous query. A few interest-

ing differences:

g The name of the Author was not selected from a menu, but was entered by choosing

Other: from the data menu (which prompts for keyboard input.) Likewise for the

language type (the key of the Source tuple)

g The Data from the source tuple is retrieved explicitly ((Source, ’Eiffel’, →X)), to allow

later viewing.

Once the query has been executed, we can view the contents of the binding variable used

to explicitly retrieve the program text. To do this, we simply click on the variable (at the

bottom of the window.) This brings up the contents in the main viewing area (in this case,

a single value as shown in Figure 8.3.) Also notice the small box to the left of this value;

this means that the item is actually a text field, and clicking on this box allows us to view it

in a separate window (in this case it is the text of a program.)

Note that the results were placed in Set2, as the arrow is currently pointing to it. The set

is not displayed in its entirety in this figure, as we are looking at the binding variable.

However, one of the tuples in Set2 is a pointer; we can see this because of the small box to

the right of Set2. Therefore Set2 would be useful as a set (with a single object) for the

91

Figure 8.3: Viewing a binding variable.
hhh

start of another filter query.

The user interface we have presented allows the construction of arbitrary HyperFile

queries. An actual application would probably not be as general; instead providing

“canned” query parts that would be combined by the user to form the actual query. These

query parts would be given in application-specific language rather than displaying the

actual HyperFile query. We believe the ideas of menu-based query construction and hints

serves as a good basis for forming application-specific queries.

92

CHAPTER 9

Conclusions

We have described HyperFile, a back-end data service for heterogeneous applications. It

provides a query language that permits searches based on properties of the stored objects,

as well as by following pointers contained in the objects. We believe that the query

language is powerful enough so that many common queries in applications such as docu-

ment processing can be answered with a single request to HyperFile. Yet, HyperFile is

simple and flexible enough that designers of such applications will not have to resort to

file systems to store their data.

The query processing algorithm we have presented is straightforward and efficient. The

language was intentionally limited in order to allow fast query processing. We believe

this is a good approach for a data server. Nevertheless, there is room for more work on

HyperFile query processing. We have not looked at query optimization; this could be an

interesting area. There is even more room for work on optimizing distributed query pro-

cessing. As an example, our technique requires keeping little information about non-local

objects, but multiple references to the same remote object will result in unneeded mes-

sages. Sharing information may eliminate some of these, but this would add complexity.

Another potential optimization is saving remote references until local processing is com-

plete, rather than sending queries immediately. This would save cut communications cost,

but could also decrease parallelism. This brings up another issue: HyperFile queries

should be able to achieve considerable parallelism on a multiprocessor. Adapting our

query processing algorithm to different multiprocessor architectures could be interesting

work.

We have described techniques for indexing HyperFile queries. These techniques are not

necessarily optimal, efficient means of precomputing transitive closure would help con-

siderably. There are significant limits to what can be done for general graph structures,

93

but improvement is possible for some types of graphs. We may be able to use this to gen-

erate techniques for transitive closure that have good performance in typical database

situations. Another area that we have not fully explored is limited depth indexing (as

opposed to complete transitive closure.) In fact our HyperFile implementation is quite

limited in what types of queries it will use indexes for. Expanding this a problem related

to query optimization. We can also explore other applications for these indexing tech-

niques.

We have presented a sample user interface to generate HyperFile queries. In practice the

types of queries, and how they are generated, will be application specific. Further infor-

mation on the utility of HyperFile can be gained by using it to support specific applica-

tions. We are currently looking at using HyperFile to support scientific data. Scientific

environments are often heterogeneous in hardware, software, and perhaps most important,

personnel. Although such environments have made use of traditional business-oriented

databases, rarely is all of the data put into such a database. Scientists within an organiza-

tion will often create special-purpose systems for their own use. Although HyperFile will

not eliminate such systems, it provides the capability to store and link data, code, and

notes so that the information will still be available to future researchers.

There are many data management applications that are not well served by traditional data-

base management systems. A few examples are software engineering (code, design data,

executables); computer aided design (geometric data, test information); and animation

(linked graphics frames, evolving video compression techniques.) Special purpose data-

base technologies, such as spatial database systems, are being developed to support these

applications. Integrating these new technologies into a single database is difficult.

HyperFile provides a means for integrating these types of data, by serving as an underly-

ing storage service that can track the relationships between the widely varied application

specific data.

There will be data management areas for which HyperFile is not appropriate. Neverthe-

less, we have learned one thing that will be useful in developing data managers for these

areas. Existing database technology can be reused and applied in new ways. For exam-

ple, the indexing methods we have presented can make use of existing research in both

indexing and transitive closure. Distributing HyperFile was also simplified by using exist-

ing technology, for example our naming scheme. We may never have a “perfect” database

94

management system that adequately supports all applications, but by combining existing

technology with new ideas the community of database researchers should be able to keep

pace with the data management needs of new applications of computers.

95

APPENDIX A

BNF description of HyperFile Interface Language

statement ::= expr →→ object
::= expr

expr ::= object
::= expr setop expr

::= expr filterexp
::= object selector

setop ::= ∪∪ , ∩∩ , −−

filterexp ::= filterexp filterexp
::= [filterexp]n

::= [filterexp]*

::= || filter

filter ::= (typespec, key, data)
::= filter or filter
::= not filter
::= arrow

selector ::= (typespec, key, data)
::= selector arrow
::= selector selector

arrow ::= ↑↑ filtervar
::= ↑↑↑↑ filtervar

key ::= matching-expr
data ::= matching-expr

matching-expr ::= literal of appropriate type
::= expression of appropriate type
::= expression involving matching variable
::= application-communication

typespec ::= name of type of this triple
::= application-communication

96

application-communication ::= →→identifier Send value to application.

matching-variable ::= ?
::= ?filtervar

filtervar ::= identifier

97

Bibliography

DBTG74. Data Base Task Group, “CODASYL Data Description Language,” NBS Hand-
book 113, National Bureau of Standards, US Department of Commerce, Wash-
ington, DC (January 1974).

PUGS90. Graduate School Announcement, Princeton University, Princeton, NJ(June 2,
1990), p. 23.

Aksc88. Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder, “KMS: A Distri-
buted Hypermedia System for Managing Knowledge in Organizations,” Com-
munications of the ACM 31(7)(July 1988).

Allm76. Eric Allman, Michael Stonebraker, and Gerald Held, “Embedding a Relational
Data Sublanguage in a General Purpose Programming Language,” pp. 25-35 in
Proceedings of the Conference on Data: Abstraction, Definition, and Structure,
ACM (March 22-24, 1976). Also SIGPLAN Notices 8(2):II.

Ande89. T. Lougenia Anderson, Arne J. Berre, Moira Mallison, Harry Porter, and Bruce
Schneider, “The Tektronix HyperModel Benchmark Specification,” Technical
Report No. 89-05, Tektronix Computer Research Laboratory, Beaverton, OR
(August 3, 1989).

Birr82. Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder,
“Grapevine: An Exercise in Distributed Computing,” Communications of the
ACM 254(4) pp. 260-274 (April 1982).

Carr86. Nicholas Carriero and David Gelernter, “The S/Net’s Linda Kernel,” Transac-
tions on Computer Systems 4(2) pp. 110-129 ACM, (May 1986).

Clif88. Chris Clifton, Hector Garcia-Molina, and Robert Hagmann, “The Design of a
Document Database,” pp. 125-134 in Proceedings of the Conference on Document
Processing Systems, ACM, Santa Fe, New Mexico (December 5-9, 1988).

Clif90. Chris Clifton and Hector Garcia-Molina, “Indexing in a Hypertext Database,”
pp. 36-49 in Proceedings of the 1990 International Conference on Very Large Data-
bases, VLDB, Brisbane, Australia (August 13-16 1990).

Clif91. Chris Clifton and Hector Garcia-Molina, “Distributed Processing of Filtering
Queries in HyperFile,” in Proceedings of the International Conference on Distri-
buted Computing Systems, IEEE, Arlington, Texas (May 20-24, 1991).

Codd70. E. F. Codd, “A Relational Model for Large Shared Data Banks,” Communica-
tions of the ACM 13(6) pp. 377-387 (June 1970).

Cohe81. Jacques Cohen, “Garbage Collection of Linked Data Structures,” Computing
Surveys 13(3) pp. 341-367 ACM, (September 1981).

Crof87. W. B. Croft and D. D. Lewis, “An Approach to Natural Language Processing
for Document Retrieval,” pp. 26-32 in Proceedings of the 10th Annual

98

International ACM SIGIR Conference on Research and Development in Information
Retrieval, , New Orleans, LA (June 1987).

Cruz87. Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood, “A Graphical Query
Language Supporting Recursion,” pp. 323-330 in Proceedings of the SIGMOD
International Conference on Management of Data, ACM, San Francisco, CA (May
27-29, 1987).

Dada86. P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum,
P. Pistor, and G. Walch, “A DBMS Prototype to Support Extended NF2 Rela-
tions: An Integrated View on Flat Tables an Hierarchies,” pp. 356-364 in
Proceedings of the SIGMOD International Conference on Management of Data,
ACM, Washington, DC (May 28-30, 1986).

Elli77. C. A. Ellis, “Consistency and Correctness of Duplicate Database Systems,” 6th
Symposium on Operating System Principles, pp. 67-84 (1977).

Fink88. S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical Database Design for
Relational Databases,” Transactions on Database Systems 13(1) pp. 91-128 ACM,
(March 1988).

Fran80. Nissim Francez, “Distributed Termination,” Transactions on Programming
Languages and Systems 2(1) pp. 42-55 ACM, (January 1980).

Garc81. Hector Garcia-Molina, Performance of Update Algorithms for Replicated Data,
UMI Research Press, Ann Arbor, Michigan(1981).

Garc84. H. Garcia-Molina, R. J. Lipton, and J. Valdes, “A Massive Memory Machine,”
Transactions on Computers C-33(5) pp. 391-399 IEEE, (May 1984).

Good87. Danny Goodman, “The Two Faces of Hypercard,” MacWorld, pp. 123-129
(October 1987).

Hala87. Frank G. Halasz, Thomas P. Moran, and Randall H. Trigg, “NoteCards in a Nut-
shell,” in Proceedings of the CHI+GI ’87 Conference, ACM, Toronto, Canada
(April 5-9, 1987).

Hala88. Frank G. Halasz, “Reflections on Notecards: Seven Issues for the Next Genera-
tion of Hypermedia Systems,” Communications of the ACM 31(7)(July 1988).

Horn87. Mark F. Hornick and Stanley B. Zdonik, “A Shared, Segmented Memory Sys-
tem for an Object Oriented Database,” Transactions on Office Information Systems
5(1) pp. 70- ACM, (January 1987).

Huan89. Shing-Tsaan Huang, “Detecting Termination of Distributed Computations by
External Agents,” pp. 79-84 in Proceedings of the 9th International Conference on
Distributed Computing Systems, IEEE, Newport Beach, CA (June 5-9, 1989).

Jaga90. H. V. Jagadish, “A Compression Technique to Materialize Transitive Closure,”
Transactions on Database Systems 15(4) pp. 558-598 ACM, (December 1990).

Kapi90. Sarantos Kapidakis, “Average-Case Analysis of Graph-Searching Algorithms,”
Ph. D. Thesis, Princeton University, Princeton, NJ (October 1990).

Kort88. Henry F. Korth and Gregory D. Speegle, “Formal Model of Correctness
Without Serializability,” pp. 379-386 in Proceedings of the SIGMOD International
Conference on Management of Data, ACM, Chicago, IL (June 1-3, 1988).

Lai86. Ten-Hwang Lai, “Termination Detection for Dynamically Distributed Systems
with Non-First-in-first-out Communication,” Journal of Parallel and Distributed
Computing 3(4) pp. 577-599 (December 1986).

99

Lind81. Bruce Lindsay, “Object Naming and Catalog Management for a Distributed
Database Manager,” pp. 31-40 in Proceedings of the 2nd International Conference
on Distributed Computing Systems, IEEE, Paris (April 8-10, 1981).

Lum70. V. Y. Lum, “Multiple-Attribute Retrieval with Combined Indexes,” Communica-
tions of the ACM 13(11) pp. 660-665 (November 1970).

Mahm76. S. Mahmoud, “Optimal Allocation of Resources in Distributed Information Net-
works,” ACM Transactions on Database Systems 1(1) pp. 66-78 (1976).

Maie86. David Maier, Jacob Stein, Allen Otis, and Alan Purdy, “Development of an
Object Oriented DBMS,” pp. 472-482 in Object Oriented Programming Systems,
Langauges, and Applications Conference Proceedings, ACM, Portland, OR (Sep-
tember 9 - October 2, 1986). Also Sigplan notices 21(11), November 1986.

Mend89. Alberto O. Mendelzon and Peter T. Wood, “Finding Regular Simple Paths in
Graph Databases,” pp. 185-193 in Proceedings of the Fifteenth International
Conference on Very Large Data Bases, VLDB, Amsterdam (Aug. 22-25, 1989).

Morr68. D. R. Morrison, “PATRICIA -- Practical Algorithm to Retrieve Information,”
Journal of the ACM 15(4) pp. 514-534 (October 1968).

Niel90. Jakob Nielsen, “The Art of Navigating through Hypertext,” Communications of
the ACM 33(3) pp. 296-310 (March 1990).

Orla88. Ratko Orlandic and John L. Pfaltz, “Compact 0-Complete Trees,” in Proceedings
of the 14th Conference on Very Large Data Bases, VLDB, Los Angeles, CA (Aug.
29 to Sep. 1, 1988).

Raym88. Darrell R. Raymond and Frank Wm. Tompa, “Hypertext and the Oxford English
Dictionary,” Communications of the ACM 31(7)(July 1988).

Robi65. J. A. Robinson, “A Machine-Oriented Logic based on the Resolution Principle,”
Journal of the ACM 12 pp. 23-44 (1965).

Roku88. Kazuaki Rokusawa, Nobuyuki Ichiyoshi, Takashi Chikayama, and Hiroshi
Nakashima, “An Efficient Termination Detection and Abortion Algorithm for
Distributed Processing Systems,” pp. 18-22 in Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, (August 15-19, 1988).

Salt83. Gerard Salton and Michael J. McGill, Introduction to Modern Information
Retrieval, McGraw Hill Book Company, New York(1983).

Salt88. Gerard Salton, “Automatic Text Indexing Using Complex Identifiers,” pp.
135-144 in Proceedings of the Conference on Document Processing Systems, ACM,
Santa Fe, New Mexico (December 5-9, 1988).

Schw86. P. Schwarz, W. Chang, J. Freytag, G. Lohman, J. McPherson, C. Mohan, and H.
Pirahesh, “Extensibility in the Starburst Database System,” Proceedings of the
1986 International Workshop on Object Oriented Database Systems, pp. 85-92
(September 1986).

Smit86. Karen E. Smith and Stanley B. Zdonik, “Intermedia: A Case Study of the
Differences Between Relational and Object-Oriented Database Systems,” pp.
452-465 in Object Oriented Programming Systems, Langauges, and Applications
Conference Proceedings, ACM, Orlando, Florida (October 4-8, 1986). Also Sig-
plan notices 22(12), December 1987.

Ston83. M. Stonebraker, A. Stettner, N. Lynn, J. Kalash, and N. Guttman, “Document
Processing in a Relational Database System,” Transactions on Office Information
Systems 1(2) pp. 143-158 ACM, (April 1983).

100

Ston86. M. Stonebraker and L. Rowe, “The Design of POSTGRES,” pp. 340-355 in
Proceedings of the SIGMOD International Conference on Management of Data,
ACM, Washington, DC (May 1986).

Tomp89. Frank Wm. Tompa, “A Data Model for Flexible Hypertext Database Systems,”
Transactions on Information Systems 7(1) pp. 85-100 ACM, (January 1989).

Ullm90. Jeffrey D. Ullman and Mihalis Yannakakis, “The Input/Output Complexity of
Transitive Closure,” in Proceedings of the SIGMOD International Conference on
the Management of Data, ed. Hector Garcia-Molina and H. V. Jagadish,ACM,
Atlantic City, NJ (May 23-25, 1990).

Wein88. Dale Weinreb, Neal Feinberg, Dan Gerson, and Charles Lamb, “An Object-
Oriented Database System to support an Integrated Programming Environ-
ment,” Data Engineering 11(2)IEEE, (June 1988).

Wied87. Gio Wiederhold, File Organization for Database Design, McGraw-Hill, New
York(1987), p. 107.

Woel86. D. Woelk, W. Kim, and W. Luther, “An Object-oriented approach to Mul-
timedia Databases,” pp. 311-325 in Proceedings of the SIGMOD International
Conference on the Management of Data, ACM (May 1986).

101

