HyperFile, a Database Manager for Documents

Christopher Wade Clifton

A Dissertation
Presented to the Faculty
Of Princeton University

In Candidacy for the Degree
Of Doctor of Philosophy

Recommended for Acceptance
By the Department of

Computer Science

June 1991

O Copyright by Christopher Wade Clifton 1991
All Rights Reserved

Abstract

Documents, pictures, and other such non-quantitative information pose interesting new
problems in the database world. Such data has traditionally been stored in file systems,
which do not provide the security, integrity, or query features of database management
systems. We have developed HyperFile, a data server that provides query facilities (as
well as some other database features) while maintaining the flexibility and efficiency of a

file system.

HyperFile is based on the hypertext notion of free-form objects connected by links. Hyper-
text systems “ query” their database by browsing (reading objects and following links.) We
present a query interface that maintains much of the flavor of browsing, allowing the user
to specify a single query rather than manually following links. This eliminates the
repeated user interactions of hypertext browsing, and allows the hypertext model to be

extended to larger and less structured databases.

An algorithm for processing HyperFile queriesis presented. We also show how to extend
this algorithm for distributed query processing, and present experimental results from a

distributed HyperFile server.

Another issue explored is indexing. In HyperFile, searches are often demarcated by
pointers between items. Thus the scope of the search may change dynamically, whereas
traditional indexes cover a statically defined region such asarelation. This demands new
indexing techniques. Some ideas on indexing in HyperFile are presented, as well as

experimentsin alarge HyperFile database.

Also presented is a sample HyperFile application. Thisisa “browser” that uses menus to

guidetheuser in constructing HyperFile queries.

Keywords: Database, Hypertext, Indexing, Query processing.

Acknowledgements

| owe thanks to many who have provided help and inspiration with this work. | will not

try tolist everyone, however afew stand out:

Hector Garcia-Molina, as my advisor, has been involved in this work from the start. He
has done more than simply oversee thiswork, however. He hastaught me much about the
responsibilities of a faculty member; | hope that | have learned enough to see me through

the next phase of my career.

The database and distributed systems community at Princeton has provided a framework
for my ideas; many design decisions have been influenced by their work. 1 will not
attempt to name everyone, however Rafael Alonso had provided many suggestions both

where my work relatesto hisand as a reader of thisdissertation.

Andrew Appel also deserves credit for the comments he has made as a reader of this
thesis. | hope | have incorporated all of his suggestions, as the thesis has been substan-

tially improved by hiscomments.

Neal Y oung has allowed me to bounce ideas off of him and pick his brain when my work
pushed the boundary of “systems’ research (and my expertise), as well as providing

technical help on numerous occasions. For thisl thank him.

Finally my family, who have tried to keep me sane and convince me that someday this
work would be done. In particular | wish to dedicate this thesis to my grandmother
Evelyn Bonney, who strongly influenced my decision to pursue the course that has

brought meto this point.

Abstract

Chapter 1: Introduction

Table of Contents

Chapter 2. Model and Interface Definitioncccccoevievienicscsiee e

1:

Document Model

2: HyperFileInterface Languageccccceceeieeveeseesiecseesie e see e
2.1: SELOPEIALIONS ...ooveiiiiieieeii ettt n e

2.2: Basicfilters ..

2.3 BaSIC OPEIALiONSooveuiiiieiiitesieeee sttt n e sresnen e

2.4: Setfilters......

Chapter 3: PreviousWork

1:

7.

Chapter 4

File Systems........

CODASYL SYSLEIMS ...oocviieeeieeiieiesiesieeeesie e seesessesse e seeessessessesseseesessessessessenens
Information Retrieval SYStEMSccccvceeieii i
Relational SYSLEMScoceiiie e
Advanced DatabDase SYStEMS ... s

HypermediaSyStEMS ..ot
SO 1N = oV o o=t [ST

Chapter 5: Distributed HYPErFile ..o
1: Distributed QUErY PrOCESSINGccceceeiiiriieierieseieese st eee et
2: Distributing the Datacccovieieeere e
2.1 NAIMINGISSUES ...ccveiiienieieriiriesienieesie sttt e bbb e e ene st s nneneas
2.2: Distributing within an ObJECt ...
3: QUETY TEIMINALION ..ottt n e

4.

6:

1:

Reliability
4.1: Replication ..
4.2: Availability ..

Experiments........
Chapter 6: Indexing
What isindexed .

SEIUCTUIE Of TR INUEX ettt ettt et e e e e e e e s e e e e reeeeeesananneees

MultipleIndices .
Chained Indices .

Single Multiple-AttribULE INAEXcveeiiiieere e

Cost Comparison
6.1: Update Costs

© © 0o o Ol

10
11
19
19
20
20
21
21

21
22
23
29
29
32
32

35
37
37
38
39
41
48
48
50
52
52

56
66

6.2: Index Placementccocevvreneeninenee s
7: Experimental RESUITScccooiveiiieiinieeeene e
8: Graph Structured Databasesccccccvevveeveeveieceereeennn,

8.1: Directed AcyclicGraphs ...,

8.2: Directed Graphsccocevevereeerireseseeeese e

Chapter 7: Other ISSUESccceeveeierrie e e e seesteesee e sreeseesseesseens
YT ST o T
2: LargeMEMOTIEScceoveeieeiecteeeecte et
3. DAATYPES ..eeeeeieieieeerie sttt

3.1 Key fieldtYPES e

3.2: Datafield tyPeScccooeeeriireeeeeseseeeee e
N I T o1 L= 4V 1=

Chapter 8. A Browsing Applicationfor HyperFileccccc......
Chapter 9: CONCIUSIONSooirieiiiririesie s

Appendix A: BNF description of HyperFile Interface Language

\Y

68
69
74
74
75
76
76
79
80
80
82

86
93
96

CHAPTER 1

| ntroduction

HyperFile is a back-end data storage and retrieval facility for document management appli-
cations. The goal of HyperFile is not just to store traditional documents containing text.
It al so supports multimedia documents containing images, graphics, or audio. In addition,

it must support hypertext applications where documents are viewed as directed graphs and

end-users can navigate these graphs and display their nodes. ! Another goal isto provide
a shared repository for multiple and diverse applications. For example, it should be possi-
ble for a user running a particular document management system to view a VLS| design
stored in HyperFile. Similarly, a user running a VLS| design tool should be able to refer

to a document that describes the operation of a particular circuit.

File systems are currently used to store data for most of the applications we are consider-
ing. Wewould like to have some server search functions, but still preserve the simplicity
and flexibility of afileinterface. Thisisprecisely the goal of HyperFile. The philosophy
isthat HyperFile will not understand the contents of objects, except for some key proper-
ties (defined by the application) that will be used for retrieval. Examples of properties
may bethetitle of a paper, the clock speed of a particular chip, the objectsthat are refer-
enced (hypertext links), or the previous version of a program (pointer to another object).
Searches based on these properties will be performed by HyperFile, usually with a single
request and retrieving only the data of interest. More complex searches (e.g., find all
chips that have a race condition) will involve additional processing by the application.

The fundamental ideais that HyperFile is powerful enough so that, for the applications of

1 Much of the motivation for this work comes from the needs of hypertext researchers at X erox
P.A.R.C.[Hala87,Hala88]. Some of the ideas described in this thesis were initially developed at
Xerox in discussions with Robert Hagmann, Jack Kent, and Derek Oppen. | would like to ack-
nowledge their contribution.

interest, most of the searching can be done at the server, while at the same time being

straightforward enough to have a simple and efficient implementation.

Given our requirements, it makes sense to implement HyperFile as a back-end service, as
shown in Figure 1.1. Although not essential, we do expect that in many cases applications

and HyperFile will run on separate computers. Thisisbecause:

1. HyperFile represents a shared resource soitisimportant to off load as much work as

possible.

2: The applications probably have different hardware requirements (e.g., color graph-
ics displays) than the service (e.g., large secondary storage capacity, high perfor-

mance |0 bus.)
3: Separate machines enhance the autonomy of the applications.

Given that we wish to provide a data server, the most important question is what interface
to provide the applications. Thereis actually a spectrum of possibilities. At one end we
have afile interface. In this case, the server only understands named byte sequences. The
server does not understand the contents; it can only retrieve a file given its name or store
anew file. From one point of view, thisis a good model: it makes the data server simple,
off loading all of the interpretation of the datato the application. One could even argue
that it facilitates sharing because it does not impose a particular data model that may be
inappropriate for some applications. On the other hand, a file interface increases the

number of server-application interactions and/or the amount of data that must be

application application application application

HyperFile Server

node node " node

| |
| |
l 1
l server server server 1
| |
| |
| |
| |

Figure 1.1: HyperFile as a back-end service.

transmitted. For example, say we want to search for a book with some given properties,
e.g., published between May 1901 and February 1902. Since the server does not under-
stand publication dates, the application will be forced to retrieve many more books than
are actually required. Of course, the application could also build index structures for
some common queries, but then these indexes do not cover all cases, plus traversing the

index structuresalso requiresinteractionswith the server.

At the other end of this server spectrum we have advanced databases, such as extended
relational and object-oriented. These provide added functionality, but at the expense of
increased complexity and rigidity. Advanced databases typically add structure (e.g. rela-
tions, object schemas, attribute inheritance) that makesit hard to manageirregular dataor
data that does not follow the (predefined) schema. Thisincreased complexity also intro-
duces a performance overhead (more complex algorithms, schema processing, advanced
type checking.) Userswho do not need the higher functionality must still pay these costs.
HyperFile avoids these problems by providing loose structure and a limited set of
features. Thisallows HyperFile to act asa high speed data server; added functionality can

be provided by the applications.

In our server interface spectrum, there are of course other options in addition to files,
advanced database systems, and HyperFile. We feel that they do not meet the goals we
have for a data server. Other options are surveyed in Chapter 3, we will first give a more
detailed overview of HyperFile in Chapter 2. Nevertheless, at this point we do want to
stress that we are not ruling out other interfaces for different applications (or even for
document processing ones). As a matter of fact, other interfaces (such as an object-
oriented database or a file system) could be implemented at the server next to (or even on
top of) HyperFile. Our point isthat HyperFile represents an interesting point in the inter-
face spectrum, providing the right mix of facilities and simplicity for many document

management applications.
Following Chapter 3 we discuss key aspects of HyperFile in detail:

e A Query Processing algorithm for HyperFile queriesisgivenin Chapter 4.
e Distributed HyperFile isdiscussed in Chapter 5. Thisincludes extensionsto the query
processing algorithm, aswell asthe mechanics of keeping track of distributed data.

e Indexing of HyperFile queriesisdiscussed in Chapter 6.

e Chapter 7 discusses certain other issues, such as version mechanisms, and ideas on
how to best implement a “ production” HyperFile system.

e Userinterfaceideasand experiencesare givenin Chapter 8.

A prototype HyperFile server has been built. The Eiffel object-oriented language was
used as an implementation vehicle; this has given us considerable flexibility in modifying
the prototype as we have developed new ideas. This prototype runs on a variety of plat-
forms and has been used for experiments with various aspects of HyperFile. Section 3 of
Chapter 5 givesresults of experimentswith adistributed HyperFile server. In Section 7 of
Chapter 6 we discuss results of experiments with indexing. Chapter 8 also makes use of

this prototypein conjunction with a sample application.

We do not discuss all of the issues that would need to be addressed in building a produc-
tion HyperFile; many problems such as crash recovery and dataintegrity are not substan-
tially different from existing database systems and discussing the approach taken in
HyperFile would introduce little that is novel. Weinstead concentrate on problemswhere

HyperFile requires different solutions than existing systems.

Note: Some of the work in this dissertation has been previously published. In particular,
Chapter 2 contains some information that appeared in[Clif88]; Chapters 4 and 5 include
material from[Clif91]; and Chapter 6 containswork that was presented in[Clif90].

CHAPTER 2

Model and Interface Definition

The goal of HyperFile isto provide a shared repository for diverse types of data. In order
to meet this goal, we must not constrain what may be placed in the database. Thisrequire-
ment leads to the data model of a file system; data as simply a stream of bits. We wish to
provide more capabilities than a file system, however this requires some understanding of
the data. We cannot hope to have the data server understand the underlying representa-
tion of all of theinformation we wish to put in a HyperFile database; new datarepresenta-
tions may be invented well after HyperFile is created (for example, video compression
techniques.) Weinstead allow objectsthat are a collection of searching information, which

isunderstood by the server; along with unstructured “ bit streams”.

One of the primary capabilities provided by HyperFile is a query facility. These queries
are based on the browsing idea of hypertext systems. Browsing involves looking at an
object, and following a link based on the contents of that object. This seems to be an
appropriate technique for loosely-structured information. Browsing does not scale well,
however. As a hypermedia database grows the paths to the desired information may
become long, requiring repeated user interactions (and potentially following many “dead
ends”) in order to find the desired data. Careful construction of the database to avoid this
problem defeats our goal of providing a flexible data repository. Instead HyperFile pro-
vides queries (described in Section 2.4) that all ow specifying what one would do if brows-
ing the database; search for specific properties, follow certain types of pointers, etc. The

guery then retrievesthe desired objects using a singleinteraction with the data server.

This Chapter givesthe data model and query interface language for HyperFile. Theinter-
face described here is not for user-level interactions; it is instead the language that
governs communications between applications and the data server. The actual user inter-

face will be application dependent, although multiple applications (and thus multiple user

interfaces) may be used to generate queries for a single HyperFile database. The goal of
thisinterface isto be able to represent the queries and structure that should be handled
by the data server (primarily locating and retrieving data) while limiting the complexity
of query processing at the server. Complex processing of the dataisthe responsibility of

the application, and should not be performed by the server.

1. Document Model

A HyperFile object consists of a set of triples. Each triple contains atype, a key, and a data
item. The triple type serves two functions: it identifies the purpose of the triple and
defines the actual types of the key and data fields. The key is a structured field used for
searching. The data field may be used for searching in some cases, but may also contain

unstructured datasuch astext or pictures. Thefollowing isa sample document:

{ (string, "title", "The Design of a Document Database")
(string, "author”, "Chris Clifton")
(keyword, "hypertext", 35)
(keyword, "database", 76)
(keyword, "hypertext", 83)
(pointer, "reference", <pointer to a document>)
(integer, "pages"”, 15)
(text, "Introduction", "Lots of text goes here...")
(contents, <pointer to a subsection>, 1)
(contents, <pointer to a subsection>, 2) }

Thefirst two triples record the fact that this document has two properties of type string.
These properties are named (for search purposes) "title" and "author." The triple type
string defines that both the key and data fields are strings, with the key probably being a
short string of fixed length. Thisdefinition of thetripletype string is stored by the system
in a catalog (discussed in Chapter 7, Section 4.) These definitions are application depen-
dent (rather than predefined by HyperFile), although type definitions extend across the
system to encourages sharing between applications. The types are in some sense the
“schema’ of a HyperFile database, but serve as suggestions rather than constraints and
thus preserve the flexibility we desire. The primitive types that are provided for key and

dataitemsare al so discussed Chapter 7.

To demonstrate, in the preceding sample document the triple type keyword specifies that
the triple contains a keyword (short string) and its relative importance to the object

(integer percentage.) Notethat HyperFile treatsthethird field simply as aninteger, and it

isuptotheapplicationtointerpret thisasa percentage. These keywords probably appear
somewherein thetext triple, but HyperFile isnot aware of this. The applicationisrespon-

sible for maintaining consistency between the text and the keywords.

The data model we are proposing hereisrelatively simple. One reason is that our objec-
tiveisa common model for different applications, a type of “common denominator”. This
means that we cannot expect a HyperFile server to understand the semantics of each
object property. A secondreasonisefficiency. If the HyperFile server isto quickly exam-
ine large numbers of objects, the properties used for searching must be simple and com-
pact. A third reason is that the complexity of the query interface is proportional to the
complexity of the model. Since we desire a simple language (to be described in the next
section), we require a simple model. Nevertheless, in spite of the model simplicity, we
believe that it is sufficiently powerful to support the types of queries that will be of most

interest on HyperFile data.

To illustrate these points, consider the pointer triple illustrated in our sample document.
The pointer has a simple label that can be used for searches, but contains no other struc-
ture. If the application does attach more information to links (as in some hypertext sys-
tems), it can define a complex link type consisting of a simple pointer (in the key field) and
an unstructured data field that encodes the desired information. When the application
wishes to examine a link, the data field can be retrieved and examined. With this
approach, however, the system cannot search on these link properties. If thisisdesired, a
second option isto make the link an object initself. Inthis case, the original object con-
tains a simple pointer to the link object. The link then contains the relevant properties
(e.g., date, name, color, etc.) aswell as one or more pointersto other objects. In summary,
applications that require a richer structure than what is provided by the basic model can

provideit for themselves.

Notethat objects are represented as sets, so triples are not ordered within an object. This
restriction substantially simplifies our language. Ordering can be obtained by linking the
componentstogether (e.g., part A pointsto part B pointsto part C). Asan alternative, ord-
ering can be indicated by the key or datafield, asillustrated by the last two triples of our

sample document.

2. HyperFileInterface Language

The HyperFile Interface Language (HIL) is used to represent queries. We have discussed
the overall objectives of the system. The querieswe wish to support fall into two primary
types:

e Searches for objects meeting particular criteria. These are related to conventional
database queries. The queries will look for specifics like document keywords. They
may also look for types of relationships between objects (particular patterns of
pointersto other documents.)

e Retrieval along pointer chains. Thisisimportant both for referencesand for retrieving
parts of objects. These queries arethe major difference between hypertext and conven-

tional databases.

In order to achieve these goals we combine ideas from two areas. We start with the idea
(from information retrieval) of taking an initial set of objects, and restricting this set
based on specific properties of the object (keywords, presence of a video track, etc.) to
obtain a smaller set of objects. Inthe information retrieval model, theinitial set is often
the entire database (such as a library card catalog.) Although we do not rule out such
sets, we believe that HyperFile databases will often have smaller initial sets such as the
papers oneisworking on or all of the material belonging to a particular research project.
We also incorporate the hypertext/browsing idea of following pointers; this is used to

extend the set of interesting objects.

In addition to queries that retrieve entire objects, we need queries that retrieve selected
triples from within an object. For example, we may desire abstracts rather than entire

documents.

Most query operations take an object (or set of objects), and return a new object (or set)
without modifying the original. Changes to an object are made with functions that

operateon asingleitem.

It must be remembered that the HIL is a query interface, where the HIL queries are gen-
erated by an application program. The HIL is not in itself a “complete” programming
language. It can be used as an embedded programming language, where the object
identifiers are actually stored in variablesin the host language. As an example of another

approach, we have implemented a HIL parser that tiesinto the Eiffel language. Thiswas

used in developing the Browsing interface to be described in Chapter 8. With this
approach, the application generates a string containing the HIL query. The parser then
sendsthisasa query, and returns objects that contain the results and appropriate variable
bindings. A short example of this will be given at the end of this Chapter. It must be
remembered that the HIL is not intended as a user interface. It is a query interface

between HyperFile and the application.

We will first discuss some of the basic operations of the language. These are not particu-
larly novel, nevertheless they are included at this point for completeness and as back-
ground material for the more interesting types of queries. The language features used to
form more interesting queries, those that provide queriesthat extend the idea of browsing

a hypermediadatabase, will be described in Section 2.4.

2.1. Set operations

Since objects are structured as sets, the basic set operations of union (J) intersection (n)
and difference (-) are provided. Each binary operator takes two objects, and returns a new

object (set of triples) as appropriate for the operation.

For example, A O B would return a new document consisting of all thetriples contained in
A and all the triplesin B. Note that A and B are variables in the host language, not the
actual documents; the statement

AOB - B
places the object identifier of a new object into B; this new object is the union of the
objects (sets of triples) originally pointed to by A and B. The original objects are

unchanged.

The query operators are divided into two types; those that operate on single triples, and
those that manipulate sets of documents. Most of the queries are built around filters.

These process existing documents, creating new ones based on certain selection criteria.

2.2. Basicfilters

These are operations that take an object, and return a new object that includes a subset of
thetriplesintheoriginal. They operate by looking for particular triples, primarily based

onthetripletypeand key, and adding theseto the new object.

Filters are based on triple selection using pattern matching. Perhapsit is easiest to start
with an example. Given a document D (where D is a variable in the host programming
language containing an object identifier) we can construct a new object consisting of just
the authors of the original document asfollows:

D(string, "author", ?) -~ document id
Thisisthetriple selection filter. Note the use of the ?. Thisisa pattern matching charac-
ter, which infact matches any dataitem. It can also be usedinthekey or typefields.

Filterscan also bejoined using and, or and not. For example,
D((string, "author”, "Chris*") OR (string, "author", "Hector*")) — document id

returnsauthor triplesin D that have either Chrisor Hector asthe prefix of the data.

2.3. Basic operations

Thefilter operations only provide for selecting documents, not modifying (or even creat-
ing) them. In addition to queries, thereisasimplefunctional interfacetothe system. The
simplest of these functions is create document, which returns a document identifier. The
actual operationis:
Create - object identifier

The result of this function may be used in any manner appropriate in the host language;
assignment to a variable would be a common use. Note that deletion is handled via gar-
bage collection; for a created object to become permanent (after a “session” with an appli-
cation terminates) it must be pointed to by something. The exception to thisis a “Root”
object. In typical databases, the Root will be a set of various application (and user)
specific base sets, so that each user and application will have their own view of the data-
base. Thisisinsomesensesimilarto ahierarchical file system.

Notethat copying can be accomplished by a basic filter with no selection criteria:
Source - Copy

There are also operations that can be used to make changes to existing documents. These

work at thetriplelevel. Thebasic onesareadd and deletetriple.

add_triple(document id, triple_type, key, data)
delete_triple(document id, triple_type, key, data)

A modify operation for triples could be added; currently thisisdone using delete and add.

10

2.4. Setfilters

We can now present the queries that serve as the meat of the HyperFile interface
language. Set filters are queries used to select items meeting particular criteria. For
example, we may wish to find all documents by a particular author, or search through all
documents referenced by a given paper. These operate by selecting objects out of a set,
rather than the entire database. In many cases, a HyperFile database will contain a root set
of all the objectsin the database, much like a library card catalog. This allows searches
over the entire database. The use of sets, however, allows the scope of queriesto be res-
tricted if desired. For example, we may have a set of just the programs and documentation

of a particular software project, allowing queries about just that project.

Sets are actually a type of object. Thisisdone using triples containing pointers. A setis
simply an object containing pointers to other objects. Sin Figure 2.1 is an example of a
set containing the items A, B, C, and F. This representation has a number of advantages

over using a separate datatypefor sets:

e The language has a single set of operators. Every object in the systemis built on the
same model.

e Sets can be permanent, in the same manner that an object i s permanent.

e It is easy to build annotated bibliographies; since a set is an object, associating text,

keywords, and other information withitissimple.

A
string : author @ Chris... D
pointer reference string : Title : Design...
S
B

pointer :reference:

i : : string : author : Hector ...
pointer ‘reference — g . : £

pointer reference

)

pointer :reference. —

pointer :reference:. —

C
keyword: cat 35 F
pointer reference — /9{ pointer : Biblio... :

Figure 2.1: Set of documents.

11

e A paper that contains references can also be used as a set of the referenced documents.

Thisallowseasy “literature search” operations.

The set operations described in Section 2.1 for single documents also have the appropriate
meaning for sets of documents defined in the above fashion. Since two sets Sand T are
actually sets of triples, where each triple points to an object in the set, SO T produces a
new set of triplesthat pointsto all of the objectsin either Sor T. In fact the primary use
of these operationsislikely to be on objectsthat are considered to be “ sets of documents”

rather than onindividual items.

The basic filters of Section 2.2 select individual triples from an item based on the proper-
ties of those triples. With sets, we want to select objects from the set based on properties
of the object pointed to. For example, in Figure 2.1 a query on set Swould create a new
set based on properties of A, B, C, and F rather than on properties of triplesin S. This
requires a different filter operation. These queries use the | operator, combined with
filtersthat are similar to the basic filters discussed in Section 2.2. Asan example, to select

those documents from the set Sthat were written by either Chrisor Hector we could use:!
S | ((string, "author”, "Chris*") or (string, "author", "Hector*")) - object id

An equivalent statement would be:

((S | (string, "author", "Chris*")) O (S | (string, "author", "Hector*"))) - object id
Note that we are using regular-expression style matching in the strings within a specific
filter. Thisis a function of the underlying data type for that field. Chapter 7 contains a
more compl ete discussion of the supported datatypes. Wild cards (?, described in Section

2.2) can also be used.

The | operator allows us to chain various filter parts. Each stage will “pass’ only the
objects which meet that particular criteria. The preceding example showsthe triple selec-
tion filter, which selects objects containing the desired triple. (Following sections
describefilter parts other than thetriple selection filter.) Onenote: This Chapter givesan

overview of the interface language, to serve as a framework for the rest of this thesis.

1 The syntax used for our examplesiswhat we use to represent the HIL. An implementation for a
particular host programming language could use a different representation for HyperFile queries.
What we aretryingto describe hereisthetypes of queries supported by HyperFile, rather than any
specific representation of those queries.

12

Informal descriptions and examples are used to describe the semantics of the language.
Those desiring a more rigorous treatment may wish to refer to Chapter 4, which describes
the algorithm for processing these queries.

Here are additional examples of queriesthat usethetriple selection filter:

Select objectsin Swith keyword "cat" and place themin document T.
S | (keyword, "cat", ?) - T
Select objects with keyword having prefix "ca" .
S | (keyword, "ca*",?) - T
Select documents having keyword matching "?a?" with greater
than 30% relevance to the object.
S | (keyword, "?a?", >30) - T
Select documents with either "cat" or "dog" as a keyword.
S | (keyword, "cat", ?) OR (keyword, "dog",?) - T
Select documents having both "cat" and "dog" keywords.
S | (keyword, "cat", ?) | (keyword, "dog", ?) - T
Inthe above query we could have used AND; using two filters has
the same result (first select documentswith "cat",
then from that set choose those that have "dog".)
Select documents having "Princeton” as keyword or in the title.
S | (keyword, "Princeton”, ?) OR (string, "title", "*Princeton*") - T

2.4.1. Matchingvariables

Related to wild cards are pattern matching variables. These are wild card characters that
must match at various points in an expression. For example the following query (on a
sample software engineering database) chooses programs that are being maintained by
their author:
S | (String, "Author”, ?X) | (String, "Maintained By", X) — T

In the portion of the query ... "Author”, ?X) ... X becomes a set of all of the Authors of the
object, and later these are compared against the values of Maintained By tuples for that
object. If any of these matchesavaluein X the expression evaluatestrue and the program
“passes’ the query. Notethat matching variables are used to compare valueswithin a sin-

gle object, not between objects.

More complex comparisons are allowed. For example, we may wish to find papers with

multiple authors:
S | (String, "Author”, ?X) | (String, "Author”, X£?) - T

If an object has only a single Author tuple, X will be set to the name in the data field of

that tuple. The second part of the filter will also select the same tuple and bind ? to the

13

datafield. Since X=7?, thetuple doesnot match, and asthere are no other author tuplesthe
document does not pass thisfilter. Inthe case of a document with two author tuples (with
names Chris and Hector) the first part of the query will bind each name to X. The second
part of the filter will test a tuple (say the one with author Chris) and find that thereis a
binding for X (Hector) that is not Chris; this tuple matches. Since at least one tuple

matches, the document passesthefilter andisplaced intheresult set T.

The occurrence of the variable preceded by ? specifies that it is a binding occurrence,
without the ? it tests for matches. Filters are evaluated left to right, hence the leftmost
occurrence of a variable should be a binding occurrence (otherwise nothing will match.)
Further binding occurrences add to the set of possible values for the variable for that

object.

The actual semantics of pattern matching variables are similar to Prolog
unification[Robi65]. The variables are bound to any pair of triplesthat may cause them to
match. However, the filters restrict the scope of triples available for matching. This
simplifies the problem of finding matches efficiently. Their useisalsorelatedtojoinsina
relational database. However, since matching variables only operate within an object the
processing is simplified; “expensive’ join queries do not exist. Another way of thinking
of matching variables is that each instance of an object passing through a filter has its
own matching variables. Each variable is a set of values corresponding to the bindings
for that object. An expression using the variable is true if any of the values in the set
would make the expression true. Chapter 4, which gives the query processing algorithm,

formally describes how matching variableswork.

2.4.2. Pointer operations

One of the defining features of HyperFile is the presence of pointersin the database. In
order to allow following of pointers, two dereferencing operations are provided. Theseare
t1Xand 11 X, where X isa matching variable. Thefirst isa simple dereference; it returns
the object pointed to. The second gives both the item pointed to and the original object.

These are best shown by example:
S | (pointer, "reference”, ?X) | 1X - T,

produces the items referenced by objects in S T, is itself a set (object containing

pointers), and can be operated on in the same manner as S Using the set Sin Figure 2.1,

14

weseethequery would resultin T, containing D and E. If wewish toinclude the pointing

objectsintheresultweusea 11 :
S | (pointer, "reference”, ?X) | 11X - T,

returns the documents referenced to by documents in S and the referencing documents.
Note that thisis not all of the documentsin S The first filter removes documents that do

not contain references. Using Sfrom Figure2.1, T, wouldbe{ ABCD E}. NotethatFis

notintheset, asit doesnot contain areference pointer.

Thisallows usto simulate the browsing model of hypertext by interspersing pointerswith
other types of filters. We can construct arbitrarily complex queries that look for objects
meeting specific criteria, follow certain pointers from those objects, and so on. The set-
based approach of filtering queries allows usto do thiswithout the manual navigation and
repeated user interactions of a standard hypermedia system. Additional examples of

gueriesincorporating pointers:
Place documents bibliographically referenced by documentsin Sinto T.
S | (pointer, "Bibliographic”, ?X) | tX - T
Documents referenced with either Bibliographic or foo references.
S | (pointer, "Bibliographic", ?X) or (reference, "foo", ?X) | 1 X - T
References of documents with keyword "cat".
S | (keyword, "cat", ?) | (pointer, "reference”, ?X) | 1 X - T
Documents that are references of documentsin S, where the referenced
document has the keyword "cat".
S | (pointer, "reference”, ?X) | 1 X | (keyword, "cat", ?) - T
The dereferencing operations can be chained as well; we can follow pointers, look for
selection criteria, follow other pointers based on these criteria, etc. Thischaining allows
applications to build complex queries out of a few “canned” application specific query
parts.
Pointer operations can also be used with basic filters; for example
D (pointer, "reference”, ?X) tX - T,

producesthe documentsreferencedin D. Notethat T, istheunion of theitemsreferenced

by D (thatis, it containsall of the tuplesof those items.)

2.4.3. Iteration

Sometimes we may want to follow pointersrepetitively. To handlethis, an iteration opera-

tion is provided. For example, we can find the papers referenced by those papers

15

referenced by a given set S(two hops away from the given document) asfollows:
S [| (pointer, "reference”, ?X) | 1 X]2 - T

The operations within [] are repeated as many times as indicated by the number given
after the second bracket; the above statement is equival ent to:

S | (pointer, "reference”, ?X) | 1 X | (pointer, "reference”, ?Y) [1Y - T
Note that this is not quite syntactically equivalent; the matching variable X is rebound

each timethrough theiteration.

When used with the 11 X operator, the query finds all documents within two hops (that is,
the document, those one link away, and those two links away):

S [| (pointer, "reference”, ?X) | 11X 1% - T

Note that we are apparently processing the original documents twice. In the first itera-
tion, we find all of the documents one link away from those in the set. The second time,
we repeat this, aswell as finding documents two links away. Since theresult is a set, the
duplicates are eliminated. It should be remembered that thisis a semantic model; the algo-

rithmiscleverin processing such aquery and in fact only processes each object once.

If wewant tofind all objectswithin atreerooted at the current set (transitive closure), we
can usethe* operation:

S [| (pointer, "reference”, ?X) | 11 X]* ST

This repeats the operation in brackets until the result reaches a fixed point. At first
glance, thefollowing query would find all theleaves of the graph rooted at S:
S [| (pointer, "reference”, ?X) | 1 X]* - T

Thiswould return the empty set, however, asit would continue until there were no more
referenced objects. All of the referencing objects would be thrown out by the derefer-
ence, the pointed to objectswould berun back through theiterator and be discarded when
dereferenced. If wewishtofindall of theleaveswe usethefollowing:

S [| (pointer, "reference”, ?X) | 11 X]* | NOT (Pointer, "reference”, ?) - T

Thisgathersall of theitems, and discardsthose that don’t reference another (the leaves.)

2.4.4. Transferring Datato Applications

We have not yet shown how to actually manipulate the dataitems found with filters. This

is because such manipulation is left to the application, and as such should be written in

16

the language used to write the application. The data must be available to the host
language, however. One way to accomplish thisissimply to request an entire object from

HyperFile (or part of an object, using a basic filter.)

Another method for transferring datato the application iswith a method similar to pattern
matching variables. Rather than the ? used to set a matching variable, a —» isused. For
example - X (where X is defined in the host programming language) will set X to the
values of the appropriate field. Note that multiple values for X may exist. In the Eiffel

implementation, X isa set valued variable.

As another example, we could embed the HIL in C in a manner similar to QUEL[AIImM76].
Using this method a section of code is executed once for each value, with the variable
bound to a new value for each execution. Thisis probably easier to understand with an
example. If we wished to display individually all of thetitles of documentsin written by

Chris Clifton we could issue the query:
n=1;
S | (String, "Author", "Chris Clifton") | (String, "Title", - title) - T
{ printf("Title %d: %s\n", n++, title) }

Note that these are exactly the documentsin T (which is set immediately on return from
the query, before the printfs are executed); T can be used as an initial set for further

gueries.

Here is an example of the same query using the Eiffel implementation. More code is
required than the above C version, however this implementation does not require a

preprocessor (aswould the C version.)

hyperfile_server.send_query(

"S | (String, \"Author\", \"Chris Clifton\") | (String, \"Title\", title)");
result := hyperfile_server.get_result; -- Note that send was non-blocking.
T := result.result_id; -- Tisan object id.
title := result.result_table.item("title"); --titleisa LIST[STRING]
from title.start

until title.offright
loop

putstring("Title); putint(title.position); putstring(": ");

putstring(title.item); new_line;

title.next

end;

The - operator may also be used with a basic filter, for example to retrieve the names of

all authors of an object.

17

This gives an overview of the data model and query interface. The next Chapter gives a
short comparison with other data management systems. Following that we will discuss a

number of technical details and innovations of HyperFile.

18

CHAPTER 3

Previous Work

In this Chapter we briefly compare HyperFile to some other data storage systems. While
many of these could be used instead of HyperFile as back-end storage facilities, we will
argue that for document processing they do not strike the right balance between off |oad-
ing application-dependent data processing to the front-end and performing functions that

are purely search and retrieval at the back-end.

1. File Systems

HyperFile is probably most similar to a file system, particularly one with self-describing
data recordgWied87]. Inthese systemsrecords of a file contain tags stating what informa-
tioniscontained in the record, as opposed to either a heavily structured file (where each

record containsthe same type of information) or totally unstructured files.

Most electronic documents are currently stored in file systems, rather than databases.
Thisis because of the flexibility allowed in the contents of afile. Thisfreedom is neces-
sary for documents, due to the combination of text, drawings, and other media. Many
other applications require this as well; databases for software engineering systems, CAD
tools, and other such applications are often custom-designed or built on file systems. In
addition, most documents, although structured, are not rigidly structured; variations are

acceptable when necessary.

File systemsallow thisflexibility, but provide little structurein placeswhereit is desired.
Items can be grouped in directories, and often hierarchical structure of the directoriesis
allowed, but references and other pointers that are a part of many objects are not recog-
nized by file systems. As discussed in the Introduction, file systems are inefficient for
search and retrieval. In a large (and particularly distributed) system, this problem is

magnified. HyperFile can be viewed as a powerful file server: It provides for storage of

19

unstructured data, but allows much more powerful queries based on the properties of files

(objects) and their relation to other objects.

2. CODASYL Systems

HyperFile is similar to CODASYL[DBTG74] in that they both provide objects and
pointers. A major difference between HyperFile and CODASYL, however, is that
CODASYL pointersmust beused in avery structured way, as parts of predefined sets. The
database schema determines where pointers are allowed and what they may point to. All
items in a set are of the same type. HyperFile does not place such restrictions on the
structure of data. Pointers may be used freely, wherever the user or application desires.
Although there aredifficultiesin providing thisflexibility (for example, indexing becomes
a much more difficult problem, as discussed in Chapter 6), we feel that the tradeoff is

worthwhile for our applications.

Another difference is the query language. The CODASYL query language only allows
searches over a fixed set; the scope of a search can be determined from the database
schema. We allow queries that arbitrarily follow pointers. This allows for fewer server-
application interactions. For a query that coversthetransitive closure of a portion of the
graph of pointers, CODASYL may require many such interactions, where HyperFile would

requireonly one.

3. Information Retrieval Systems

HyperFile is also similar to conventional information retrieval systems[Salt83] such as
those for library applications. These systems allow filter queries similar to ours (e.g., find
books with a given title), and indeed, our language was inspired by them. However, con-
ventional information retrieval systems do not understand pointers. The ability to follow
pointers within a query is essential to us, especially to support hypertext applications.

Also, information retrieval systemstypically do not support non-text data.

We view information retrieval systems as likely candidates for HyperFile applications.
Ideas from these systems, combined with hypertext methods, can be used to form a gen-
eral interface to a HyperFile database. Information retrieval research into automatic
indexing[Salt88] and natural language[Crof87] can also be used to generate properties for

textual objects.

20

4. Relational Systems

Relational systems[Codd70] provide a regular structure for data. Thisis both a blessing
and a curse. Applications that involve homogeneous data often map nicely into a rela-
tional structure. These systems can then provide powerful queries on this data, aswell as
integrity constraints, transactions, etc. Not all data maps nicely into a relational struc-
ture, however. Although work has been done on placing text items in a relational
database[Ston83, Smit86], creating a relational database that can support a variety of

heterogeneoustypes of dataisdifficult.

HyperFile supports data that does not fit into a regular structure. Heterogeneous objects
map easily into HyperFile objects. Another problem is that conventional relational sys-
tems do not support pointers; this is a serious shortcoming for our applications. Steps
have been taken to address some of these problems in “advanced” relational systems

(pointers, flexible datatypes, etc.), but we address these below.

5. Advanced Database Systems

Advanced database systems (such as object oriented[Maie86, Woel86,Wein88] and
extended relational [Ston86, Schw86, Dada86]) provide many of the facilities of HyperFile
(objects, pointers, queries), but also provide a lot more (like a full programming language
or an inferencing engine). We feel that these systems may provide too much for a back-

end document data server.

In particular, an advanced database system could open the door for doing much of the
application processing at the back-end. We feel that this can create unreasonable pro-
cessing loads at the shared server. Of course, one can restrict the general interface to
allow only certain queries and a simple model for objects. But if thisisthe case, thereis
no need to have a full and complex schema and programming interface at the back-end!
Restricting the interface, as in HyperFile, makes it much easier to perform efficiently the

gueriesthat are allowed.

6. G

G" isagraph query language devel oped at the University of Toronto[Cruz87]. It has com-

mon goals with HyperFile, and provides a more powerful query language. Like HyperFile,

21

G" provides for graph based transitive-closure queries. Computing some G™ queries can
be NP-hard, however[Mend89]. This defeats our goal of providing a simple and efficient
back-end data storage service. We have tried to keep our language simple, so that all
guerieswill be computationally feasible. Our query processing algorithm (to be discussed

inthe next Chapter) isinfact linear in the number of objects processed.

7. Hypermedia systems

Theinitial motivation for HyperFile came from hypertext research. We view hypermedia
systems as data presentation systems rather than data management systems. In other words,

hypermedia systems are applicationsthat will be used to access a HyperFile database.

Nevertheless, existing hypermedia systems do provide some data management features
(perhaps due to the lack of a HyperFile data server.) It would be remiss to not discuss
these. Most systems, such as KM S[Aksc88] Hypercard[Good87], and NoteCards[Hala87]
provide little in the way of query facilities (beyond browsing, the shortcomings of which
have already been discussed.) Some of these shortcomings, many addressed by HyperFile,
are discussed in[Hala88]. Work has been done on improving the navigational aspects of
browsing[Niel90], but this does not concentrate on the problems of scale addressed by

HyperFile queries.

There has been work done on hypertext specific database[Tomp89, Smit86]. These only
look at the data requirements of existing hypertext systems. HyperFile is a general pur-
pose server for loosely structured data, and isintended to support a wide variety of appli-

cationsin additionto hypermedia.

22

CHAPTER 4

Query Processing

Basic filters and other basic operations are straightforward to process. The algorithm for
processing filtering queriesis more interesting. It isworth noting that the design of the

guery language has allowed a simple and efficient processing algorithm for filtering

queries, as described in this Chapter.?

First let usintroduce a notation for representing queries. Let aquery Q be:
Q:Si F1F2"'Fn N Se
where S; istheinitial set of objects, Sy istheresult set of objects, and each F; is afilter

operation of the form:

Fi : (type, pattern, pattern) ;; Selection of tuples
t matching_variable ;; Dereference
11 matching_variable ;; Dereference retaining referencing object
Ijk ,» Iterator starting at Fj, ending at F;,
and repeating k times.

The pattern in the tuple selection filter operation varies depending on the type of the

value. It may beastring, arange of numbers, or amatching variable.

Let uslook at a sample query: Take all of theitemsin the set S and choose those that
contain the keyword Distributed. In addition, follow reference pointers for three levels
searching for objectsthat meet these criteria.

S [| (pointer, "Reference”, ?X) | 11 X]3 | (keyword, "Distributed”, ?) - T

In the above query, F; = (pointer, Reference, ?X) is a selection operation that sets the

matching variable X. F, = 11 X, a dereference of the matching variable. F3 is the

1 We have not addressed query optimization. Some optimizations, such as reordering selectionsto
perform highly selective operations early, may make sense in HyperFile. In some cases existing
qguery optimization work may be able to be applied to HyperFile in a straightforward manner. We
do addressarelated problem, indexing, in Chapter 6.

23

iterator I3, which starts at F, and causes pointers to be followed for up to three levels.
The last filter F, = (keyword, Distributed, ?) does simple pattern matching: Any object
containing a tuple with type keyword, key Distributed, and any value for the data field will

passthissection. Theinitial setS; isS, and T will be boundto theresult set Sg.

Certain temporary information will be associated with each object O that is processed by

aquery. Theseare:

O.id Theunique Object id (used to retrievethe object.)

O.next Theindex of the next filter F; to processthe object.

O.dtart The first filter to process the object. For objects in the initial
set S; thisis 1. Objects reached as a result of a dereference
will havetheir .start set to thefilter following the dereference.

O.iter# The current iteration of an iterator; this corresponds to the
length of the pointer chain usedto reach O from theinitial set.

O.mvars A table of bindings of matching variables for the object. This
isafunction O.mvars(X) - {values for X}.

The basic means for processing queriesisto create a working set W containing objectsin

the original set S.2 An object istaken from the set and passed through the query from left
toright. At each stage it can pass or fail to pass a filter, and may add new objectsto the

working set. At each stagethe object isprocessed using thefunction E:
E(Fi, O) - {O ---}, [O]

E takes a filter and an object; and returns a (possibly empty) set of objects obtained
through dereferencing, and either the initial object (if it passed the filter) or null. The

actions of E are determined by thetype of thefilter F;:

e If F; isaselection (pattern matching) operation, such as F, in the example query, the
return set of dereferenced objectsisempty. Each tuple of Oisprocessed as follows: If
thetypefield of thetuple matchesthetypefield of thefilter, the key and datafields are
checked. If these fields match, the object passesthefilter. The pattern can beavariety

of things, “Matching” dependson what the patternis:
The pattern may be a simple comparison (such as a regular expression

2 The choice of datastructure for the working set will determine the search order for the algorithm,
for example a queue will give a breadth-first search. In any case the algorithm uses a node-based
search. Work by Sarantos K apidakis showsthat a node-based search (processing each node entire-
ly rather than, for example, following edges to new nodes before completing processing of the
current node) will befastest and requiretheleast spacein the average case[Kapi90].

24

for strings, or a range of values for a number). In this case matching
involves equivalence of the pattern and the field in the tuple. The
meaning of equivalence dependsonthetype of thefield.

Thepattern may bea ?, suchasin F,. Thismatches anything.

The pattern may set a matching variable. An example of thisis F;.
The ?X addsthe value of thefield of thetupleto the bindingsfor X (if
the other fields match.) More formally,
O.mvars(X)=0.mvars(X) [] {field_value}. The field matches re-
gardless of thefield value, aswith ?.

A matching variable may be used, as described in Section 2.4.1. In
this case the field matches if any of the values of the matching vari-
ablematch thefield value; that is, field_valueJO.mvars(X).

To be more precise we will give pseudocode for the E function in the case of a selec-
tion filter. The details of pattern matching are not important to this discussion; match-
ing isa function of the datatype involved. Datatypes are discussed in more detail in

Chapter 7.

E((type_pattern, key pattern, data_pattern), O):
for eachtupletdO
if t.type =type_pattern and
t.key matches key pattern and
t.data matches data_ pattern then
match =true
Modify O.mvarsif key pattern or data_ pattern
setsamatching variable.
if match then
O.next =0.next +1
return{}, O
else
return{}, null

e F; can be adereference (1 or 11). Anexample of thisisF, in the above query (11 X).

Inthiscase E returnsa set of all of the pointer values of X. With 11, Oisalsoreturned.

E(1 X, O):
Result_set ={}
for each x[JO.mvars(X)
if xisanobjectidthen
create an object P for processing
;; Thefollowing linesinitialize P.
P.id=x, P.start =O.next +1, P.next =O.next + 1,
P.iter#=0.iter#+1, P.mvars={}
Result_set =Result_set [] {P}
if thefilterisa 11 then
O.next =0.next +1
return Result_set, O
else

25

return Result_set, null

Some of theinitialization of P inthe above needs explanation. P.next isset to thefilter
after the dereference. P.mvars starts empty; the set contains no bindings. The use of
P.start and P.iter # will be explained in the next paragraph.

o If F; isaniterator I}‘, one of two things can happen. If the object has already passed
through the entire body of theiterator, or if itisthe result of a k length pointer chain,
it continues processing with F; ;. Otherwise processing continues at the beginning of
the iterator (F;). Note that iterators do not actually cause objects to be processed
repeatedly. Operations in the query language are idempotent; passing an object
through the same filter many timeswill not change theresult. Iteratorsinstead control
how often pointersarefollowed.

O.start is used to determine if an object has passed through the entire iterator. If
O.dtart is greater than j, the beginning of the iterator, then O must return to the begin-
ning of theiterator. O.iter# storesthelength of the pointer chain used to reach O. For
example, if an object P isreached by dereferencing O, P.iter#=0.iter#+1. Thisisdone
as part of the dereferencing operation shown in the previous section of pseudocode for
E. If O.iter#=k, Oistheresult of a pointer chain of length at least k and isnot run back

through theiteration.’
E(IX, 0):
if O.start<j or O.iter#=k then
O.next =0.next +1
else
O.dtart =j ;; Sothat O will passtheiterator next time.
O.next =j
return{}, O
Actual processing occurs by creating a working set and filling it with the objectsin S;.
The .next and .start indexes for each of these objects is initialized to 1 (the first filter.)
Iteration numbers are also set to 1, and the .mvars bindings are initially empty. Each
object is then taken from the set, and pushed through the filters (using the E function)
until they either reach the end or fail to pass part of thefilter. Dereferencing operations

may add objectstotheset. Thequery terminateswhentheworking set isempty.

3Q.iter#=kisnot testedif k=* . * may bethought of as .

26

To giveashort example, let usassume that we have a set Scontaining an object A. Ahasa
reference pointer to B, B has a pointer to C, and C has a pointer to D (see Figure 4.1.) We
will runthefollowing query (described at the beginning of thissection) ontheset S

S [| (pointer, "Reference”, ?X) | 11 X]3 | (keyword, "Distributed”, ?) - T

Theobject A (theonly thingin S isprocessed. A.iter#isinitializedto 1. InF; the match-
ing variable X is set to the pointer (object id) B. F, dereferences this, setting B.start and
B.next to 3, and B.iter# to A.iter#+1, or 2. The initialized B is then added to the set W.
Next A continues processing with F 4, which checks for a keyword distributed and adds A
to T if the keyword isfound. Then B isthen removed from the set, and starts processing
attheiterator F3=13 (asB.next =3.) SinceB.start > 1 and B.iter#< 3werealizeBisnew to
the iterator and the result of a short chain of pointers, so B goesto F; (with B.start=1.)
Here X issetto C. In F, X is dereferenced; C isinitialized with C.start =C.next =3 and
C.iter#=B.iter#+1=3 then placed in W. Next B reaches F 3, but thistime B.start<1 so it
continues processing with F, When C begins processing (at F3) C.iter#=3 and C exitsthe
iteration (continuing with F4.) Thusthe query terminates before examining D (whichis4

levelsdeep.)

So far we have assumed that iterators are not nested. We do not expect nesting to be com-
mon, but it is handled with a slight extension to the above algorithms. The iteration
number associated with an object O (O.iter#) is actually a stack of iteration numbers.
Where O.iter# is used in the above algorithms, we actually use the topmost iteration
number, which corresponds to the innermost iterator. When a dereference occurs, the
new object is initialized by copying the stack, and incrementing only the top iteration

number.

Queries that cover the transitive closure of a graph of pointers (queries that contain an

iterator [<query part>]* pose a potential problem: cycles in the graph of pointers could

cause cycles in the processing, preventing termination. This is handled by marking

S A B C
pointer: Reference: A%pointerf Reference A%pointerf Reference A%pointerf Reference j‘> D

Figure4.1: Chain of References.

27

objects as they are processed (actually, noting the object id in a table of used items); if a

marked object isfound intheworking setitisignored.

There is one important subtlety, however. Consider aquery Q = §; F1F,F3F4 Sg. Say
a particular object O isin theinitial set S;, but failsto make it through filter F,. Some
other object containing a reference to O makesit through F4, and in F, (a dereferencing
filter) the pointer to O isdereferenced. Now we must realize that even though O was seen
earlier (at F,), it still needs to be processed starting at F53. Thus, our mark table will
record not only the identifiers of objects seen by a query, but also wherein the query they
were seen. In particular, mark_table(object_id) will store a set of filter numbers. In our
example, after processing O at Fq, mark_table(O) = {1}. After O is processed at Fg,

mark_table(O) = {1, 3}. Figure4.2 givesthe complete query processing algorithm.

Notethat thereisno global state to be maintained between processing of each object inthe
set other than that in the work set W and the mark_table. In fact, the matching variable
table O.mvar and “next filter” O.next are only needed while the object is being processed,;
O.mvar always starts as {} and in all cases O.next is initially equal to O.start. The only
state that must be maintained in W are the object id, iteration number and starting point in
the query. This eases the task of parallel processing; to process an object in the set all
that must be known is the original query Q, the information in the object O and the
mark_table.

For each object_id x(IS; do ;; Initialize Wwith objectsin S;.
create an object O for processing.
O.id=x,O.¢tart =1, O.next =1, O.iter#=1, O.mvars={}
append O to W.

While not empty(W) do
O = head(W) ;;remove O from the set
If O.startlJmark_table(O.id) then
While not null(O) and O.next<n do
mark_table(O.id) =mark_table(O.id) [] {O.next}
S, O = E(Fo.next’ O)

W=W[]s ,» add all dereferencesto the set.
If not null(O) then
Se=Sp []{O} ;;add Ototheresult set

Figure4.2: Query Processing Algorithm

28

CHAPTER 5

Distributed HyperFile

There are two main concerns in distributing HyperFile; how to describe references to
non-local objects, and how to process queries that involve non-local objects. We will dis-
cuss query processing first. The implementation of remote pointersis discussed in Sec-
tion 2. For now it is enough to assume that there is some way of mapping a pointer into

both alocation and the object at that location.

This Chapter also discusses some other issues involved in distributing HyperFile, as well

as some experimental resultsfrom running querieson a distributed HyperFile server.

1. Distributed Query Processing

Thefiltering queries of HyperFile are simpleto processin a distributed system. Thisonly
requires a slight extension of the processing algorithm presented in the previous section.
The basic idea behind processing a reference to a remote site as part of a query isto send
the query, not the data. The remote machine processes the query, and returns any results
totheoriginating site of the query. We expect objectsin our systemto belong relativeto
the size of a query, so sending the query resultsin a considerable savings in communica-
tion cost over sending the unprocessed objects to the originating site. In addition, pro-
cessing can continue at the originating site, taking advantage of the parallelism inherent

inadistributed system.

Each site keepsalocal context for queriesitisprocessing. Thiscontextisa set of queries

{Q1, Q2 ---}wherefor each Q; wehave:

29

Q.id An identifier for the query (assigned by the originating
site.) Combined with Q.originator, this forms a globally
uniqueidentifier for the query.

Q.originator Thesitethat issued the query.

Q.body Thebody (F; F,_ . Fp)ofthequery.

Q.size Thelength n (number of F;) of the query.

Q.mark_table The set of objects already processed (the mark_table
described inthe previous section.)

QW Theworking set for thisquery.

Q.result The set of results of the query.

A query isprocessed asfollows:

e Theoriginating site setsup a context Q for the query.
e The algorithm of Figure 4.2 is run, with the context Q used for the working set W,

filtersF;, mark_table, and result set Sg.

When the E function returns a set s containing a reference to an object O at a remote site
R, that object is not added to the working set Q.W. Instead the query and reference are
sent to the site R. Specifically the message includes Q.id, Q.originator, Q.body, and Q.size

from the query context, and O.id, O.start, and O.iter # from the object being dereferenced.

When site R receives the message, it tests if Q.id@Q.originator is already in its set of
query contexts. If not, Q is added to the local query context, with Q.result, Q.mark_table,
and Q.Wset to{}. Then Oisaddedto Q.W, with O.next set to O.start and O.mvars set to {}.
If thealgorithm of Figure 4.2 isnot already running (that is, Oistheonly objectin Q.W) it
isstarted. Upon termination of the algorithm, Q.result is sent to Q.originator, and Q.result

isresetto{}.

Note that after a site has emptied Q.W and sent results to Q.originator, another derefer-
ence message for Q may arrive. Sincethe context Qisstill in place, the“setup cost” asso-
ciated with the query is only required once at each involved site. The context Q is dis-

carded only on global termination of the query (to be discussed in Section 3.)

Note that all sites run an identical algorithm. The message setup time for a remote
dereferenceisminimal: Q.id, Q.originator, Q.body, and Q.size are fixed for each query; and
O.id, O.start, and O.iter# must be determined for both local and remote dereferences.
Thus the cost of processing a distributed reference (at the “pointing” site) isjust the cost

of sending a message.

30

The originating site will also receive result messages. Since results are sent directly to
Q.originator, no intermediate site need be involved in handling the results. Result mes-
sages are tagged with Q.id so that the originating site can place them in the proper result

set. Therearetwo typesof results:

e Object identifiers for objects that have passed all of the filters. These are put into the
result set Sy (Q.result) at the originating site. Further queries may use this set as a
starting point (initial setS;.)

e Tuple values returned using the - operator, as described in Section 2.4.4. These are
sent to the originating site with a tag noting which - they belong to, so they can be

bound to the proper variablein the application.

Cycle detection and marking are handled locally at each site. The information kept in
Q.mark_table at each site refers only to objects processed at that site. If a site R has
already processed an object O, and later another pointer to O is dereferenced, a message
will be sent to R requesting that O be processed. Object O will be placedintheset Wat R,
but when it is removed from the set the “already processed” mark will be found in
Q.mark_table and O will not be processed. Assuming dataisnot replicated, thisisentirely
adequate and prevents any repeated processing. Processing of replicated datawill be dis-

cussed | ater.

This method does allow messages requesting that already processed objects be processed.
Eliminating the extra messages (the second and later ones asking that O be processed)
would require a global mark table. We believe the cost in communications and complex-
ity of such a global table would outweigh the cost of the extra messages generated by the

algorithm we use.

Following is pseudocode for the distributed parts of the query processing algorithm.

Auxiliary Data Structures (at each site) :
Table of Queries: Query - Marked Documents, Working Queue

Send Message (Query, Point in Query, Reference) :
send(to Reference.machine, Query, Reference, Point in Query)

Receive Message :
If message.Query not in Table of Queries:
Create Working Queue
Add Table of Queries.message.Query :={}, Working Queue
add reference, point in query to Working Queue.

31

if Process Queries not active, run Process Queries

Process Queries:
While Working Queue not empty do
mark document
if document passesfilters, send_result(document_id)
if any referencesresult, either add to queue or send_message

Send results (document) :
If query asksfor resultsother than the object id (selection
query, or query containsthe - operator) then
send(Query.originator, requested portion of document)
else
send(Query.originator, document.id)

Although we have covered the case of a distributed HyperFile server, it is important to
note that our algorithms are also applicable to a shared memory, multi-processor server.
In this case all available processors can share the same general query information, mark
table, and working set. Each processor must have space for local information, such as
matching variables, whileit is processing a particular document. Giventhis, each proces-
sor independently runs the algorithm in Figure 4.2. Termination requires that the set be
empty, and that no processors are still working on the query. Note that thisis similar to
processing of the Linda language[Carr86]. Also notice that it is not necessary to have a
strict locking mechanism to prevent two processors from working on the same document.
Duplicate processing may create some duplicate answers but not incorrect ones, due to
the set-based nature of theresult.

2. Distributing the Data

A major problem in creating a distributed database is where to place the data. Thisis
highly dependent on the individual database, however, and must take into account the
structure of the data, usage patterns, and possibly even legal and social issues (such as
ownership of the data.) We can address the question of how to distribute the data. This

issue deal swith the mechanics of handling pointersto objects at remote sites.

2.1. Naming issues

Pointers form an important part of the database. Each object (set of tuples) has a unique
object id, which can be used as a pointer to the object. Distributing the data requires a

naming scheme so that these pointers can cross machine boundaries. There are two parts

32

to this; ensuring that object identifiers remain unique, and translating pointers (object ids)
into the site containing the object. For the latter we need some function
F(Pointer) - Location. There are a variety of ways to do this, such as global name
servers[Birr82] or including the name of the host site as part of the pointer. There are a

number of tradeoffsin the choice of a naming strategy:

e Storage cost of pointers.

e Execution time and message cost to follow a pointer.

e Costs associated with moving an object. This can be broken down into two types of
moves: changing the site where the“pointed to” object is stored, and moving an object

containing a pointer.

Thefollowing paragraphs describe the naming strategy of HyperFile, aswell as discussing

some alternatives.

Name servers can add to the cost of dereferencing a pointer, particularly if the name
server isat aremote site. The obvious alternative of including the host site as part of the

pointer seriously increases the cost of moving an object, as all pointersto the object must

be updated if it changes sites. We use a variant of the method of R'[Lind81] that includes

the birth site of an object in the name.

A HyperFile object id consists of the birth site of the object, and a unique identifier (we
use a sequence number) assigned by that site. This solves the problem of maintaining
system-wide unigue object ids. Each site has a cache that maps this object id into a
presumed site. This allows most pointer references to proceed directly to the site of the
document. If thereferenced object has been moved, the message will be forwarded to the
birth site. The birth site must always know where any document it has created islocated,
but no other site must be notified if a document is moved. Cached pointersthat are out of
date are updated when they are used. The cache at a site A does not have to have
presumed sitesfor all pointersfrom objectsat A; “missing” pointers can be directed to the
birth site just like misdirected messages. This simplifies moving an object; only the birth
site need be notified. Coststo update pointersfrom moving either a referencing or refer-
enced object are delayed until the pointers are used. Three extra messages are required
on amiss; oneto the birth site to obtain the new location of the item, one to pass the mes-
sage from the birth site to the correct current site, and one to update the pointer at the site

that originated the message.

33

Inavery large distributed system, the size of the birth site portion of the object id may be
large. Storage space can be saved by abbreviating local references. For example,
object A located at site X could have pointers to object b@site X, object c@site X, and
object b@site Y. The first two could be abbreviated to object b and object_c; the current
site would default to site X. HyperFile uses a variant of this; rather than abbreviating
pointersto the current location we abbreviate pointers that have the same birth site asthe
pointing object. The above example showsthe abbreviations used if object A was born at

site X (thatis, itsfull nameisobject A@site X) regardlessof its current location.

The advantage to thismethod (over abbreviating referencesto the current location) isthat
abbreviations need not be expanded when an object is moved. Itsbirth siteisunchanged,
so the abbreviated pointers are still correct. In addition, many pointersin an object will
refer to itemswith the same birth site (parts of a document, subroutines of a program, etc.)
We expect more pointers will be abbreviated using our method than abbreviating refer-

encesto thecurrent site (for objectsnot located at their birth site.)

We may also desire hierarchy of names: In addition to local and global names, we may
have “cluster” names that are good within a small subset of the system (such as a single
organization.) References within the same cluster could be abbreviated. This is not

implemented in HyperFile, however.

Another issueis foreign references. Those to objects not in the HyperFile database. For
example, thisthesis contains alist of references. Many of these would not be availablein
a “Princeton-wide” database. We would like to be able to handle these references in as
close a manner as possible to normal pointers. Thisis done using stub documents, which
contain bibliographic information. Information on whereto find the desired object would
be provided in lieu of displaying the object itself. Thiscan be done entirely by the appli-

cations, with no special treatment by HyperFile.

2.2. Distributing within an Object

In some cases it may make senseto place different parts of an object at different sites. For
example, one machine may be optimized for storing and processing video, where another
may be useful for keyword and text searches. In such a case, an object containing both
types of datawould best be stored at multiple sites. We currently handle thisby making a

separate object at each site. The applications are responsible for handling the

distribution. Making thistype of distribution transparent to the applicationsisan areafor
further research. Thiswould require some special handling in query processing; possibly

“active objects” that when queried would trigger queries at remote parts of the document.

3. Query Termination

With only a single site, a query terminates when its working set becomes empty. With
multiple sites, however, all of the working sets must be empty. Determining when thishas
happened is an instance of the Distributed Termination Problem[Fran80], which has been

the subject of considerableresearch.

The problem of distributed termination is to determine when a distributed computation
has finished. The computation starts at some originating site, and parts of the computation
may be sent to remote sites. The computation iscomplete when no sites have any process-
ing left to do. Note that it is difficult for a site to determine on its own when it is done.
Even though it may have nothing left to process locally, another site may later send it a

message that will causeit to resume processing.

An obvious solution is to have all sites report completion to the site (or sites) that sent
them a piece of the computation. Each message (pointer dereference) generates a task; the
task iscomplete only when all local processing related to thetask is complete, and all sub-
tasks at other sites generated by processing of the task have reported completion. This
generates a “tree of tasks”, and requires that considerable state information be kept to
determine if a task has finished, or is waiting for more tasks to complete. A single site
may contain multiple tasks, for example if site A sends a reference to site B, and site B
later sendsareference back to A. Site A must tell B that the task from the second message

iscomplete before B can report that thetask from the first message i s compl ete.

With this method the number of messages sent for each query is doubled; each outgoing
message requires areturn completion message. A larger difficulty withthissolutionisthe
timerequired; thetotal delay required to detect termination from the time that termination

occursmay be O(m), where misthe number of messages sent inthe original computation.

More efficient algorithms have been developed. These require less time, less local state
information, and in some cases fewer messages than the above solution. We plan to use

the weighted messages algorithm[Huan89, Roku88]. Thisalgorithm worksasfollows:

35

e Theoriginal site startswith some positive weight W.

e Any message (query) sent to another site must include some positive weight w, which
issubtracted from the weight of the sending site and added to the weight of the receiv-
ing site.

e When a site (other than the original) is done, it sends a message with its remaining
weight back to the originating site.

e When the originating siteis done, and itsweight is back to W, the computation (query)

iscomplete.

Note that the only increase in message traffic is due to the “I'm finished” messages. In

many cases, these can be piggy-backed on the sending of results.
In our HyperFile implementation, there are two particular issuesthat must be covered:

e Precision (how to divide weights when sending messages.) With a fixed-length
representation of weight, a site can be left with the smallest possible unit of weight.
The site would then be unable to send messages. Thisis unacceptable for our imple-
mentation. EXxisting versions of the weighted messages algorithm either ignore this
problem[Huan89] or propose a mechanism that generates more messages (request addi-
tional weight from the originating sitefRoku88].) Our solutionisto use variable-length
encoding; weights are sent as rational numbers, with the numerator and denominator
stored as binary integers. This allows infinite division of weight, at some expense in
message length. This shouldn’t be a problem in practice -- reasonable choices of how
to split weights (based on the expected number of messages to be sent) will limit
lengthsto afew bytes.

e Too many control messages. Every time a site empties the queue of objectsto be pro-
cessed for a query, it sends a control message to the originating site. It may then be
restarted if another messageisreceived. Thisisinefficient if sitesbecomeidleand are
reactivated frequently. To handlethis, each site can delay for some d time units before
sending the done message. Thiswould allow for repliesto be “batched together”. This
length of & would have to be determined by simulation or experience with the system,
and would reflect the expected amount of time between a processor emptying its queue

and anew referencearriving.

36

4. Reliability

There are two reliability issues specifically related to distributing HyperFile. One isthe
problem of maintaining data integrity in the face of media failures; replication can be
used to help this. Anotherissueisavailability; allowing queriesto progressin the event of

failure.

4.1. Replication

A distributed database allows usto ensure the overall integrity of the databasein the face
of media failures by keeping copies of the data at different sites. Replication can also
improve query performance by allowing queries to access the “closest” copy of a data.
This is a well-studied problem[Mahm76, Elli77,Garc81]. We present one scheme that is
appropriate for HyperFile, and fits nicely with the query processing algorithms (although

we do not rule out other methods.)

Replicated data could cause inefficiencies in both storage space and query processing
time, depending on how replication isimplemented. One optionisfor applicationsto han-
dlereplication; an object would contain tuples with pointersto all copies of a referenced
object. The problem with thisisthat queries will follow all of these pointers, instead of
qguerying a single copy. Thisisunnecessary. In addition the storage space requirements

increase, as pointersto replicated objectsarereplicated aswell.

A similar solution isto store multiple pointersto a replicated object within a single tuple.
This would be invisible to the application. Pointers to a replicated object could be
dereferenced in a standard order, so only one copy of each object would be processed.
The underlying communications protocol would have to notify HyperFile if a message
could not be delivered, so the failed dereference could be sent to the next copy. This still

hasthe problem of requiring storage space for the extrapointers.

We use a variant of this solution. Each reference only contains a single pointer. A site
caches one (or more) current locations for an object. If this site (or sites) has failed, the
message is sent to the birth site of the object. The birth siteisresponsible for knowing of
all copies of the object. Notethat thisisthe same action taken if the sender did not know
the current site of the referenced object to begin with. Updates must all pass through the
birth site to ensure reaching all copies (an expensive solution, but cost-effective given a

highread towriteratio.) If thebirthsiteislost, it can bereconstructed by broadcasting a

37

request for the location of all copies of an object. If thisistoo expensive, backupsfor the

birth site may be kept (these would act as surrogatesif the birth siteislost.)

This method allows for a variety of tradeoffs. Reliability can be improved by making
more copies of an object; this also gives potential for improvement when reading the
object but increasesthe expense of updating the object. Note that this choice can be made
on an object by object basis. Another advantageto this schemeisthat no global control is
required; the birth site of an object isin effect the manager of that object, and can make
decisionsasto what degree of replicationisdesirable. Thisautonomy may be particularly

appropriate in widely distributed databases that span multiple organizations.

It is okay for different pointers to an object to be translated into different copies. This
encourages use of local copies of a replicated object. In some cases this may cause
inefficiencies, however. For example, during a query a pointer in object A is followed to
copy 1 of an object C, and a pointer in B isfollowed to copy 2 of C. Both copies of C are
processed. Any pointers from C are followed twice, requiring extra messages. Happily
thisisonly aminor problem. Evenif areplicated object isprocessed at multiple sites, the
results obtained from each site will bethe same. The originating site eliminatesthe dupli-

cateresults.

Allowing this redundant processing of replicated copieswill cause some increase in mes-
sage traffic over non-replicated data. The references from A and B would still have
required messages to the same (single) copy of C, so this portion of the traffic will not
increase. However, messages generated by following pointers from C would be dupli-
cated if two copies of C were processed. The end result is that replication will often
decrease the time required to obtain first results, but time to termination may be
increased. No changesto the algorithms are required, other than message forwarding by
the birth site. |If a message for a remote reference cannot be delivered, it will be sent to

thebirthsite. Thebirthsitewill attempt to find an accessible copy of the object.

4.2. Availability

Availability concerns keeping the database usablein the face of failures of part of the sys-
tem. In our case we are interested in failures of some of the sites that contain objects
needed as part of a query. One of the issues of increasing availability, making objects

available even if the machine they are on fails, is handled using the replication scheme of

38

the preceding section. If the cached current site (or sites) is not available, the messageis
sent to the birth site. Although this method does not tolerate failures of all of the cached
current sites and the birth site, each site can decide how much space (in terms of caching
additional current sites) it is willing to use to increase fault tolerance. Handling more
failures without expanding the space requirements of the cache would require either some
sort of a global locating service, or broadcasting the request for the object. The former
gives up some of the independence and autonomy of our scheme, while the latter could be
too expensive in a widely-distributed system where the number of copies may be large

and thetimefor a broadcast considerable.

Another issueiswhat to do with a reference to an object that cannot be reached. Related
to this is what to do with a query that encounters unreachable references. We report
pointers that cannot be followed to the originating site. This leaves the originating site
with two options: Abort the query, or report the problem to the application. The latter
solution allows the application to decide if an abort is necessary. The query will report
resultsreceived, aswell asgiving alist of unreachablereferences. For some applications,
such asalooking for specific information on a topic, thismay be adequate. For example, a
guery might ask for specifications on a VLSI chip. Thiscould return many kinds of infor-
mation; timing diagrams, pin-outs, power requirements, etc. The desired information may
be contained in the available results, and the user could proceed even though part of the

guery could not compl ete.

A more serious problem iswhat happens if a machine failswhileit is processing a query.
The distributed termination solution outlined in Section 3 is not particularly robust. In
particular, if asitefailswhileit still has some weight w, that weight will never bereturned
to the originating site. Thus the query will never terminate. HyperFile times out if the
guery seems stalled, and reports partial results to the application in the same manner as
with unreachable pointers. More robust distributed termination protocols exist[Lai86],
but they are also more complex and expensive. These could easily be placed in HyperFile

inadistributed system where the timeout method i sinadequate.

5. Costs

We have said that this is an efficient means of processing distributed queries, to justify

this we will discuss some of the costs of processing distributed HyperFile queries. We

39

will examine two types of costs: The increasein local processing cost, and the generated

message traffic.

As discussed previously, the local cost of sending a remote query is insignificant: The
query and associated fixed information is only built once at the originating site, and then
the message isreused for all further remote queries. The remaining cost in building the
message; the reference, point in the query, and iteration information; must be determined
inorder to placein the queuefor alocal query. Theonly differenceisplacingitinames-
sageto be sent rather than inthe working queue. Receiving aremote query involves some
cost: The local data structures to hold the query and working queue must be built. This
need happen only once at each site, however. The cost per-reference is only putting the
reference information into the queue. Thisiscomparableto the cost required to enqueue

thereferenceif it werelocal.

Another cost that cannot beignored isthe translation from the global naming schemeinto
local names. This, however, isinherent inthe distributed system and not dueto the query

processing algorithm.

Communications costs can be significant. Each messageis small (except possibly results,
but that can’'t be helped), but there may be many messages. The messages are divided into
two types: Pointer messages, and control messages for the termination algorithm. The
number of pointer messages can be as large as the number of items processed by the
guery. Alternative algorithms could store messages and send them as a group, cutting the
number of messages to something on the order of the number of sites involved. This
would complicate query processing, however, and we feel that it would not be necessary
in practice. Unless some special information about the global structure of the databaseis
kept at each site, the number of pointer messagesisworst-case optimal. A simple demons-
trationistoimagineatraversal of alinked list, where each odd element of thelistisat the
originating site, and each even element is at the remote site. After the first document is
processed, nothing can happen until a message is sent to the remote site (as the original
sitedoesn’t know that it has more documentsto be processed locally.) Theremotesite can
either process the second document, or send it to the original site. The latter case costsa
message immediately, but no further message is required to process the third document.
The former case delays the cost of this message until the second document is processed,

butitisstill required.

40

This worst case demonstration isn’t all that applicable in practice. It is easy to imagine
cases where our algorithm is not optimal. For example, complete processing of the queue
on the original site could cause numerous references to a remote site. Under our algo-
rithm, these would be sent individually. These could be bundled and sent as a single mes-
sage. This could be incorporated into our algorithm, but the decreased message cost
would also result in decreased concurrency. Thisis a tradeoff that could be figured out

for each system.

The cost of control messages (to detect termination) ranges from the number of pointer
messages to the number of involved sites, depending on how the termination algorithmis
run (as described in Section 3.) Other algorithms could possibly eliminate this cost or
assumeit entirely within other messages. However, thiswould increase the complexity of
the algorithm. We feel the cost of the potentially large number of messages is a

worthwhiletradeoff for the simplicity of the query processing algorithm.

A broadcast from the originating siteto all sitesinvolved in the query is also needed once
termination has been detected. Thisallowstheremotesitesto forget the processed object

mark table and other information pertinent to the (now complete) query.

6. Experiments

One of the advantages of the distributed query processing algorithm is that it needs little
central control. The downsideto thisisthat itisdifficult to predict just how it will per-
form. As a result we have run some experiments to test how HyperFile operates under

various situations.

We have implemented this algorithm in a prototype HyperFile server, distributed over a
network of IBM PC/RTs connected by an ethernet. The RTsrun Berkeley 4.3 UNIX; UDP
and TCP/IP are used for inter-process communication.! Each machine has a single server.
Thisisamain memory database (aswill be described in Chapter 7); although large objects
are stored on disk none of our test queries required disk access. The implementation is

not particularly efficient; we have concentrated on extensibility rather than speed. An

! This implementation was done using the Eiffel object-oriented language. The version of Eiffel
used (v2.2) did not support inter-process communication; we created a message based system for
communicating Eiffel objectsin order to support thiswork.

41

optimized system would significantly decrease the times we present. Our experimental
client was a simple application that read a query from a script, submitted it to HyperFile,
received the result, and then went on to the next query in the script. The client ran at a

separate machine from any of the servers.

Weran some performancetestson thissystem. The goal of our experimentswasto under-

stand the tradeoffsinvolved in handling remote pointers:

e Overhead: Extra work is involved in sending messages and processing results from
remote sites. Do queriesinvolving remote pointers give unacceptabl e response time?

e Potential parallelism: Response time may improve when remote processing is started
whilelocal processing continues.

e Problems with delays: If the last object to be processed locally contains a remote

pointer, the entire system may beidlewhilethat messageisin transit.

Note that we do not yet have a reasonable “competitor” algorithm or system to compare
our performance with. Performing similar queries in a distributed file system would
require searching entirefiles; thisin effect resultsin sending all datato a central site. At
best this uses a single message for each file, the worst-case for HyperFile requires a mes-
sage for each object. Our messages send only the query (about 40 bytes for the experi-
ments presented here) versus potentially huge messages required to send a complete file.
Hypertext systems require manually “browsing” through the data, and are not commonly

distributed. Neither would be an interesting comparison.

We constructed synthetic datato use in our experiments. This allowed usto “parameter-
ize" our tests, so we could load the system in various ways and study the results. In par-

ticular, each object searched as part of our test queries contained the following:

e Five search key tuples; one guaranteed to be unique to that object, one found in all
objects, and three that were chosen from a space of 10, 100, and 1000 possible values
respectively. Changingthetupleand value searched for allowed usto vary the number
of items found by a query. For example, searching for a given key in the unique tuple
would return at most one object.

e One chain pointer that gave alinked list of all theitems. Intestswith morethan a sin-
gle machine, these pointerswere always to a remote machine. This givesthe maximum

delay time; all serversareidlewhile each messageisin transit.

42

e Fourteen random pointers. These each pointed to a randomly chosen object. They
were divided into 7 types, with two pointers of each type. The probability of a pointer
being to a local object varied from .05 to .95 depending on the type. For example, the
two pointers of the Rand.05 type were almost always to a remote object. A query fol-
lowing the Rand.05 pointerswould have high message cost. However, sincetherewere
two such pointersin each object (very likely to different machines) the query would
“branch out”, yielding some parallelism and reduced delays.

e Tree pointersthat formed a spanning tree of the objects, such that the root of the tree
had a single remote pointer to all other machines, and each of these was the root of a

local spanningtree. Thisgiveshigh parallelism with |ow message cost.

We ran tests with these items divided evenly among three machines and among nine
machines. The graphs were constructed such that the desired properties (likelihood of a
pointer being remote, etc.) were the same in both cases. In addition, the graph structure
formed by the pointers in these objects was identical regardless of the number of
machines. We also ran the testswith all items on a single machine. Thisgave a base case

with which to compare the cost of handling remote pointers.

Each query traversed the transitive closure of the graph formed by a particular type of
pointer, and looked for a given search key within each item in the transitive closure. For
example, thequery:
Root [| (Pointer, "Tree", ?X) | 11 X]* | (Rand10p, 5,?) - T

would traverse the tree structured graph (splitting immediately to each machine, and then
tracing pointerslocally on that machine.) Each object would be checked to seeif it had a
Rand10p tuple with a key of 5 (Since each item had a single Rand10p tuple, with its key
value randomly distributed from 1 to 10, we would expect the result to contain about 10%

of theitemsinthetree.)

From our experiments we deduced a few basic times. Local processing of a single object
took approximately 8 milliseconds, plus another 20 milliseconds to add the object to the
result set (if necessary.) The added time to process a remote pointer was roughly 50 mil-
liseconds (including constructing the message, system calls for sending and receiving,
and transmission delay.) About 50 milliseconds was also required for each remote result
message. Of course, remote pointers may allow parallel processing of queries, so the

extra time to process a remote pointer does not necessarily translate into an equivalent

43

increasein client responsetime.

Perhaps more interesting than the above numbers is the actual query response time. We
tried a number of cases, all based on the transitive closure query shown above. The graph
structure was varied with each test; we tried extreme cases (such as Chain, giving max-
imum delay; or Tree, giving high parallelism at low message cost) aswell asthe randomly
created graphs with varying locality of reference. We also tried varying the quantity of
items returned (by changing the tuple in the search key.) For each test we timed 100
queries that followed the same pointers and looked for the same type of search key tuple,
but randomly varied the key searched for (so the 100 queries were comparable, but not

identical.) Thistimewasthe actual responsetime (wall clock) at theclient.

Therewere 270 objectsinvolved in the queries for which we report results. (Notethat the
total database was larger; however only 270 objects were looked at by our test queries.)
Asthealgorithmislinear we expect using a different number of itemsin the query would
result in a linear change in the response time. We did construct a data set with half the
number of items; this didn’t quite cut the query timein half. Thisis aswe would expect
(since there is some constant overhead associated with the query, regardless of size.)
Presenting more experiments with varied data set sizes would tell little of interest; our

primary concernishow remote pointers affect performance.

Running the query shown above (atransitive closure over 270 items, with approximately
27 in the result set) took 2.7 seconds when all the objects were at a single site, when fol-

lowing either tree or chain pointers.

When the worst case delay scenario (following chain pointers) wastried in the distributed
case (on either three or nine machines) the query took 15 seconds. The delay and message
cost of such a query is high, however pointers with such a structure can probably be
avoided in practice. When weinstead followed tree pointersa query averaged 1.5 seconds
using three machines, and 1 second using nine machines. We obviously gain from paral-

lelisminthisquery; timesare significantly lessthan thefor asinglesite.

The above two cases are extremes. To study “normal” situations we ran tests on the ran-
domly constructed pointers. Although still synthetic data, they are probably more
representative of real situations. The results of these tests are graphed in Figure 5.1.

Each data point represents a test using the graph formed by the pointers with the given

A —— Single Machine
S — """ Three Machines

Nine Machines

Probability of reference being local

Figure5.1: Query time with increasing probability of local references.

probability (x axis) of beinglocal (two such pointers per object.) The casesat thefar right
of the graph generate fewer messages, however they also are less likely to make full use
of the available parallelism. The cases at the far |eft generate too much message traffic
for our system; although parallelism isincreased, much of the timeis spent receiving and

sending messages rather than processing queries.

It would be reasonable to expect that the single-machine case would be constant. Thisis
not the case. Thereason isthat the pointersin these tests were created randomly (within
the local/remote guidelines), and the transitive closure of a given pointer type was not
guaranteed to include 270 objects. The single machine case gives a measure of the
number of items actually covered, so it is perhaps more relevant to ook at the difference
between the dotted or dashed line and the solid line, rather than the absolute times. This
has been done in Figure 5.2; here we see the relative speeds of the various cases. The
points are the actual data, the lines are a linear least-squares fit to the data points. The
best case would have the three and nine machine cases approach 1/3 and 1/9, respectively
(representing perfect speedup as communication costs go to zero.) As we decrease the
number of remote references, however, the likelihood of machines sitting idle increases,
which is why we do not achieve perfect speedup. Thisimplementation achieves the best

response time with over 90% local references. An implementation with a more efficient

45

3 — Single Machine

. D """ Three Machines
2.5 D (Oactual datapoints)
Time) D """ Nine Machines
Relative <] (+ actual data points)
+
toa
Single ™~ -
Site 1 _| T~
+ >~ 25
iy -
H
0.5 "
| W !
0 50 100

Probability of reference beinglocal

Figure 5.2: Query speedup with increasing probability of local references.

communication system (relative to processing cost) would achieve its best response time

with alower percentage of local references.

The user response time is actually improved in distributed HyperFile as long as most
references are local (areasonable assumption.) We also see that with more machines we
are capable of handling a higher percentage of remote references. Thisisgood, asa more

highly fragmented database will probably have more remote references.

Another interesting result concerns the number of items returned by a query. Increasing
the number of items returned significantly increases the query processing time. Given
two queries that follow the same pointers, a highly selective query may be faster in the
distributed case, but a less selective query may run faster when the entire databaseison a
single server. For example, the case in Figure 5.1 where 95% of the pointers are local
takes an average 1.1 seconds when run on three or nine machines, and 1.5 seconds when
run at asingle site. Note that thisisreturning an average 10% of theitemsin the transi-
tive closure. If we instead select all of the items (using a key that is found in all of the
objects) thesinglesitetime jumpsto 5.1 seconds. For three and ninesiteswe have 6.4 and
5.7 seconds. Thisisillustrated in Figure 5.3. Sending resultsis expensive in our system;
we would have to make changes if queries with low selectivity are frequent. We expect

thiswill not bethe case, asthe goal of most queriesisto find a few interesting objects.

46

o4 — Single Machine ;

""" Three Machines

Nine Machines

Time

(sec)

Percent of Database returned by Query
(log scale)
95% probability of local reference

Figure 5.3: Query time with varied number of returned results, 95% local references.

There is a straightforward modification that would help this problem. In the case of
gueries that only construct a new set (as opposed to returning specific fields from objects)
theresult could be left asa “distributed set”. Each server would send back the number of
local result items, rather than pointersto theitemsthemselves. If thisnumberislarge, the
user will probably want to further restrict the results using a query rather than look at the
returned items. The portion of thisset at each site would be used to initialize the working
set at that site for the new query. This method would probably be employed only when

the size of theresults exceeded some threshold.

Given that the goal of this system is efficient distributed query processing as opposed to
parallel processing, the results are reasonable. In all but extreme cases, remote pointers
do not significantly increase response time. The cost of processing messages and the
transmission delay are substantially offset by the gains in parallel processing. We see
that the cost of distribution is low (with respect to response time, normally the most

important measureto the user of aninteractive system.)

47

CHAPTER 6

Indexing

Aswith many large databases, some HyperFile queries can take considerable time to pro-
cess. A query that searches every item in the database can take time that an interactive
user would consider unreasonable. Indexing is commonly used in traditional databasesto
speed up these searches by effectively “precomputing” parts of common queries. We use

indexing in HyperFile for the same reason.

Indexing in HyperFile demands some new techniques. Thisisbecause the scope of a query
is determined by the pointersin the data, rather than being statically determined by the
database schema. Our indexing technique starts with the simple idea of attaching an
index to an object in the database. Theindex allowslookup of items based on a particular
attribute type (the property of the query), and covers objects that could be reached from
that node following a particular type of link in a “browsing” interface (the scope of the
query.)

Theindexing methods described here may have applications other than HyperFile. In par-
ticular, any transitive queries on hypertext-like data may benefit from this work. There

may also be applicationsin object-oriented database. Thisisan areafor further study.

Our indexing technique starts with the simple idea of attaching an index to an object in
the database. The index allows lookup of items based on a particular attribute type (the
property of the query), and covers objects that could be reached from that node following

aparticular typeof link ina“browsing” interface (therange of the query.)

1. What isindexed

The choice of a key for indexing can be quite varied; just about any type of data will
serve. Thisisnodifferent fromindexinginatraditional database. Specifying the scope of

the index, however, is different. Rather than specifying a relation or set that is to be

48

indexed, we must specify a portion of the graph: a place from which queries will start,
and atypeof link to follow. Creating anindex will thusrequire specifying three parame-
ters: The anchor point (node) that the index is to be connected to, the search key for the

index, and the link type that determinesthe scope of the index.

Figure 6.1 is a sample database consisting of two types of links (solid and dashed) and a
single attribute (noted as key.) Anindex has been created at node root on the attribute key

andthelink typesolid. A few interesting pointsto note about theindex are:

e Item D is not in the index, even though it has a key of interest. Thisis because the
index isfor itemsreachablethrough solid links, and D isreached by a dashed link.

e Item | is pointed to by a solid link. Since it is not reachable from root via solid links,
however, itisnotintheindex.

e Iltem Gisintheindex, eventhough its parent (C) does not appear intheindex. Node C

isinthe scope of theindex, but does not appear sinceit has no key attribute.

Theindex of Figure 6.1 will speed up searches whose scopeisthe solid-link tree rooted at
root. The Database Administrator isthe one that determines that such an index is useful,

based on the expected queries. The DBA has much the same responsibility in arelational

Index: key, solid
bird: E
cat: A, B
dog: A, F
fish: G
e Ny
A B C D
key: cat, dog key: cat key: dog
/ / / N
E F G H |
key: bird key: dog key: fish key: mouse

Figure 6.1: Index of a tree-structured database.

49

system.

2. Structure of theindex

Theindex itself will be structured in a similar manner to a traditional database index. B-
trees, hashing, and other such techniques are all applicable. Certain special information
isrequired, however. In addition to pointers from the index to relevant objects, objects
will be required to have back pointers to indexes that potentially include them. Thisis
necessary in order to properly maintain theindex. For example, in Figure 6.1, C will have
a back-pointer to ensure that updates that add keys to it will be reflected in the index.
Items D, H, and | do not need back pointers, as changes to these objects will not result in
their being reachable, and thus they will not be in the index. If the dashed links are
changed to solid, the presence of pointers to the index in the parents of the links will

point totheneed for including D, H, and | intheindex.

Inarelational database, information about what indexes may potentially reference a given
record can be determined easily from the definition of the index, due to the static nature
of the scope of theindex. In HyperFile system, determining what indexes a dataitemisin
may be as difficult as building the index (in terms of number of items referenced), as the
scope is determined by information contained in the objects themselves (pointers.) We
use back-pointers to cut the costs of maintaining the indexes when data items are
modified. Inaddition, when a dataitemisadded to the databasetheindexesthat refertoit
can be determined from the index links of the parent of the item. We also need back
pointersfrom all nodesin the scope of theindex (evenif they are not in theindex, such as
CinFigure6.1) to support deletion. Deletion of a node or link may require changesinthe

index to deal with nodes below that point.

Following are pseudo-code descriptions for the various operations relevant to indexes.
These will work only on tree-structured databases; the extensions necessary to operate on

arbitrary databaseswill be discussed later.

Create index (node, key, link)
Create an empty index data structure.
Add a pointer to node noting the presence of the index.
add_index (index_structure, node, key, link)

Add_index (index, node, key, link)
Add all appropriate key items of node to index.

50

¥/ children of node via link
add_index (index, child, key, link')

Find (node, key_type, key_item, link)
if node has a pointer to anindex on key typeand link then
index_find key_item
else
if key_item present at node then
Result := node
Y/ children of node via link
Result := Result [] Find (child,...)

Add_link (parent, new_node, link)
Add link to the database in the normal manner.
Y/ index back-pointersin parent
if index.link = link then
add_index (index, new_node, index.key, link)

Delete link (parent, child, link)
Delete link from the database in the normal manner.
Y/ index back-pointersin child
if index.link = link then
delete_index (index, child, index.key, link)

Delete_index isanalogousto add_index

Searchesfrom a nodethat isnot indexed can still make use of indexes. The simple caseis
making use of an index that is associated with a node that is reached at some point inthe
search. Thisisalready doneintheabovealgorithms. In some casesit may be worthwhile
to use an index located above the start point of the search. If the start point isin the
scope of the index; the index will cover a superset of the desired search. Such an index
can be found because the starting node of the search will have a back pointer to theindex.
All of theitemsreturned by the index must be checkedto seeif they areinthe proper sub-
tree. For example, in Figure 6.1, a search from node A could use the root index, and then
check all of the objects found by backtracking from the object until either A or root is
reached. This assumes that the database provides back-pointers for all links. In many

cases thismay be donefor reasonsindependent of indexing.

Thisis an appropriate approach when few items are found in a search of the index, and
the subtree rooted at the search node is a large fraction of the subtree rooted at the
indexed node. The given example would be slower than a direct search for the keys cat

and dog, but would be comparable given a search on bird.

51

Determining when to use an index located above the search point is a difficult problem.

Some simple heuristicsthat suggest the use of such anindex are:

e Theindex returns arelatively small number of items compared to the size of the sub-
treeto be searched.

e Thedesired subtreeisalargefraction of the total size of theindexed subtree.

e The subtrees arerelatively broad; back searcheswill require tracing a small number of

pointersrelativeto the size of the subtree.

Even if we do not use an index above the start point of the search to actually find the
desired objects, it may be of some use. If anindex lookup returnsnoitemsfor the desired
key, we know that the search would also return an empty result (since the index covers a
superset of the portion of the database being searched.) If searches often come up empty,

thiswill result in anet savings.

3. Multiple Indices

In areal system, there may be many nodes from which we often make queries. We could
build an index at each of these nodes, but this |eads to space problems due to replication
of information. Figure 6.2 provides an example of thissituation. Some users may wish to
guery the entire database, using index root; others may only be interested in the subset
contained inthetreerooted at A. In order to allow the efficiency provided by indexing to
both sets of users, we can construct indexes anchored at both nodes (the indexes pointed
to by solid lines.) All of the functions described at the end of the previous section will
work here aswell. Note that each object that is below A must have back-pointersto both

indexes.

4. Chained Indices

This naive approach hasone problem. All of theitemsinindex A are also indexed by root.
Thisleadsto replicationintheindexes. Inalarge database with many indexes, the size of
the indexes could in fact grow at a faster rate than the size of the database itself. Given
that theindex growslinearly in the number of itemsindexed, a complete set of indexes on
an n nodetree of depth k would take space O(n-k). A more space-efficient index structure
would help, but the indexes could still end up requiring more space than the dataitself. In

addition updates to the database may take a long time because they must modify many

52

Index: key, solid Index: key, solid
dog: B root bird: C
mouse: G ooindex cat: A
Next Index dog: B, D
: fish: E
mouse: G

Y
Index: key, solid
bird: C
cat: A
dog: D
fish: E

key: cat

C D E F G
key: bird key: dog key: fish key: mouse

Figure 6.2: Tree-structured database with two indexes.

indexes.

Thisreplication can be eliminated by requiring indexesto refer to “lower” indexes, rather
than directly indexing the entire subtree. Thisisillustrated by the indexes pointed to by
dotted lines in Figure 6.2 (just the ones on the left side of the Figure.) A search for all
items in the database (starting at root) that have attribute dog would first find B from the
root index. Next the search would proceed along the Next Index pointer to the index
anchored at A, whereit would find D. Note that thisincreasesthetimerequired to find an
item. Intheworst case, putting anindex at every node, we end up with alinear search and
have lost the benefits of indexing. We expect the typical cost will be much smaller, how-

ever. Thiswill bediscussed in Section 6.

Update in such a system is slightly more complex, although the time required isless (due
to updating only a single index.) This complexity results from the need to remove links
between indexes when links between objects are changed, in much the same manner as

objects must beremoved from theindex in the basic scenario.

In some cases partial redundancy can be allowed. For example, if a new index is created
beneath an existing one, the redundant items need not be immediately removed from the
old index. This speeds the creation of the new index. The old index need be modified

only when objectsit indexes are changed. These dataitemswill already have pointersto

53

the old index. These pointers must be changed to reflect that updates to these data items
should cause them to be removed from the old index. Changing the pointers, however,
can be done as part of the creation of the new index. This adds only a constant factor to
thetimerequired to build the new index. Thisisone example of the numerous time/space

tradeoffsthat can be made with thisindexing.

Eliminating replication may help when using indexes located above the start point of the
guery. For example, in Figure 6.2 a search from B could use the index at root. A clever
implementation could note that the non-replicated index at root (pointed to by a dotted
line) indexes root + the tree rooted at B — the tree rooted at A. Thisis very close to an

index on B. A search from B could just use thisindex, and removeroot from theresult set.

5. Single Multiple-Attribute Index

An alternative to the previous structure is to use a single database-wide index for each
type of key. In a sense this is a multiple attribute index[Lum70]. However, the second
attribute in our system is “reachability” rather than an attribute in the normal sense. As

such, previoustechniquesdo not apply.

Our method is to use a single primary index on the search key that returns a secondary
index. The secondary index maps the “anchor points” (nodes in the database that have
indexes) to the objects that can be found from those anchor points. The structure of the
primary and secondary indexes could be any of a number of things, including B-trees,
hash tables, sorted lists, etc. A naive implementation of the secondary indexes, where
each anchor point hashes to a list of all of the objects reachable from that anchor point,
could require O(n?) space per secondary index (where n is the size of the database).
However, all of the objects at many anchor points are reachable from other anchors (e.g.
in Figure 6.2 all objects reachable from A are also reachable from root.) This fact was
used to eliminate replication in the previous section. Inthe secondary index we can asso-
ciate with a given anchor point only those objects for which it is the “closest” anchor

point, cutting the space considerably (worst case O(n).)

For example, Figure 6.3 is a sample index containing entries for a few keywords based on
the database of Figure 6.2 (with anchor points at root and A.) Note that the secondary
index for “dog” only associates B with the anchor root, even though a query on “dog” from

root would also find D. Node D is associated with the anchor point A. The reachability

graph on the anchor pointsis used to determine which anchors can be reached from the
desired “start” anchor point. The result set of data items is then the union of all of the
nodes found from all of these anchors (in the chosen secondary index.) To illustrate a
search, say that we wish to find all of the objects reachable from root that contain the key-
word “dog”’. We usethe primary index to find the secondary index associated with “dog”.
We also need all of the anchor points reachable from root (done using the reachability
graph, these areroot and A.) Next we find all of the objects reachable from these anchor
points using the secondary index. The objects B and D are theresult of our search. More

formally, the Find procedureis:

Find (node, key_type, key_item, link)
S=find_secondary_index (key_item, link)
let T = transitive closure of node in reachability graph for link

Note that the previous two steps can occur in parallel.

Y/ anchorsAinT
Result := Result [] S(A) (Objectsin Ain secondary index T.)

As written this assumes that the current node has an index. Extending it to the general

caseisstraightforward, and can be seen from looking at the Find operation of Section 2.

Lookup time for the reachability graph (finding transitive closure) is worst-case linear in
the number of anchor points. Improving this time requires precomputing the transitive
closures, which could take quadratic space (and is also expensive to compute[UlIm90] .)
There are better options, however. A number of transitive closure algorithms suitable for

our secondary indices are given in[Jaga90]. A technique for a tree-structured graph (or

Primary index Reachability Graph
/\ root
bird cat dog
Secondary Index Secondary I ndex A
Anchor: Objects Anchor: Objects
. root: B
A A AD

Figure 6.3: Sngle Multiple-Attribute Index.

55

tree-structured parts of the graph) expresses reachability as arange of integers. To do this,
we name the anchor points by preordering the tree. With each anchor point, we storeits
number and the number of itsright sibling. From a nodei with right sibling j, the reach-
able anchor points are those numbered i to j-1. This cuts the “transitive closure” opera-
tion on the reachability graph to constant time with space linear in the number of anchor

points.

Up to this point we have ignored different link types. Using the methods of the previous
sectionswe haveto construct a new index for each type of link. With this method we may
reuse the primary index, however. Each key value will have a different secondary index
for each link type, and there will be a separate reachability graph for each type of link.

Also notethat anindex on a different key attribute can reuse existing reachability maps.

Updatesto the database that change the key attribute of a dataitem will requirethat it be
moved to a new secondary index. Thisrequiresno extralinks; Findsin the primary index
can be used to return the old and new secondary indexes. The nodeisthen removed from
the appropriate anchor point list in the old index, and added to the list for the same
anchor point in the new index. Deletions and additions are similar. Changesto links are
somewhat more difficult. For this we still need the back pointers from nodes to anchor
points (asin Sections 2, 3, and 4) and from anchor pointsto the secondary indexes. Delet-
ing or adding a link will require modifying some of the secondary indexes, and in some
cases may requirerebuilding part of the primary index (for example, if anew valuefor the

key attribute appears.) Inaddition, thereachability graph may haveto be changed.

6. Cost Comparison

The methods of indexing we have introduced (single indexes, indexes with replication,
indexes without replication, and multiple-attribute indexes) each have advantages and
disadvantages. A simple estimate of the time and space costs for each technique on a
regularly-structured database is given in this section. This provides for a reasonable

basis of comparison of the indexing methods.

First we will set out the assumptions and terms used in these calculations. Although the
techniques work for an arbitrary directed-graph structured database, we continue to
assume that the dataistree-structured. The structure of datain a hypermedia databaseis

likely to be oriented towards a tree more than, for example, a randomly-created directed

56

graph. Wefeel that worst-case costs derived for tree-structured data will reflect practical
costs better than an analysis on arbitrary graph-structured data. Another assumption is
that searches will only use indexes at or below the start node. The analysis for using

indexesl|ocated abovethe start nodeistoo complex to present in detail here.

For the purposes of this discussion we will assume that the data and pointers to be
indexed form a complete tree with constant branching factor (each parent has the same
number of children.) Thisrestriction significantly simplifiesthe analysis, and we feel the
analysis on this structure will reflect performance on more varied data. The Tektronix
HyperModel Benchmark[Ande89] uses such an arrangement as one of its three “hierar-
chies”. In the next section we present experiments on less regularly structured data, and

comparetheresultswith theresultsof the analysis.

We will use indexes placed at the root and at all nodes halfway down the tree. This pro-
vides a uniform placement of indexes (each index has an equal number of nodes |ocated
“directly” beneath it.) Such anarrangement isan intuitively reasonable example. We will
also look at a single index placed at root, as described in Section 2. Allowing a more
varied placement of indexes increases complexity significantly; we felt the knowledge
gained would not justify the increased effort. We need to define the parameters that we

will use:

T(n) Time required to do an index find operation on an index containing n elements.
This will typically be logarithmic, and is determined by the choice of index (B+
trees, tries, etc.)

E(n) Timerequiredto search through n nodeswithout using anindex. Thiswill basical-
ly belinear, although the function could be complex if the dataitemsare stored on
disk.

Cs Space required to store a search key in an index. Some index structures, such as
tries or C trees[Orla88] do not require linear space for the keys. Such structures
would complicate this analysis considerably, but would be of most benefit to the
single multiple-attribute indexes.

Cp Spacerequired to store a pointer in anindex.

57

Cr Space required for each item in the reachability graph of the single multiple-
attributeindex described in Section 5.

t, Timerequired to lookup anitemin memory, such asinthe reachability graph orin
alinear search of the secondary index.
Total number of possible search keys.
Probability that a given key attribute value appearsin a given dataitem. KP gives
the expected number of key attributes per dataitem.

B Branching factor. Thisisthe number of children of any given data item (except
for leaf nodes.)

i Depth of the second (non-root) layer of indexes. The total depth of thetreeis 2j.
Wewill consider root to beat level 0, and theleavesto beat level 2j - 1.

N Number of indexableitemsin the database. Thisisequal toB? -1.

Note that there are B/ second level indexes. Each of these indexes has B! -1 data items
located beneath it. We have not put in a separate space cost for back-pointers from data
items to the index. There will be one such pointer for every pointer from an index to a

dataitem, sothisisincludedinc,.

We will use three queries in this analysis, each reflecting a different start point. From

thesethree, we can predict resultsfor queriesfrom any start point. The queriesare:

F, Findtimefor searchesstarting at theroot node (which contains an index.)

F, Searchesstarting at a child of the root node. These will progress through half the
depth of thetree beforethey are ableto use second level indexes (if any.)

Fs Finds starting at level j. These will be able to make use of a second level index

directly (if oneexists.)

Notethat searches starting from below level j (below F3) will take the same time for all of
the methods, as no index will be used. Searches from between level 2 and j will take
between F, and F 3 time, but will vary at the samerate for each of the threeindexing tech-
niques. We will use Fj; to denote the time required for search F; (wherei is 1, 2, or 3)
using index typet (wheretissfor asingleindex at root, r for fully replicated indices, u

for unreplicated (linked) indexes, and mfor the single multiple-attribute index.)

As a quick example, for a single index located at root we have F,=T(k), where k is the

number of keys in the index; plus the retrieval time E(r) for the r items found by the

58

index. Given K total possible keys, P probability that a given node will contain a given

key, and N nodes, we can see that the expected number of keysintheindex (k) is:
k = K(1-(1-P)V)

keys. The expected number of items to be retrieved r is PN. Therefore the expected

retrieval timefor asearchfromrootis:
Fis = T(K(1-(1-P)N))+E(PN)

Searches from below the root require searching the entire subtree from the start point

(whichincludesthe object retrieval time):

Fas= E(BH7!-1)

Fas= E(B/-1)
As to the space requirement, note that an index will require csk+c,d storage space,
where k is the number of keysin the index (as determined above), and d is the number of
itemsindexed. Also, a given database item will have pointerstoitintheindex KP times,

so we have an expected value for d of nKP. Thisgivesus a storage space requirement for

anindex of sizen of
S(n) = csK(1-(1-P)")+c,nKP
Thereforethe spacerequirement for asingleindex atrootis
Ss(N)= csK(1-(1-P)N) +c,NKP
Using multiple indexes without eliminating replication gives the fastest lookup time of
any of thethreeindexing methods described. Starting at the root we get:
Fi = Fis = T(K(1-(1-P)N))+E(PN)

If we start at level 1 things are somewhat worse. We have to first search all of the nodes
between the start point and the relevant second level indexes (B! -1 nodes), and then

use each of the indexes beneath this point.
Faor= E(BI71-1)+BI M T(K(1-(1-P)® ") +E(P(B' - 1)
Finally, at level j we need search only asingleindex on B! -1 items:

Far = T(K(1-(1-P)® 1)) +E(P(BI - 1))

59

This method requires the most space. To the space requirements for the single index we
must add B! smaller indexes at level j. Thusthetotal space requirement for the replicated
multipleindex techniqueis:

S, = S(N)+BIS(BI -1) |
= CsK(1=(1-P)N)+CoNKP +BIK(Cs(1-(1-P)® 1) +c,P(BI - 1))

Eliminating replication saves space at some expense in time for searches from root. For a
search from root we now haveto search thetopindex, and then each of the lower indexes:

Fi = T(K(1-(1-P)® 1)) +BI T(K(1-(1-P)® 1)) +E(PN)
= (Bl +1) T(K(1-(1-P)B 1)) +E(PN)

SearchesF, and F; arethe same asin thereplicated case.
The space required for each of theindexes at level | isthe same, but the unreplicated top
level index requires only space S(B! - 1).

S, = (Bl +1)S(BI -1)
= (Bl +1)K(cs(1-(1-P)® ") +c,P(BI -1))

TheFind operation for the single multiple-attribute index of Section 3 isa multi-step algo-
rithm. Thefirst step, finding the secondary index, is T(K(1-(1-P)N)) time regardless of
where we are in the database. The transitive closure of the reachability graph is

inherently linear; for a search from root it will require time O(B!) from root, and constant

time for the other searches.! Finding the appropriate objects in the secondary index can
bedoneintwo ways. If wearelooking for objectsreached from alarge number of anchor
points, a simple linear search may be desirable. If only looking for a few anchor points,
we can use atypical index and perform a number of searches each of time T(n), wherenis
the number of anchor pointsin the secondary index. Note that an anchor point will occur
in a secondary index with probability (1-(1-P)9), where d is the number of objects
directly beneath that anchor point. Inour example, d = Bl -1 for all theindexed |ocations,
son=(Bl +1)(1-(1-P)B). Adding theseup givesafind time of:

1 We have described a technique where a tree-structured reachability graph can be replaced by
ranges in a preorder numbering of the database. This would give constant, as opposed to linear,
time and space requirements. Since this only applies to tree-structured data, we are not using this
optimization for thisanalysis.

60

Fim = T(K(1=(1-P)"))+t,B +1, (B +1)(1-(1-P)® 1) +E(PN)

Thisisassuming that we make a linear search of the secondary index, otherwise the third

term would change:

Fim= T(K(1-(1-P)"))+t,Bl +BI T((B/ +1)(1-(1-P)® 1)) +E(PN)

Searches from children of root require the same time asthe previous methodsto get to the
indexed locations, but beyond this we can make some optimizations. We only need to do
the search in the primary index once. We will need to ook at the reachability graph and
perform a lookup in the secondary index once for each of the indexed nodes we reach.
Thisgivesatime of:
Fan= E(B/ ™1~ 1)+ T(K(1-(1-P)")) +BI ™} (t, + T((BI+ 1)(1-(1-P)® 1)) +
E(P(B?™1-1))
Searches from the bottom indexed locations also require the primary lookup, aswell as a

single check of thereachability graph and secondary index.

Fan= T(K(1=(1-P)"))+t, +T((B)+1)(1~(1-P)® ")) +E(P(BI -1))

The space requirement hereis abit more complex. Thereachability graph requires space
proportional to the number of anchor points: ¢, (B! +1). The primary index takes space
for each search key, aswell as a pointer to each secondary index: (cs+c,) K(1-(1- PYM).
Each secondary index will take space determined by how many anchor pointsarefoundin
the index and how many data items have the corresponding search key. The expected
number of anchor points in an index is (B! +1)(1—(1—kprob)BJ'1), and the expected
number of dataitemsis NP. The space required for each item will be c, the cost of a
pointer to a dataitem or anchor point. There will be one secondary index for each entry
inthe primary index. Thisgivesatotal space figure of:

Sm = (Bl +1)+(cs+cp)K(1-(1-P)N)+
K(1-(1-P)N)(cpNP +(coNP +cp (B! +1)(1-(1-kprob)® 1))

= ¢ (BI+1) +K(1-(1-P)M)(cs+Cp(1+NP+(BI +1)(1-(1-P)® 1))

Tounderstand the tradeoffs between the variousindexing techniquesitis helpful to graph
the performance results on a particular scenario. There are many possible scenarios,

corresponding to the values of the parameters on Pages 57 and 58. Given our space

61

limitation, we will ook at one representative scenario (adifferent scenarioispresentedin
the experiments of the following section.) Therefore these graphs should be interpreted

asillustrativeonly.

Thegraphsin therest of this section are based on complete trees with a branching factor
of five. Wedidtry varying the branching factor; theresultsvaried by an equivalent factor
for all of theindexing methods. Thevalues of K and P are given above each graph. T(n),
thetimefor alookup in anindex, islogarithmic. E(n), thetimeto search through n nodes
in the database, is linear. We assume a main-memory database; with increasing memory
sizesit is reasonable to cache “short” information, such as links and keywords, for each
nodeinthedatabase. ThusE(n), thetimeto search through n nodesin the database, takes
timet,-n. T(n), thetimetolookup a key in an index of size n, islogarithmic: t.1og,(n).
Thefactor t, corresponds to memory lookup time, for these graphs we simply assume unit

time.

Figure 6.4 shows the find time for each of the indexing methods, for a find over the entire
database (F1). We use K =1000 and P =.001, this provides an expected value of 10 search

keys per node.

K = 1000, P = .001

1000001 — —Unindexed P
---- Unreplicated indices

Time requirements10000 — _-

(steps) -
Search from Root 1000 — /
Includesdataretrieval

(log scale) 100 —

10 = Fully replicated indices

N T (also Singleindex at root)
I I I I I I

10 100 1000 10000 100000 1et+06

Number of itemsin Database
(log scale)

Figure 6.4: Find Time vs. Number of Data Items, search over entire database.

62

" — Single Multi-Attribute index

K = 1000, P = .001
10000 —

1000
Timerequirements
(steps)
Search from below Root
Includesdataretrieval

— —Unindexed
(also Singleindex at root)

(log scale) 10 ' FuIIyrgpIicatfad i.ndices
---- Unreplicated indices
1 — Single Multi-Attribute index

N N N N N
100 1000 10000 100000 1e+06

Number of itemsin Database
(log scale)

Figure 6.5: Find Time vs. Number of Data Items, search fromjust below root of database.

Figure 6.5 shows the expected time for queries from just below the root of the database
(F», encompassing onefifth of the database.) Otherwise thisfigure correspondsexactly to

Figure6.4. The gainsprovided by indexing are substantial.

Figure 6.6 compares the effect of the number of distinct keys on the time required for a
find. Thisisfor the F, find, starting just below the root node. It does not include the
actual object retrieval time, as this is the same for all of the indexes. The expected
number of keys per node is constant (10); the more total keys, the fewer items will be
returned for agiven key. Note how the single multiple-attribute case performs better than
the other methods with a large number of keys. Let us first explore what is happening
with the fully replicated and unreplicated indexes. Asthe number of distinct keys grows,
thesize of eachindex grows. Thisincreasesthetimerequiredto searchtheindexes. This
is also true with the multiple-attribute index, if we simply look at the search time for the
primary index. However, the cost for the multiple-attribute method also includes a search
based on the secondary index, and as the number of keysincreases the size of each secon-
dary index decreases. The cost of searching the secondary indexes decreases faster than
the cost of searching the primary index increases. When the number of distinct keys
approaches the size of the database, the cost of searching the secondary indexes becomes

insignificant. At this point the cost of a single search in the (large) primary index of the

63

N = 107, P = 10/K

10000 — e
P
//-
TimerequirementsSOOO* ///
(steps) ,/
Search from R4
belowroot 9000 i
s
~~ " Fully replicated indices
4000 ,* - Unreplicated indices
’ — Single Multi-Attribute index

N N N N N N
10 100 1000 10000 100000 1e+06

Number of possible keys (K)
(log scale)

Figure 6.6: Find Time vs. Number of Keys, search from just below root of database.

single multiple-attribute technique becomes less than the cost of searching many lower-

level indexeswith the replicated and unreplicated methods.

The remaining figures show space requirements for the various methods. Figure 6.7 is

space versus number of items in the database. We have assumed thatcs = ¢, =c, = 1

K = 1000, P = .01

2500004 - Fully replicated indices
— Single Multi-Attribute index
200000 4 ---- Unreplicated indices

— —Singleindex atroot .-

Space 150000

requirements
(index entries) 100000

50000 —

(o

0 5000
Number of itemsin Database

Figure6.7: Index Space vs. Database Sze.

word. For example, for a single index at root on a database of 5000 nodes takes 50,000
words, or about 10 words per object in the database. The database itself would take at
least 75000 words, as each object would require a minimum of 15 words (10 keys and 5
links.) In practice a node will have much more information (such as text, other types of

links, etc.), so therelative space cost of theindex will be small.

Figure 6.8 corresponds to Figure 6.6, and shows space relative to the number of possible
keys. This shows an interesting behavior; although the indexes grow as the number of
distinct keys increases, the pattern of this growth is not obvious. If welook at the single
index at root, we see that the spaceisrelatively constant until the number of keysis com-
parable to the database size. Before this point, the size of the index is dominated by the
storage of pointers to data items. Beyond this point, the cost of storing the keys dom-
inates (asthere are few dataitems per key.) With theunreplicated indices, the keysbegin
to dominate earlier, as each index covers a smaller area. Note that the curve for the fully
replicated index isroughly the sum of the curvesfor the unreplicated indices and the sin-
gle index at root. With the single multiple-attribute index, the space for the secondary
indexes grows as well, resulting in the divergence between this method and the unrepli-

cated indices.

N = 10/, P = 10/K

3e+08 _| Fully replicated in.o!i.ces

2.5e+08 .~ - Unreplicated indices
Space -
requirements

(index entries) 26T08— oo '

— Single Multi-Attribute index
— —Singleindex at root

——

1.5e+08 —

1e+08 —

I

N N N N N N
100 1000 10000 100000 1e+06 1e+07

Number of Possible Keys (K)
(log scale)

Figure 6.8: Index Space vs. Number of Keys.

65

From these graphs we can make a few interesting generalizations asto which index struc-
ture is best. The decision as to which index structure to use depends on the expected
types of queries and how much storage spaceisavailable. The number and distribution of
keys also has an effect on which method should be used. A single index uses the |east
space, but is only useful for F4 type queries (unless searches use indexes above the start
point, which was not considered by our analysis.) Replicated indexes provide the best or
close to the best search times in most cases, at an expense in storage costs (about three
times the space for a single index in our scenario.) The non-replicated indexes would be
most useful when the majority of the searches start from low in the tree and spaceisat a
premium. A multiple-attribute index strikes a balance between replicated and non-
replicated indexes: It performs adequately on searches starting at root (F), but is slower
for low starting queries (F3). The space requirement is closeto that of the non-replicated

indexes.

6.1. Update Costs

Up to this point we have only discussed the cost of searching an index. Building and
maintaining the index are very real costs, and cannot be ignored. The motivation for our
work has come from databases that are dominated by reads, so we have concentrated on
the search times. We do feel it isimportant to say something about the costs of building

and updating indexes, however.

Building an index requires accessing every node reachable from the anchor point of that
index. Thisisthe same as the number of nodes accessed by a query using the index. If
the cost of inserting an item into an index is not too large (logarithmic in the size of the
index is a reasonable value), building an index will result in a net savings after running

only afew queries.

Maintaining these indexes can be expensive. In some cases the cost of keeping an index
coherent with a database update is as expensive as building the index. This depends on
the type of update. The following paragraphs give time estimates, assuming that back
pointers from data items to the index already exist (this cost was included in the space
analysis above.) The costsarein terms of “number of index updates”. Thetime for asin-
gle index update varies with the type of indexing method; many of the methods in the

literature may be used.

66

Adding or deleting a key from an item:

Replicated indices
This could require many updates: Every index that might reference the item must be
modified, and an item is in the scope of every index on the path from root to that

item.

Unreplicated indices
In this case, only one index pointsto any given dataitem, thusrequiring only a sin-

gle update.

Sngle multiple-attribute index
Here the object must be removed from or added to a secondary index, at a cost of a

secondary index insert or delete, and a primary index find or insert (for insertion
only.)
Adding or deleting alink:

Replicated indices
This could be expensive, as all indexes located above the changed node must be
modified. If the change is small (such as adding or deleting a leaf), only an index
insert or delete would be required. If a major portion of the graph is changed, how-

ever, the change could be as expensive asrebuilding each index from scratch.

Unreplicated indices

Hereonly a singleindex need be changed, but again the cost of that change varies.

Single multiple-attribute index
This requires modifying the reachability graph (a quick operation), and possibly
modifying a number of secondary indexes. The number of secondary indexesto be
modified would be the sum of all of the dataitems below the changed link, but above
anchor points, plus all of the anchor points that are “first in line” beneath the

changed link.

Onefactor to consider when judging the time “cost” of building and maintaining an index
is the human factor. If anindex is only used once, the cost to build it will outweigh the
savings in terms of computer time; however the human cost of a delay in an interactive
guery may be substantial. Spending considerable off-hour batch time building indexes

may be worthwhile even if the indexes are rarely used. Keeping an index coherent with

67

updates can also be done off-peak; an index can simply be invalidated when an update

occursthat might affect it.

6.2. Index Placement

So far in our cost analysis and experiments we have assumed a fixed index placement,
with indexes at the root and halfway through the database. We tried experiments with
randomly placed indexes, but performance was (not surprisingly) poor, as index “cover-
age” often overlapped and portions of the database were left unindexed. In a real data-
base indexes would be placed at frequent search points, as determined by the user or
Database Administrator. These points may not correspond to the index locations used in
this analysis. Much of this analysis would still be relevant, but it is worthwhile to note
one pitfall. With the non-replicated and multiple-attribute techniques, performance can
suffer if too many indexes are used. Inthe non-replicated index case, thisis because we
have to search many small indexes. With the multiple-attribute method, the cost isin
searching the reachability graph and secondary index. In practicethismay not be a prob-
lem, as most searches may start from a few locations. Whoever (or whatever)[Fink88] is
responsible for placement of the indexes must understand this in order to maximize the

performance of the system.

It is possibleto figure out how many indexesis “too many”, in terms of actually decreas-
ing performance. As an example, assume that we have one distinct key per item in the
database, and a binary tree index (parameters T(n)=log,(n)+c, E(n)=n, t, =1, K=N, and
P=1/N.) Assume | index pointswith aroughly uniform placement (in the sense that each
index directly covers the same number of items, which istrue for the previous analysis.)

This would give us an expected number of items that we have to directly search (before

reaching anchor pointsin all directions) of %

With unreplicated indices, searching each index will take time T(N/I). If we assume the
guery coversn total items, we can expect to search %I indexes. Thisgivesatotal cost for
theindexed search of:

n

N
= —)+
total search(l) = E(o) N

I-T(Iﬁ)

68

t5(1) = o *+r1-(10g2()+0)

We now need to find the value for | that minimizes the above function. We could do this

by differentiating with respect to I, thisgives:

dts(l)) _ __N_

S 1z + g (€+10g2(1) ~l0ga(e))

Finding the Roots of thisfunctionisabit difficult. We can use numerical methods, how-
ever, to find minimums for ts(l) for particular scenarios. For example, if we assume
N =107, and a query that covers roughly 10% of the data (n=10°), we find that perfor-

mance drops of f after about 2050 indexes.

With the multiple-attribute technique best we need not worry about the cost of searching

the primary index (asit isdone once regardless of the number if anchor points.) We have

the same cost as above to reach all of the anchor points (%), plusthe cost of the reacha-

bility graph (t, -%I), and finally the lookup in the secondary index (%, assuming a linear

search.) Thisgives:

ts(1) = Iﬂ+ n|

Wecanfind rootsfor this. Differentiating gives

dts()) _ _ N +n

dl 12N
Thishasaroot at
N
T
(The other root is with negative I, and is therefore uninteresting.) This technique

encourages moreindexesthan with the non-replicated multipleindexes.

7. Experimental Results

The previous discussion of costs assumes a very regular database. Practical databases
will have a more varied structure. We believe that the cost functions of the previous sec-

tion will be reasonably close to costs on practical databases. We have performed

69

experiments using our prototype query processor/main memory database on lessregularly
structured databases to verify this. The query processor was modified to detect queries
that performed a transitive closure on a particular pointer type followed by a selection on
a particular key; these queries then used any appropriate indexes. We include graphsin
this section that plot the experimental results alongside predicted results from the

analysis of the previous section.

The experiments presented here were run on a DEC 5410. As it is our goal to keep all
search information in main memory, we wanted to run the experiments on a large memory
machineto allow large databases (where indexing is most needed.) The |IBM RTs used for

the distributed experiments didn’t have the memory we wanted for these experiments; the

128MB on the DEC allowed considerably |arger tests.?
The experiments presented here serve two purposes:

e Toverify our analysis.
e Perhaps more interesting, to explore how well we can predict indexing performance on
data that does not hold to the strict structure of the analysis (complete trees with a

fixed branching factor.)

In order to perform these experiments we must first calibrate the model, that is, determine
the values for the time constants listed on Pages 57 and 58 that correspond to our proto-
type. We assumed that the time to search through the database (without an index) was
linear in the size of the database; based on this we determined that E(n) = n-1.5ms. The
index used for our experimentsis a balanced binary search tree. We determined that the

timetolookup aniteminanindex of sizenisT(n) = log,(n)-750uu.

In order to test our analysis relative to databases without a regular structure we per-
formed experiments on randomly constructed databases. Note that the databases used in
the experiments are not entirely random collections of nodes and links. We expect large
hypertext databases to have a structure that resembles a tree more than, for example, a
completely connected graph. Therefore our experiments are based on data with a some-

what regular structure. We constructed two types of databases, trees and Directed

2|t isworth noting that our prototype required no code changes to move to this new platform. We
have also set up a distributed HyperFile database across a variety of hardware platforms, although
we haverun no controlled experimentsin such a heterogeneous environment.

70

Acyclic Graphs. Thedatabaseswere built within the bounds of the following parameters:

e Each node containsasingle key, randomly selected from a space of 700 distinct keys.

e Thenumber of outgoing branchesfrom each node variesrandomly from 1to 7.

e Each path fromtheroot to aleaf nodeisat |east of length four.

e For the tests on indexed databases, each database has an index at root, and indexes at
each node “halfway” between the root and the leaves (using the fully replicated index

method described in Section 3.)

The following graphs contains data points for identical sets of queries run with and
without indexing. Each data point correspondsto a different database, and represents an
averagetime of forty querieson that database. Notethat each point representsan average
of queries on a single database rather than an average over several databases of the same
size; we areinterested in seeing the deviation in a particular database from the prediction
of the analysis. Thelinesrepresent the theoretical results from the analysis of the previ-
ous section, with a branching factor B =4 (the parameters on key placement are K =700

and P =1/K, which correspond exactly to the experimental databases.)

Figure 6.9 gives results of F; queries (searches from root) performed on a tree-structured

Type F, Query

100/ — Unindexed
(+ experimental) + 7
Fully replicated indices
10+ (Oexperimental) +
Time (sec) 1
(log scale) 0
0.1
+ t DD
0014 0
og-Bod
N N N
100 1000 10000
Number of itemsin Database
(log scale)

Figure6.9: Queriesfromroot on a tree-structured database.

71

TypeF, Query

1004 —— Unindexed +
(+ experimental) + +
10 ™ Fullyreplicated indices

(Cexperimental)

Time (sec) 1+

O
(log scale)
0.1
+ L0
0.01 - D_.D-"'D 0
I I I
100 1000 10000
Number of itemsin Database
(log scale)

Figure 6.10: Queriesfromjust below root on a tree-structured database.

database built to the above constraints. Figure 6.10 is for F, queries (searches from a
node below the root) on the same data. The results for queries using indexes on small
databases seem surprisingly low. Our best guessisthat thisisalso partially aresult of the
machine architecture; we probably have a significant increase in the cache missrate once

the database exceeds a certain size.

We also tried queries on databases that were not tree-structured. To the databases used
for Figures 6.9 and 6.10 we added links that form a directed acyclic graph rather than a
tree. Specifically, from each node N in the database we added a number of links to chil-
dren of the siblings of N. Note that this correspondsto the PartOf relationship of the Tek-
tronix HyperModel benchmark[Ande89]. The number of outgoing links from each node
was selected randomly from 1 to 7. We assigned a different link type to these new links;

the experiments on these databases used only links of the new type.

Figures 6.11 and 6.12 show the results of queriesrun over these databases. The variation
between the predicted and actual valuesis larger here than with the tree-structured data-
base, however the predictions seem reasonabl e, particularly for larger databases. Of more
importance, the prediction of performance improvement appears quite close; if the experi-

mental index is slower than predicted, so arethe experimental resultswithout an index.

72

TypeF1 Query
1004 —— Unindexed
(+ experimental)
10| 7 Fullyreplicatedindices
(Oexperimental)

Time (sec) 1

(log scale)
0.1 o
T+ I
0.01 | e oo U
og--0-0-g’0 oo
I I I
100 1000 10000
Number of itemsin Database
(log scale)

Figure6.11: Queriesfromroot on a DAG structured database.

TypeF, Query

1004 —— Unindexed +
(+ experimental)
10— " Fullyreplicated indices +

(Cexperimental)

Time (sec) 1+

(log scale) M
0.1 +
001 ~
.01 DDB]
{ { {
100 1000 10000
Number of itemsin Database
(log scale)

Figure 6.12: Queriesfrom just below root on a DAG structured database.

The trends in the experiments coincide relatively well with the predictions from the
analysis. The model we developed in Section 6 cannot be used to predict the exact perfor-
mance of indexes on a particular database. Nevertheless, the model can be used to study

tradeoffs and general trends.

73

8. Graph Structured Databases

The previous algorithms have been presented in the context of a tree-structured database.
Directed Acyclic Graphs and arbitrary Directed Graphs present new problems. Figure
6.13 contains an example of the extensions we are talking about. Using only the solid
lines gives us the familiar tree structure. Adding the dashed links gives a DAG, and
adding the dotted links gives a DG. Index creation is relatively easy, as we need only
mark items as being in the index when they are first inserted. Updates to the primary
attribute are unchanged, but link deletion becomes more difficult. Thisis not a serious
problem as it is related to Garbage Collection, which has been studied

extensively[Cohe81]. Wewill briefly summarize some possible solutions.

8.1. Directed Acyclic Graphs

With DAGs, we can attach a reference count to the back-pointer from an object to an
index noting how many waysit isdirectly reached from that index. Thereference count of
an object isthe number of parentsit hasthat arein the index, regardless of the reference
countsof the parents. When anitemistold by itsparent that the parentisnolongerinthe
index (or the link between the parent and child is broken), it decrements its reference

count. Only when the count reaches 0 isthe object deleted.

i

A
/\
B C
b
D E

Figure6.13: Arbitrary directed graph database.

74

8.2. Directed Graphs

The problem hereiswith cycles. A simple solution to deletion in this caseisto re-create
the index any time a link is deleted. Thisis only necessary when the deleted link may
have been part of acycle. Inother cases, the reference count mentioned for the DAG case
is sufficient. Cycles, and the deletion of links therein, are probably infrequent enough

that thiswill be adequatein practice.

75

CHAPTER 7

Other |ssues

We have discussed the major issues in designing HyperFile. Inthis Chapter wetouch ona

number of minor issues, such as version management and implementation concerns.

1. Versions

Keeping track of updates to an object is an interesting problem. In many situationsitis
desirableto maintain a version history. Wewill outline a method that allows versions and
historical/version queries to be represented within the HyperFile model presented in
Chapter 2.

An object O becomes “versioned” by adding a tuple (version, <timestamp>, <pointer to
previous version>) to the object. Initially, the previous version pointer is null, and the
timestamp isthe creation time of the object. When an updatetoismadeto O, the applica-
tion first looksfor aversion tuple. If oneexists, acopy O' ismade of object O. The origi-
nal Oisupdatedin place, anditsversion tupleismodified: Thetimestamp getsthe current
time and the pointer pointsto the old version O'. Note that pointersto O always point to

thelatest version. AnexampleisshowninFigure7.1.

Current 0]
’version pointer | Junel % { version : June2 @ | ‘
Version o /
’current pointer : : % ’ version . May 10 | ‘

Figure7.1: Versioned object.

76

We can use thisto provide two types of pointersto versioned objects: Those that point to
the latest version (the standard ones we have used so far), and those that point to a specific
version of an object. For example, the working version of a paper would have pointersto
the latest version of each section. A submitted paper would be “frozen”, the pointers
would be fixed to the current version of each section. Updates could continue on the

working draft, however.

Pointers to a specific version are created using a tuple (version pointer, <timestamp>,
<pointer>). Such atupleis dereferenced with a query that first goesto the latest version
(pointed to by <pointer>), then checks the version tuple in the object to see if its times-
tamp is before the timestamp of the version pointer. If not, the pointer intheversion tuple
isfollowed. This continues until the proper version of the object is found. To be more

precise, thealgorithm to dereference a version pointer tupleisasfollows:

Dereference(version pointer, Vp_timestamp, Vp):
Select ("version", time, previous) from object Vp

If tuple does not exist or ;; Not aversioned object
time<Vp_timestamp then ;; Proper version
returnVvp
else

return Dereference(version pointer, Vp_timestamp, previous)

Note that this does not require a change to the semantics of the language, simply a
slightly more extensive query. For example, the basic query to find all items pointed to by
itemsintheset Sis:

S | (version pointer, ?, ?x) | 1x - T
Note that this assumes we are only following version pointers. This will give the latest
version, regardless of the timestamp of the version pointer. However, we can also issue a
query that will infact givethedesired version:

S | (version pointer, ?ts, ?x) [| 11x | (version, ? > ts, ?x) OR (version, ?, ?) |’
| (version, ? <ts,?) - T

Thisfirst sets and dereferences the version pointer. The dereferenced object is checked
to seeif itis newer than the desired one, if so the pointer is dereferenced (the OR clause
allows the correct version to slip through without setting a pointer for dereferencing.)
Finally, all versions newer than the desired one are thrown out, leaving the correct ver-

sion.

77

Even though the fundamental model supports versions with no change, it may be useful
for an implementation to provide special support for versions. Requiring pointersto old
versions to go through the timestamp dereferencing process, as opposed to pointing
directly to the old version, allows old versions to be stored as “A’s’ (differences from the
current version.) The complete old versions can be built as part of the dereferencing pro-

cess.

Queries can al so choose specific versions manually; for example
S[|(version, ? 210:00, ?x) | 11x] = T

chooses all versions of objectsin S that werein effect on or after 10:00.

Versions can also be used for “historical queries”. Thisis done by giving version tuples
in the query an explicit timestamp (for example, “February 3, 1959") instead of using the
timestamp of the version pointer. In some cases thiswill cause the final null pointer to be
followed, and no object to be returned. This makes sense, as in this case the item was

created after thetime of the query.

With many simultaneous users of a large database, some form of concurrency control
mechanism is needed. Lock based transactions may beinappropriatein many cases. Long
“editing” updates would result in long-running transactions that could tie up portions of
the database for an unreasonable time. This may be unnecessary, particularly with
modifications that do not change “critical” data, such as changing the wording of a docu-
ment. Transaction management schemes that are more flexible than serializability have
been proposed[Kort88, Horn87], many of these may be applicable to HyperFile. We can

also use versionsto address these problems.

Suppose a new version of a document appears while a query isrunning. The old version
may have been accessed as part of the query, and another pointer to the object followed
after the new versionisin place. Should the new version be ignored, should the old ver-
sion be ignored, or should both be included? The last option is easy, just send out what-
ever result is obtained as soon as it has been determined to be part of the result. This
forcesthe application to deal with multiple versions of some objects. Using only new ver-
sions requires saving results until query termination. This eliminates one of the advan-
tages of HyperFile queries: allowing an application to begin displaying results before a
query iscomplete. If anew version of a processed document isinstalled before the query

terminates (determined by noting if the old version has been marked by the query) the old

78

version would haveto be discarded and the new version processed. A greater difficulty is
with pointersthat have been followed from the old version, but are not present in the new
version. These would have to be “unqueried”, leading to a cascading partial-abort of the
query. This requires maintaining considerable state beyond a simple mark of the docu-
ment. The mark would haveto notewhich objects had referenced the marked object, so as
to determine if a partial-abort is applicable, or if the object would have been processed
through another part of the query anyway. Asone of the advantages of this systemisthe

simplicity of query processing, we see thisas a poor option.

Historical queries can solve this dilemma. All queries (or at least those that need con-
sistency) arerun as historical queries. If aparticular timeisnot given, thecurrenttimeis
assigned as a query timestamp. This gives a measure of consistency; the results of a
guery are as if it were executed atomically at the time of the timestamp (with respect to

versioned objects.)

In a system without globally synchronized clocks, some measure of consistency can be
obtained by placing a local timestamp on each query when it first arrives at a site, and
using only versions active at that time. This ensures consistency between objects at a sin-
gle site, requires no extra message traffic for clock synchronization, and does not require
any special guarantees (such as ordered message delivery) from the communications sys-

tem.

2. LargeMemories

This research was done as part of the Massive Memory Machine project at
Princeton[Garc84]. The basis of this project is that memory is becoming less expensive;
having a gigabyte of main memory on a workstation is not unreasonable in the near
future. In particular, available main memory islikely to increase at a significantly faster

rate than processor speed, disk size, or disk accessrate.

In the case of HyperFile, the availability of large memories enables us to cache most or all
of the “search” information (keywords, links, etc.) in main memory. Asaresult disk reads
will only occur when an application needs specific large pieces of data, which will gen-
erally be after the desired objects have been found (as opposed to a file system, where
searching through the entire text of many filesis often necessary if you don’t remember

the name of thefileyouwant.)

79

As an example, the Princeton University Library has over 4 million booksPUGS90].
Assuming a typical book has 100 pages, and about 3000 characters per page, storing all of
this dataon-line requires roughly a terabyte. Compression techniques could cut this con-
siderably, however a book full of pictureswill greatly expand thisamount. In any case, it
is safe to assume that we are a long ways from being able to store a significant library in
main memory, and an interactive search through a terabyte of disk isnot something any of

uswish to contemplate.

The key search information (Title, authors, references, keywords, etc.) for a single book
can probably be stored in less than 1k bytes, however. Thisallows our gigabyte worksta-
tion to store ¥4 of the Princeton University library; four such workstations (or a single 4
gigabyte machine) could handle all of the searching on-line. Note that this goes way
beyond the search capability provided by atypical on-line card catalog, not only are more

complex queries allowed, but the desired document i s available on-line once found.

Obviously, such asystemisnot likely inthe near future, dueto social, legal, and practical
issues. Nevertheless, we can see that the technological barriersto such a system are fal-

ling.

3. Data Types

The datamodel provides for triples composed of items from a few basic types. HyperFile
has a limited basic type system. Thisisless general than, say, an object oriented system.
Unstructured types (similar to filesin a files system) are provided, however. Thisgivesa
high degree of flexibility -- it is the constraints that are limited by the “limited” type sys-
tem, not the datathat may be put into HyperFile. This gives advantagesin efficiency (the
server isless complex), aswell as advantages in flexibility (applications do not haveto fit

a predefined database schema.)

All of the operations on these types are not defined in thisthesis. The appropriate opera-
tions are obvious in most cases, and this work presents no novel approaches other than

those mentioned here.

3.1. Key fidd types

The following data types can be operated on directly in non-trivial ways by HyperFile.

They areintended for useinthekey fieldinatriple.

80

3.1.1. Word

Words can be thought of as short character strings. Typically these will be used for key-
words or index entries. Standard string operationswill be allowed onthese. In particular,

expression matching will be a common operation.

Words are not arbitrary character strings, however. By placing some restrictions on the
scope of words we can represent them more compactly and search them more efficiently

than a character string representation would allow.

To do thiswe make use of PATRICIA[Morr68] (asearch tree algorithm) to build a two-way
hash function that allows us to map a limited set of strings to a fixed-size representation
and back. Wewill not describe thisalgorithm in detail, other thanto notethat it allowsus
to efficiently (O(string length)) map strings of characters into integers and vice-versa,
preserving order. This allows our Word type to support some pattern matching (such as
ca* to match cat and cab, or 'cab < ? < cat’ to find cad.) A triefor the above exampleis

giveninFigure 7.2; note how cab mapsto 30, cad mapsto 40, and cat mapsto 50.

Carefully setting the mapping for theinitial tree allows considerable flexibility in adding
new words as time goes along, for example in Figure 7.2 we have room for 9 new words
between each of cab, cad, and cat. Given a storage size of 32 bits, we can have potentially
2%2 Words. In practicewewill not do thiswell, but a typical HyperFile database will prob-
ably not contain nearly so many distinct keywords. Credit must go to the on-line Oxford
English Dictionary project at the University of Waterloo for providing an example of the

use of PATRICIA inthe context of document database, inspiring our ideas|Raym88].

Figure7.2: Triefor mapping Words to integers.

81

3.1.2. Numeric

Numeric dataand standard numeric operations are supported. Currently we support a sin-
gle numeric type, although dividing this into separate real and integer types would be
straightforward. We seelittle usefor real dataas a structured part of HyperFile objects at

thistime.

Other types, such as dates, can be implemented on top of numbers in a straightforward

manner. Thisallows some application-driven “extensibility” of thetype system.

3.1.3. Pointer

Pointers are perhaps the primary thing that sets HyperFile apart from most data servers.
Note that since a pointer is actually embedded in a triple, the type and key (or type and

data) fields can be used to attach information to thelink.

One method of specifying that a document contains another.
(pointer, "contains”, <pointer to sub-document>)

More complex method, using triple-type to specify information.
(chapter, "One", <pointer to chapter (sub-document)>)
(Appendix, "A", <pointer to appendix>)

3.2. Datafield types

The datafield of a tuple can contain any of the above types, although the query process-
ing engineis optimized for searches on the key field. In addition, the data field can con-
tain larger data items. Although of variable length, most are relatively compact, the
exception being text. In our prototype, everything except text data items is cached in

memory. Thisspeeds queriesthat do not requirelooking at text items.

3.2.1. String

Strings are intended to be short sequences of characters; at most a sentence. These will
be commonly used for titles, names, addresses, and other such data. Standard expression
matching and string operationswill be allowed, but operations can be expected to be much

slower than equivalent operations on Words.

3.2.2. Short

Thisis a short unstructured type, where the data is of a small (although not necessarily

fixed) size. Theideais that this can be used to support extensible data types. Searches

82

will be allowed on this data by allowing the application to provide functionsto determine

matches.

There are a number of possibilities for when to determine the size of short blocks. Possi-

bilitiesare:

e Fixed for all implementations.

e Fixedfor agivensite.

e Fixedfor agiven application.

e Fixed at thecreation of thetriple.

e Automatically varying.

e Application-specified, but variable (the size would be specified when the triple is

created, and an operation would be provided to “grow” and “shrink” the object.)

We prefer the last option; unstructured data items are flexible, but the application writer
is made aware of the expense of changing the size of the data. Having a fixed size would
be easier to implement, but would limit the application, and may force objectsinto the text

typethat don’t belong there.

Since the above types will occasionally be used for searching (although not as frequently
as items in the key field), they should be cached in memory along with the rest of the
document. However, since they are not fixed length (and the rest of the data items are)

they will be kept separately.

3.2.3. Text

Thisisthebasic unstructured type. Any operationsthat must be performed on text blocks
(other than creation and deletion) must be provided by the application. Text can be
viewed simply as a string of bits. Although initially intended for use as a medium for the
written word, text blocks can be used for pictures, executable code, or other data that

doesnot fit into the normal type system.

All data other than text will be cached in memory when possible. Thus searches on text
datawill be comparatively slow. HyperFile does not operate directly on text, it only pro-
videsit to the application. Thisencourages the application writer to avoid using the text

datatypefor datathat isused for searching.

83

In our prototype, text is stored as afile. Thisallows the use of existing tools when build-
ing applications such as editors and text formatters, as well as simplifying prototyping.
This is not simply a prototyping decision, however. Providing a file interface allows
applications to be converted for use with HyperFile by simply wrapping them in a shell
that handles the query interface, and redirects file system calls to the appropriate Hyper-
File text block.

4. Tripletypes

These are the actual key-data combination types, each designed with a particular purpose
in mind (although not limited to the original purpose.) Thetypeidentifiesthe meaning of
thetriple; multipletripletypes may exist that have the same underlying physical typesfor
thekey and data.

Individual applications define triple types as appropriate. Types extend across the entire
database, however, and thus conflicts must be resolved between applications that wish to
use the same type name to mean different things. This conflict resolution also serves to
encourage the sharing of data between applications. The definition of triple typesisin

some sensethe “schema’ of a HyperFile database.

In order to ease the problem of type definition, each database has a “reserved” catalog
document. This contains the actual specification of each triple type, including the type
name and the physical types of the key and data. In addition, since the catalog is a docu-
ment, a written explanation of each type is provided. Although this does not automati-
cally resolve conflictsin the use of triple types, it does simplify human resolution of the
problems, as a textual (or even multimedia) definition of the typeis contained in the data-
base. Although | hesitate to say that the schema is self-documenting, this method does
encourages whoever defines atypeto document it, asthe catalog must be updated in order
to makethetypeusableat all.

Certain types will be predefined. In particular, descriptions of the types used in the cata-
log will be always be contained in the catalog. A sample catalog is contained in Figure
7.3. A relational model would probably be better for expressing the information in the
catalog, but it should be remembered that the catalog has a primary purpose other than as
a document. It is a statement of the power of the model that this information can be

expressed at all.

type pointer : x Type specification for pointer,
typekey : pointer : word whichisalabeled pointer
typedata: pointer @ pointer to other documents.
type text
typekey : text word 1 Type specification for
typedata: text text text, alabeled block
type type of unstructured text.
typekey : type word —
typedata. type text Type specification for type,

used to provide documentation
for triple type definitions.

Figure 7.3: Sample Catalog.

85

CHAPTER 8

A Browsing Application for HyperFile'

It isexpected that HyperFile user interfaces will be application specific. For example, the
kind of interface desired for a CAD/CAM database would be combined with a CAD design
tool; an on-line library application would likely resemble a hypertext browser. Different
applicationswill result in different kinds of queries, and thiswill change the way the user

interfaceisusedto generate queries.

We have built an interface for gaining experience with HyperFile query generation and
use. Theinterface presented hereis not intended as THE application for HyperFile. Itis
instead an example of ideas that might be incorporated into more application-specific
interfaces. This application was written using the Eiffel object-oriented programming

language and runs under the X window system.

Theinterface we have developed runsin a single application window. Figure 8.1 contains
a sample screen. (All figures showing the application window are actual screen dumps.)
Conceptually we have divided this window into three horizontal regions. The top region
of the window contains an area for menus, as well as a “prompt message”. The center
region is used for display of results; in a production system this would be application
specific, for exampleit could be a traditional hypertext browser. The lower region of the
screen contains a number of sets (Root, Setl, ...); these are used to store the results of
gueries (and as starting sets for further queries.) To the right of some of these sets are
small boxes; these represent theitemsinthe set. Clicking onthe set “button” will display

the contents of the set in the center region; clicking on one of the small boxes will

T The application presented in this Chapter was implemented by David Bloom '91 as a Junior Pro-
ject at Princeton under the supervision of Hector Garcia-Molina and the Author. It is included
here for completeness in describing HyperFile, but should be viewed as collaborative work rather
than original work of the Author.

86

Choose an Action Filter Query

current triples:

e e
1 Pointer Browserimp Ptr3 at polar
2 Pointer Browser Doc Pir2 at polar

current query:

indexing
Available Sets Eiffel v2_2

- Basic HyperFile graphical intertace/application.

cass Browse export
process_query, pop_icon, send_statement

inherit
EXCEPTINS;
WINDOW_CONST;
Constants

Figure 8.1: Complete browser screen.

retrieve and display the contents of that particular item. To the right of these is a text
output window; this appears on demand to display long, unstructured (text) fields. This
would be subsumed by application-specific means of output in production systems. Atthe

bottom are matching variables, and variablesused to retrieve fieldsduring a query.

To demonstrate how the browser works we are going to use a database that contains this
Chapter, as well as the implementation of the browser. Note that the document is linked
to theimplementation and vice-versa, thereby allowing a user reading about (for example)
the screen layout to look at the code defining thislayout. We will first build the following
guery to recursively find routines called by the main program of the browser (to two lev-
els):
Root [| (Pointer, 'Calls’, ?X) | 11 X]2 - Z

Wewill then look through these routinesfor those written by David, and take alook at the

code of one of those routineswith the following query:

Z | (String, 'Author’, "David Bloom") | (Sources, 'Eiffel’, - code)
{ display_text (code) }

Instead of typing queries, the browser lets us enter queries interactively using menus.

Themenu at the top of Figure 8.1 offers a number of options:

87

e Filter Query: Searchthe database for objects meeting specified criteria.

e Selection Query: Choose specific tuplesfrom an object.

e Add Triple: Addatupleto an object.

e Create Document: Create a new (empty) object.

o Exit.
We select Filter Query and are then prompted for a set of itemsto start with. For our first

sample query, we start with the Root set (which containsthe top level of the Browser pro-

gram, aswell asthis Chapter):

Choose Set Below

current triples:

ey data
Browserimp Ptr3 at polar
Pir2 at polar

type ke
1 Pointer
2 Pointer Browser Doc

current query:

Available Sets -
-

Selecting Root requires a simple mouse click on the button marked Root (at the bottom of

the precedingillustration.)

We now choosethecriteriawe wish to select on:

Specity tuple

Choose Next Action

End lteration

Dereference variable
Dereference, keep parent
Send Query

current triples:

e key data
1 Pointer Browserimp Pr3 atpolar

In this case, we will start by iterating (since we will want to follow pointers recursively.)
We are then returned to the same menu, and choose Specify Tuple. This allows us to
specify criteriathat restrict the objects we are interested in; objects that do not meet this

criteriawill beignored. Inthiscase, wewant to follow Pointersto Called routines.

Weareimmediately prompted for the type of the tuple we wish to search on:

88

Select Type Field

current triples:

Notethat the type menu is application specific; it could be hard coded into the browser or

perhaps*“gleaned” from the database catal og.

Following this, we are given optionsfor the key.

Select Key Field Wildcard (7)

Set matching var (%x)
Matching Variable (x)
Binding variable (>>x)
Other
Suggestions af suthor

current triples:

key data
1 Pointer Browserimp Ptr3 at polar
2 Pointer Browser Doc Pir2 atpolar Descrption

current query:
Root[| (Pointer,

Note that we have a number of options:
Wildcard: Accept any key.

Set Matching Var: Set a variable that can be used later for comparisons (such as ?X in

the query language.)
Matching Variable: Thisteststhevalueof amatching variable.
Binding Variable: Thissetsavariablethat can belater viewed (but not usedinaquery.)

Other: Thisisachanceto enter your own value, if none of the given options

are appropriate.
Suggestions: Thisisasubmenu of application-defined “interesting possibilities”.
Inthiscase, wewill just pick Calls from the suggestions menu.

It isalso worth noting that the partially completed query isdisplayed asit is constructed;

thisisshown at the bottom of the preceding figure (under current query:.)

We next have to specify the datafield. In most cases, thisisalong field, such asthe text
of a paper. As a result, comparisons will be infrequent. In the case of a Pointer tuple,
however, the data field contains the pointer to another object. Since we want to derefer-

encethispointer (for atuplewith key Calls), we will set a matching variable:

89

Select Data Field wildcard (7)

‘matching variable (x)

| binding variable (>>x) |
| Other |

An unused identifier is assigned for this variable, and inserted in the Available Variables

area (shown at the bottom of Figure 8.1.)

We have now completely specified the tuple for this filter. This returns us to the Next
Action menu. We have now picked out the pointers we want to follow, so we choose
Dereference, keep parent. This will add all of the pointersin a matching variable to the
objects being processed. Of course, we haveto specify the matching variable from thelist

at the bottom of the window:

Available Variables

Note that x was added to thislist when we set the matching variable using the data menu

above.

All that remains is to specify that the loop (recursively chasing pointers) is done; to do
this we choose end iteration from the next action menu. This prompts for the number of
iterations (keyboard entry): An integer (for a fixed number of iterations) or * for a com-
plete transitive closure. We will only go two levels deep (no sense gathering the entire

codejust for an example.) Wearethen ready to send thefinished query:

Choose Next Action

current query:
Root[| (Pointer, ‘Calls', 2x) | AAx]2

AvailableSets — [remn query

- [Row]

Theresults of this query are displayed in the window at the top of Figure 8.2. The result
contains two tuples, each of which is a pointer to another object (note the contents of the

data fields.) The results are also placed in the next available set (in this case Setl) for

90

current triples:

1 Pointer Browserimp Ptr3 at polar
2 Pointer From Processing Pir6 atblitz

current query:
Z | (String,’Author’, "David Bloom") | (Source, 'Eiffel’, »>x)

Available Sets

- [

rrrrr query.

Figure 8.2: Result of recursive query.

futureuse. Currently “next available” istheleast recently used set; other options (such as
allowing the user to specify which set) could be used. An arrow pointsto Setl, to show

thatitisthecurrently displayed set (as shownin the bottom of Figure 8.2.)

Figure 8.2 also shows the next query. As previously mentioned, thisisto find all of the
programsin the result of the previous query (placed in Setl, referred to by theletter Z in
the display of the query) that were written by David, and view the source code from those
programs. Thisisconstructed in the same manner as the previous query. A few interest-

ing differences:

e The name of the Author was not selected from a menu, but was entered by choosing
Other: from the data menu (which prompts for keyboard input.) Likewise for the
language type (the key of the Sour ce tuple)

e The Datafrom the sourcetupleisretrieved explicitly ((Source, 'Eiffel’, - X)), to allow

later viewing.

Oncethe query has been executed, we can view the contents of the binding variable used
to explicitly retrieve the program text. To do this, we simply click on the variable (at the
bottom of thewindow.) Thisbringsup the contentsinthemain viewing area (in this case,
asingle value as shown in Figure 8.3.) Also notice the small box to the left of this value;
thismeansthat theitem isactually atext field, and clicking on thisbox allowsusto view it

inaseparatewindow (inthiscaseit isthetext of a program.)

Note that the results were placed in Set2, asthe arrow is currently pointing to it. The set
is not displayed in its entirety in this figure, as we are looking at the binding variable.
However, one of thetuplesin Set2 isa pointer; we can see this because of the small box to

the right of Set2. Therefore Set2 would be useful as a set (with a single object) for the

91

contents of binding variable:

O /vesfvd/cvwe/hijtba0294d

current query:

indexing
Available Sets Eiffel v2_2

- Basic HyperFile graphical intertace/application.

0p_icon, send_statement

inherit
EXCEPTINS;
WINDOW_CONST;
Constants

feature.

Figure 8.3: Viewing a binding variable.

start of another filter query.

The user interface we have presented allows the construction of arbitrary HyperFile
qgueries. An actual application would probably not be as general; instead providing
“canned” query partsthat would be combined by the user to form the actual query. These
guery parts would be given in application-specific language rather than displaying the
actual HyperFile query. We believe the ideas of menu-based query construction and hints

serves as a good basisfor forming application-specific queries.

92

CHAPTER 9

Conclusions

We have described HyperFile, a back-end data service for heterogeneous applications. It
provides a query language that permits searches based on properties of the stored objects,
as well as by following pointers contained in the objects. We believe that the query
language is powerful enough so that many common queriesin applications such as docu-
ment processing can be answered with a single request to HyperFile. Yet, HyperFile is
simple and flexible enough that designers of such applications will not have to resort to

file systemsto storetheir data.

The query processing algorithm we have presented is straightforward and efficient. The
language was intentionally limited in order to allow fast query processing. We believe
thisis a good approach for a data server. Nevertheless, there is room for more work on
HyperFile query processing. We have not looked at query optimization; this could be an
interesting area. Thereiseven moreroom for work on optimizing distributed query pro-
cessing. Asan example, our technique requires keeping little information about non-local
objects, but multiple references to the same remote object will result in unneeded mes-
sages. Sharing information may eliminate some of these, but this would add complexity.
Another potential optimization is saving remote references until local processing is com-
plete, rather than sending queriesimmediately. Thiswould save cut communications cost,
but could also decrease parallelism. This brings up another issue: HyperFile queries
should be able to achieve considerable parallelism on a multiprocessor. Adapting our
guery processing algorithm to different multiprocessor architectures could be interesting

work.

We have described techniques for indexing HyperFile queries. These techniques are not
necessarily optimal, efficient means of precomputing transitive closure would help con-

siderably. There are significant limits to what can be done for general graph structures,

93

but improvement is possible for some types of graphs. We may be able to usethisto gen-
erate techniques for transitive closure that have good performance in typical database
situations. Another area that we have not fully explored is limited depth indexing (as
opposed to complete transitive closure.) In fact our HyperFile implementation is quite
limited in what types of queriesit will useindexesfor. Expanding thisa problem related
to query optimization. We can also explore other applications for these indexing tech-

niques.

We have presented a sample user interface to generate HyperFile queries. In practice the
types of queries, and how they are generated, will be application specific. Further infor-
mation on the utility of HyperFile can be gained by using it to support specific applica-
tions. We are currently looking at using HyperFile to support scientific data. Scientific
environments are often heterogeneousin hardware, software, and perhaps most important,
personnel. Although such environments have made use of traditional business-oriented
databases, rarely isall of the data put into such a database. Scientistswithin an organiza-
tion will often create special-purpose systems for their own use. Although HyperFile will
not eliminate such systems, it provides the capability to store and link data, code, and

notes so that theinformation will still be availableto future researchers.

There are many data management applicationsthat are not well served by traditional data-
base management systems. A few examples are software engineering (code, design data,
executables); computer aided design (geometric data, test information); and animation
(linked graphics frames, evolving video compression techniques.) Special purpose data-
base technol ogies, such as spatial database systems, are being developed to support these
applications. Integrating these new technologies into a single database is difficult.
HyperFile provides a means for integrating these types of data, by serving as an underly-
ing storage service that can track the relationships between the widely varied application

specific data.

There will be data management areas for which HyperFile is not appropriate. Neverthe-
less, we have learned one thing that will be useful in developing data managers for these
areas. Existing database technology can be reused and applied in new ways. For exam-
ple, the indexing methods we have presented can make use of existing research in both
indexing and transitive closure. Distributing HyperFile was also simplified by using exist-

ing technology, for example our naming scheme. We may never have a“perfect” database

94

management system that adequately supports all applications, but by combining existing
technology with new ideas the community of database researchers should be able to keep

pace with the data management needs of new applications of computers.

95

APPENDIX A

BNF description of HyperFile Interface Language

statement ::= expr — object
= expr

expr ::= object
1I= expr setop expr

= exprfilterexp
::= object selector

setop =411, n, —

filterexp ::= filterexp filterexp
= filterexp]”
= [filterexp]
m= | filter

filter ::= (typespec, key, data)
=filter or filter
= not filter
= arrow

selector ::= (typespec, key, data)
::= selector arrow
::= selector selector

arrow ::= 1 filtervar
n=11 filtervar

key ::= matching-expr
data::= matching-expr

matching-expr ::=literal of appropriate type
::= expression of appropriate type
::= expression involving matching variable
::= application-communication

typespec ::= name of type of thistriple
::= application-communication

96

application-communication ::= - identifier Send value to application.

matching-variable::= ?
= Zfiltervar

filtervar ::= identifier

97

DBTG74.

PUGS90.

Aksc88.

Allm76.

Ande89.

Birr82.

Carr86.

Clif88.

Clif90.

Clifol.

Codd70.

Cohe81.

Crof87.

Bibliography

Data Base Task Group, “CODASYL Data Description Language,” NBS Hand-
book 113, National Bureau of Standards, US Department of Commerce, Wash-
ington, DC (January 1974).

Graduate School Announcement, Princeton University, Princeton, NJ(June 2,
1990), p. 23.

Robert M. Akscyn, Donald L. McCracken, and Elise A. Y oder, “KMS:. A Distri-
buted Hypermedia System for Managing Knowledge in Organizations,” Com-
muni cations of the ACM 31(7)(July 1988).

Eric Allman, Michael Stonebraker, and Gerald Held, “Embedding a Relational
Data Sublanguage in a General Purpose Programming Language,” pp. 25-35in
Proceedings of the Conference on Data: Abstraction, Definition, and Structure,
ACM (March 22-24, 1976). Also SIGPLAN Notices 8(2):11.

T. Lougenia Anderson, Arne J. Berre, MoiraMallison, Harry Porter, and Bruce
Schneider, “The Tektronix HyperModel Benchmark Specification,” Technical
Report No. 89-05, Tektronix Computer Research Laboratory, Beaverton, OR
(August 3, 1989).

Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder,
“Grapevine: An Exercise in Distributed Computing,” Communications of the
ACM 254(4) pp. 260-274 (April 1982).

Nicholas Carriero and David Gelernter, “The S/Net’s Linda Kernel,” Transac-
tions on Computer Systems 4(2) pp. 110-129 ACM, (May 1986).

Chris Clifton, Hector Garcia-Molina, and Robert Hagmann, “The Design of a
Document Database,” pp. 125-134 in Proceedings of the Conference on Document
Processing Systems, ACM, SantaFe, New Mexico (December 5-9, 1988).

Chris Clifton and Hector Garcia-Molina, “Indexing in a Hypertext Database,”
pp. 36-49 in Proceedings of the 1990 International Conference on Very Large Data-
bases, VLDB, Brisbane, Australia (August 13-16 1990).

Chris Clifton and Hector Garcia-Molina, “Distributed Processing of Filtering
Queries in HyperFile,” in Proceedings of the International Conference on Distri-
buted Computing Systems, IEEE, Arlington, Texas (May 20-24, 1991).

E. F. Codd, “A Relational Model for Large Shared Data Banks,” Communica-
tions of the ACM 13(6) pp. 377-387 (June 1970).

Jacques Cohen, “Garbage Collection of Linked Data Structures,” Computing
urveys 13(3) pp. 341-367 ACM, (September 1981).

W. B. Croft and D. D. Lewis, “An Approach to Natural Language Processing
for Document Retrieval,” pp. 26-32 in Proceedings of the 10th Annual

98

Cruz87.

Dada86.

Elli77.

Fink88.

Fran80.

Garc81.

Garc84.

Good87.

Hala87.

Hala88.

Horn87.

Huan89.

Jaga90.
Kapi90.

Kort88.

Lai86.

International ACM SGIR Conference on Research and Development in Information
Retrieval, , New Orleans, LA (June 1987).

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood, “A Graphical Query
Language Supporting Recursion,” pp. 323-330 in Proceedings of the SGMOD
International Conference on Management of Data, ACM, San Francisco, CA (May
27-29, 1987).

P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum,

P. Pistor, and G. Walch, “A DBMS Prototype to Support Extended NF? Rela-
tions: An Integrated View on Flat Tables an Hierarchies,” pp. 356-364 in
Proceedings of the SGMOD International Conference on Management of Data,
ACM, Washington, DC (May 28-30, 1986).

C. A. Ellis, “Consistency and Correctness of Duplicate Database Systems,” 6th
Symposium on Operating System Principles, pp. 67-84 (1977).

S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical Database Design for
Relational Databases,” Transactions on Database Systems 13(1) pp. 91-128 ACM,
(March 1988).

Nissim Francez, “Distributed Termination,” Transactions on Programming
Languages and Systems 2(1) pp. 42-55 ACM, (January 1980).

Hector Garcia-Molina, Performance of Update Algorithms for Replicated Data,
UMI Research Press, Ann Arbor, Michigan(1981).

H. Garcia-Molina, R. J. Lipton, and J. Valdes, “A Massive Memory Machine,”
Transactions on Computers C-33(5) pp. 391-399 IEEE, (May 1984).

Danny Goodman, “The Two Faces of Hypercard,” MacWorld, pp. 123-129
(October 1987).

Frank G. Halasz, Thomas P. Moran, and Randall H. Trigg, “NoteCardsin a Nut-
shell,” in Proceedings of the CHI+GI '87 Conference, ACM, Toronto, Canada
(April 5-9, 1987).

Frank G. Halasz, “ Reflections on Notecards: Seven Issuesfor the Next Genera-
tion of Hypermedia Systems,” Communications of the ACM 31(7)(July 1988).

Mark F. Hornick and Stanley B. Zdonik, “A Shared, Segmented Memory Sys-
tem for an Object Oriented Database,” Transactions on Office Information Systems
5(1) pp. 70- ACM, (January 1987).

Shing-Tsaan Huang, “Detecting Termination of Distributed Computations by
External Agents,” pp. 79-84 in Proceedings of the Sth International Conference on
Distributed Computing Systems, IEEE, Newport Beach, CA (June 5-9, 1989).

H. V. Jagadish, “A Compression Technique to Materialize Transitive Closure,”
Transactions on Database Systems 15(4) pp. 558-598 ACM, (December 1990).
Sarantos Kapidakis, “Average-Case Analysis of Graph-Searching Algorithms,”
Ph. D. Thesis, Princeton University, Princeton, NJ(October 1990).

Henry F. Korth and Gregory D. Speegle, “Forma Model of Correctness
Without Serializability,” pp. 379-386 i n Proceedings of the S GMOD International
Conference on Management of Data, ACM, Chicago, IL (June 1-3, 1988).

Ten-Hwang Lai, “Termination Detection for Dynamically Distributed Systems
with Non-First-in-first-out Communication,” Journal of Parallel and Distributed
Computing 3(4) pp. 577-599 (December 1986).

99

Lind81.

Lum70.

Mahm76.

Maie86.

Mend89.

Morr68.
Niel90.

Orla88.

Raym88.
Robi65.

Roku8s.

Salt83.

Salt88.

Schw86.

Smit86.

Ston83.

Bruce Lindsay, “Object Naming and Catalog Management for a Distributed
Database Manager,” pp. 31-40 in Proceedings of the 2nd International Conference
on Distributed Computing Systems, IEEE, Paris (April 8-10, 1981).

V. Y. Lum, “Multiple-Attribute Retrieval with Combined Indexes,” Communica-
tions of the ACM 13(11) pp. 660-665 (November 1970).

S. Mahmoud, “Optimal Allocation of Resourcesin Distributed Information Net-
works,” ACM Transactions on Database Systems 1(1) pp. 66-78 (1976).

David Maier, Jacob Stein, Allen Otis, and Alan Purdy, “Development of an
Object Oriented DBMS,” pp. 472-482 in Object Oriented Programming Systems,
Langauges, and Applications Conference Proceedings, ACM, Portland, OR (Sep-
tember 9 - October 2, 1986). Also Sigplan notices 21(11), November 1986.

Alberto O. Mendelzon and Peter T. Wood, “Finding Regular Simple Paths in
Graph Databases,” pp. 185-193 in Proceedings of the Fifteenth International
Conference on Very Large Data Bases, VLDB, Amsterdam (Aug. 22-25, 1989).

D. R. Morrison, “PATRICIA -- Practical Algorithm to Retrieve Information,”
Journal of the ACM 15(4) pp. 514-534 (October 1968).

Jakob Nielsen, “The Art of Navigating through Hypertext,” Communications of
the ACM 33(3) pp. 296-310 (M arch 1990).

Ratko Orlandic and John L. Pfaltz, “Compact 0-Complete Trees,” in Proceedings
of the 14th Conference on Very Large Data Bases, VLDB, Los Angeles, CA (Aug.
29to Sep. 1, 1988).

Darrell R. Raymond and Frank Wm. Tompa, “Hypertext and the Oxford English
Dictionary,” Communications of the ACM 31(7)(July 1988).

J. A. Robinson, “A Machine-Oriented L ogic based on the Resolution Principle,”
Journal of the ACM 12 pp. 23-44 (1965).

Kazuaki Rokusawa, Nobuyuki Ichiyoshi, Takashi Chikayama, and Hiroshi
Nakashima, “An Efficient Termination Detection and Abortion Algorithm for
Distributed Processing Systems,” pp. 18-22 in Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, (August 15-19, 1988).

Gerard Salton and Michael J. McGill, Introduction to Modern Information
Retrieval, McGraw Hill Book Company, New Y ork(1983).

Gerard Salton, “Automatic Text Indexing Using Complex ldentifiers,” pp.
135-144 in Proceedings of the Conference on Document Processing Systems, ACM,
Santa Fe, New Mexico (December 5-9, 1988).

P. Schwarz, W. Chang, J. Freytag, G. Lohman, J. McPherson, C. Mohan, and H.
Pirahesh, “Extensibility in the Starburst Database System,” Proceedings of the
1986 International Workshop on Object Oriented Database Systems, pp. 85-92
(September 1986).

Karen E. Smith and Stanley B. Zdonik, “Intermedia: A Case Study of the
Differences Between Relational and Object-Oriented Database Systems,” pp.
452-465 in Object Oriented Programming Systems, Langauges, and Applications
Conference Proceedings, ACM, Orlando, Florida (October 4-8, 1986). Also Sig-
plan notices 22(12), December 1987.

M. Stonebraker, A. Stettner, N. Lynn, J. Kalash, and N. Guttman, “Document
Processing in a Relational Database System,” Transactions on Office Information
Systems 1(2) pp. 143-158 ACM, (April 1983).

100

Ston86.

Tomp89.

Ulim90.

Wein88.

Wied87.

Woel 86.

M. Stonebraker and L. Rowe, “The Design of POSTGRES,” pp. 340-355 in
Proceedings of the SGMOD International Conference on Management of Data,
ACM, Washington, DC (May 1986).

Frank Wm. Tompa, “A Data Model for Flexible Hypertext Database Systems,”
Transactions on Information Systems 7(1) pp. 85-100 ACM, (January 1989).

Jeffrey D. Ullman and Mihalis Y annakakis, “The Input/Output Complexity of
Transitive Closure,” in Proceedings of the SGMOD International Conference on
the Management of Data, ed. Hector Garcia-Molina and H. V. Jagadish,ACM,
Atlantic City, NJ(May 23-25, 1990).

Dale Weinreb, Neal Feinberg, Dan Gerson, and Charles Lamb, “An Object-
Oriented Database System to support an Integrated Programming Environ-
ment,” Data Engineering 11(2)IEEE, (June 1988).

Gio Wiederhold, File Organization for Database Design, McGraw-Hill, New
York(1987), p. 107.

D. Woelk, W. Kim, and W. Luther, “An Object-oriented approach to Mul-
timedia Databases,” pp. 311-325 in Proceedings of the SGMOD International
Conference on the Management of Data, ACM (May 1986).

101

