
Edge-to-Edge Measurement-based Distributed Network Monitoring∗

Ahsan Habib, Maleq Khan, and Bharat Bhargava
Center for Education and Research in Information Assurance and Security (CERIAS)

and Department of Computer Sciences
Purdue University, West Lafayette, IN 47907

{habib, mmkhan, bb}@cs.purdue.edu

Abstract

Continuous monitoring of a network domain poses several challenges. First, routers of a network domain
need to be polled periodically to collect statistics about delay, loss, and bandwidth. Second, this huge amount
of data has to be mined to obtain useful monitoring information. This increases the overhead for high speed
core routers, and restricts the monitoring process from scaling to a large number of flows. To achieve
scalability, polling and measurements that involve core routers should be avoided. We design and evaluate a
distributed monitoring scheme that uses only edge-to-edge measurements, and scales well to large network
domains. In our scheme, all edge routers form an overlay network with their neighboring edge routers.
The network is probed intelligently from nodes in the overlay to detect congestion in both directions of a
link. The proposed scheme requires significantly fewer number of probes than existing monitoring schemes.
Through analytic study and a series of experiments, we show that the proposed scheme can effectively
identify the congested links. The congested links are used to capture the misbehaving flows that are violating
their service level agreements, or attacking the domain by injecting excessive traffic.

Keywords: Network Monitoring, Network Security, Quality of Service, Denial of Service.

1 Introduction

Continuous monitoring of a network domain is necessary to ensure proper operation of the network by de-
tecting possible service violations and attacks. Attackers can impersonate a legitimate customer by spoofing
flow identities. Network filtering [15] at routers can detect such spoofing if the attacker and the impersonated
customer are in different domains. Otherwise, the attacks remain undetected. The quality of service (QoS) en-
abled networks face QoS attacks. In this setting, the attacker is a regular user of the network trying to get more
resources (a better service class) than what it has signed (paid) for. A QoS network provides different classes
of service for different cost, which can entice attackers to steal bandwidth and other network resources. Such
attacks involve injecting traffic into the network with the intent to steal bandwidth or to cause QoS degradation,
by causing other customers’ flows to experience longer delays, higher loss rates, and lower throughput. Taken
to an extreme, this may result in a denial of service (DoS) attack.

A large variety of network monitoring tools can be found in [17]. Many tools use SNMP [9], RMON [28],
or NetFlow [11], which are built-in functionality for most routers. Using these mechanisms, a centralized or
decentralized model can be built to monitor a network. The centralized approach to monitor network latency,
jitter, loss, throughput, or other QoS parameters suffers from scalability. One way to achieve scalability is
to use a hierarchical architecture [2, 27]. Subramanyan et al [27] design a SNMP-based distributed network
monitoring system that organizes monitoring agents and managers in a hierarchical fashion. Both centralized
or decentralized models obtain monitoring data by polling each router of a network domain, which limits
the ability of a system to scale for large number of flows. The alternative way of polling is to use an event
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reporting mechanism that sends useful information typically in a summarized format only when the status of
a monitored element changes. A more flexible way of network monitoring is by using mobile agents [20] or
programmable architecture [3]. However, periodic polling or deploying agents in high speed core routers put
non-trivial overhead on them. We propose a very low overhead monitoring scheme that does not involve core
routers for any kind of measurements. Our assumption is that if a network domain is properly provisioned and
no user is misbehaving, the flows traversing through the domain should not experience a high delay or a high
loss. An excessive traffic due to attacks changes the internal characteristics of a network domain. This change
of internal characteristics is a key point to monitor a network domain.

Edge-to-edge monitoring scheme is studied in [16], which devises a network monitoring mechanism to
detect attacks on QoS domains using network tomography [6, 14]. This monitoring mechanism measures
the service level agreement (SLA) parameters, and compares these measurements with the values negotiated
between a service provider and a user. To infer SLA parameters, the tomography-based scheme constructs a
tree from the network topology, and probes the leaves from the root. Probing from the root to all leaves can not
infer SLA parameters in both directions of a link. This can be achieved with much higher overhead. Our goal
in this work is to devise a low overhead monitoring scheme that can detect attacks in both directions of all links
in a network domain.

The proposed monitoring scheme has two phases. In the first phase, we continuously measure edge-to-
edge link delays to observe any unusual delay pattern. All ingress routers (entry points) sample the incoming
traffic to probe delay of the paths followed by a user packet. This measures the delay experienced by a user
inside the domain. If the delay is higher than a pre-defined threshold (SLA value), the edge routers conduct
intelligent probing for loss measurements. For this probing, an overlay network is formed using all edge routers
on top of the physical network. The probing does not calculate loss ratio for each individual link, instead, the
congested links with high losses are identified using edge-to-edge loss measurements. We provide two methods
to identify congested links: simple method and advanced method. In the simple method, all edge routers probe
their neighbors in clockwise and counter-clockwise direction. This method requires only O(n) probing, where
n is the number of edge routers. Through extensive analysis, both analytical and experimental, we show that
the simple method is very powerful to identify the congested links to a close approximation. We provide an
advanced method that searches the topology tree intelligently for probes that can be used to refine the solution
of simple method, if necessary. When the network is less than 20% congested the advanced method requires
O(n) probes. If the congestion is high, it requires more probes, however, does not exceed O(n). In the second
phase of our monitoring process, we use the congested links as a basis to identify edge routers through which
traffic are entering into and exiting from the domain. From exiting edge routers, we identify the flows that are
violating any SLA agreement. If the SLA is violated for delay and loss, the network is probed to detect whether
any user is stealing bandwidth. The service violations can indicate a possible attack on the same domain, or on
a downstream domain. In case of a DoS attack, numerous flows from different sources are destined to a victim.
These flows aggregate on their way as they get closer to the victim. Monitoring an upstream network domain
can detect these high bandwidth aggregates that could result in DoS attacks on downstream domains [16, 21].
To control the attacks, filters are activated at edge routers through which flows are entering into a network
domain.

Using simulation, we conduct a series of experiments to evaluate the proposed monitoring scheme. We
conclude that the distributed monitoring scheme shows a promise for an efficient and scalable monitoring of
a domain. This scheme can detect service violations, bandwidth theft attacks, and tell when many flows are
aggregating towards a downstream domain for a possible DoS attack. The scheme requires low monitoring
overhead, and detects service violations in both directions of any link in a network domain.

The rest of the paper is organized as follows: The related work is discussed in Section 2. Measuring
all necessary network parameters for monitoring purposes is presented in Section 3. This section discusses
our proposed monitoring scheme, and analyzes its strength and limitations. Section 4 explains how to use
the monitoring scheme to detect service violations and DoS attacks. Experimental results and discussions are
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provided in Section 5. We conclude the paper in Section 6.

2 Related Work

One common way of monitoring is to log packets at various points throughout the network and then extract
information to discover the path of any packet [24]. This scheme is useful to trace an attack long after the attack
has been accomplished. The effectiveness of logging is limited by the huge storage requirements especially for
high speed networks. Stone [26] suggested to create a virtual overlay network connecting all edge routers of a
provider to reroute interesting flows through tunnels to central tracking routers. After examination, suspicious
packets are dropped. This approach also requires a great amount of logging capacity.

Many proposals for network monitoring [5, 12] give designs to manage the network and ensure that the
system is operating within desirable parameters. In efficient reactive monitoring [12], the authors discuss
ways to monitor communication overhead in IP networks. Their main idea is to combine global polling with
local event driven reporting to monitor a network. Breitbart et al [5] identify effective techniques to monitor
bandwidth and latency in IP networks. The authors present probing-based techniques where path latencies are
measured by transmitting probes from a single point of control. They describe algorithms for computing an
optimal set of probes to measure latency of paths in a network, whereas we focus on measuring parameters
using distributed agents.

In [10], a histogram-based aggregation algorithm is used to detect SLA violations. The algorithm measures
network characteristics on a hop-by-hop basis, uses them to compute end-to-end measurements, and validates
end-to-end SLA requirements. In large networks, efficient collection of management data is a challenging task.
While exhaustive data collection yields a complete picture, there is an added overhead. The authors propose
an aggregation and refinement based monitoring approach. The approach assumes that the routes used by SLA
flows are known, citing VPN and MPLS [8] provisioning. Though routes are known for double-ended SLAs
that specify both ingress and egress points in the network, they are unknown in cases where the scope of the
service is not limited to a fixed egress point. Like RON [4], we check violations using average values in a
recent time frame. This reduces constraints on the network setup, and the need for knowledge of the set of
flows traversing each router.

0
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R R21

Figure 1: Binary tree to infer loss from source 0 to receivers R1 and R2

Duffield et al [13] use packet “stripes” (back-to-back probe packets) to infer link loss by computing the
correlation of packet loss within a stripe at the destinations. This work is an extension of loss inference for mul-
ticast traffic, described in [1, 7]. The stripe-based probing mechanism is adopted to monitor loss characteristics
inside a domain without relying on the core routers [16]. To infer loss, a series of probe packets, called a stripe,
are sent from one edge router to two other edge routers with no delay between the transmissions of successive
(usually three) packets. For example, in a two-leaf binary tree spanned by nodes 0, k, R1, R2, stripes are sent
from the root 0 to the leaves to estimate the characteristics of one link, say k → R1 (Figure 1). The first two
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packets of a 3-packet stripe are sent to R2 and the last one to R1. If a packet reaches any receiver, we can infer
that the packet must have reached the branch point k. If R2 gets both packets of a stripe, it is likely that R1 will
receive the last packet of the stripe. The transmission probability Ak for node k can be calculated knowing how
many packets are sent from the root and how many of them received by both receiver. Using Ak and number
of packets reach to R1 and R2, we can calculate the successful transmission probability of the link k → R1.
Similarly, a complementary stripe is sent to estimate the characteristics of link k → R2. By combining esti-
mates of stripes down each such tree, the characteristics of the common path from 0 → k is estimated. This
inference technique extends to general trees by sending probes from root to each ordered pair of leaves [13]. Ji
and Elwalid [18] show that measurement-based monitoring using tree is scalable when the probe packets reach
the edge routers with high probability. If the internal loss is very high, the solution does not scale for a large
network.

The unicast probing scheme is extended in [16] for routers with active queue management. This scheme is
used to monitor loss inside a QoS network domain. The stripe-based monitoring scheme requires less overhead
than core-based monitoring. In this paper, we propose a scalable scheme that requires much less probes than
stripe-based scheme. Kim et al [19] collect statistical data from every single router for each service class
and then analyze the data to compute edge-to-edge QoS of aggregate IP flows. This approach has very high
overhead, and not suitable for real time monitoring.

3 Measurements with Distributed Probing

The service level agreement (SLA) parameters such as delay, packet loss, and throughput are measured to
ensure that all users are getting their target share of resources. Delay is the edge-to-edge latency. Packet loss
is the ratio of total number of packets dropped from a flow 1 to the total number of packets of the same flow
entering into the domain. Throughput is the total bandwidth consumed by a flow inside a domain. Delay
and loss are important parameters to monitor in a network domain. Bandwidth measurement is used to detect
whether any flow is getting more than its share of resources, which causes other flows to suffer. Although jitter
(a delay variation) is another important SLA parameter, it is flow-specific and, therefore, is not suitable to use
in network monitoring. A large body of research has focused on measuring delay, loss, and throughput in the
Internet [22, 23]. In this section, we describe techniques to measure each parameter. Delay and throughput
measurements are discussed in details in [16]. This paper proposes an efficient way that detect links with high
losses using edge-to-edge measurements.

The distributed monitoring scheme measures SLA components and compares the measurements to the pre-
defined values to detect service violation. There is one monitoring agent that gets feedback from all other edge
routers about delay, loss, and throughput. The monitoring agent can sit on any edge router in the network
domain.

3.1 Delay Measurements

To measure delay, the ingress routers copy the IP header of incoming packet into a new packet with a certain
pre-configured probability. Copying the header from user traffic to measure delay has a couple of benefits. First,
the probe packet follows the same path as the user traffic because the route inside a domain does not change too
often. Hence, the probe delay is similar to the delay experienced by the user. Second, if some links do not have
any traffic, the links will not be probed, which saves the probing overhead.

The router encodes the current timestamp tingress into the payload and marks the protocol field of the
IP header with a new value. An egress router recognizes such packets and removes them from the network.
Additionally, the egress router computes the edge-to-edge link delay for a packet from the difference between

1A flow is a micro flow with five tuples (addresses, ports, and protocol) or an aggregate flow that is combined of several micro flows.
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its own time and tingress. We ignore minor drifts of the clocks since all routers are in one administrative domain
and can be synchronized fairly accurately. The egress classifies the probe packet as belonging to flow i of user
j, and update the average packet delay, avg delayi

j , for delay sample delayi
j(t) at time t using an exponential

weighted moving average (EWMA):

avg delayi
j(t) = α × avg delayi

j(t − 1) + (1 − α) × delayi
j(t), (1)

where α is a small fraction 0 ≤ α ≤ 1 to emphasize recent history rather than the current sample alone.
The egress router sends the average delay to the monitor. If the average packet delay of path k exceeds the

delay guarantee in the SLA SLAi
delay for flow i, i.e. avg delay k > SLAi

delay, it is an indication of an SLA
violation. If the network is properly provisioned and flows do not misbehave, there should not be any delay
greater than SLAi

delay for any flow i. A high delay can be caused by some flows that are violating their SLAs
or bypassing the SLA checking, which is an attack.

If the delay exceeds a certain threshold, the monitor needs to probe the network for loss and throughput.
We discuss the throughput measurement first, and then discuss the loss estimation to isolate congested links.
Identifying the congested links is necessary to detect egress and ingress routers involved in high traffic paths,
which helps to detect and control attacks.

3.2 Throughput Measurements

The objective of checking throughput violation is to ensure that nobody is consuming any extra bandwidth
(beyond the SLA). The attackers can send a lot of best effort (BE) traffic to consume bandwidth, because BE
traffic is not controlled at the ingress routers. Consumption of excess bandwidth by any flow can deteriorate
the QoS for many others. This can not be detected by a single ingress or egress router, if the user sends through
multiple ingress routers at a rate lower than the SLA. For each ingress router, the user does not violate the SLA
but as a whole he does. The service provider may allow a user to take extra bandwidth as long as everybody
else is not harmed. This depends on the policy of the service provider.

The monitor measures throughput by probing globally all egress routers when the monitor suspects any
violation in delay and loss. Egress routers of a QoS domain maintain the aggregate flow rate for each user.
This rate is a close approximation of the bandwidth consumption by each flow inside the domain [16]. When
the monitor gets throughput of all flows from egress routers, it calculates the throughput for user j, as: B j =∑N

i=1 Bij , where Bij is bandwidth consumed by user j at edge router i and N is the total number of edges. If
SLA

j
bw is the bandwidth guarantee for user j, Bj > SLA

j
bw indicates an SLA violation by user j. To detect

bandwidth theft that does not change delay or loss pattern, the monitor can periodically poll egress routers.

3.3 Loss Measurements

Packet loss guarantees made by a provider network to a customer are for the packet losses experienced by its
conforming traffic inside the provider domain. Measuring loss by observing packet drops at all core routers is an
easy task. It imposes, however, an excessive overhead on the core routers by forcing them to record each drop
entry, and periodically sending it to the monitor. The stripe-based approach is an edge-to-edge mechanism,
described in Section 2, to measure loss in a domain.

We follow a different strategy. An interesting observation is that service violation can be detected with-
out exact loss value of each internal link, instead, it requires to check whether a link has loss higher than the
specified threshold or not. We propose a new approach to detect links with high losses by edge-to-edge mea-
surements. The link with a high loss is referred to as a congested link. The distributed probing detects all
congested links using edge-to-edge loss measurements. These links are used to detect flows that pose threats to
other flows by consuming extra resources.
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Figure 2: (a) Tree topology transformed from a network domain. (b) All probing agents at the edge routers form a virtual network
with both neighbors in an ordered sequence. (c) Direction of internal links for each probing.

To apply our distributed probing, we convert the network topology into tree structure. This converting
mechanism is discussed later in this section. The tree contains core routers as internal nodes and edge routers
as leaf nodes. Any leaf can be used to put a monitoring agent that collects statistics from other edge routers to
check SLA violations. The probing agents sit only at the edge routers and knows their neighbors. The neighbors
are determined by visiting the tree using depth first search algorithm starting from any edge router, and putting
all edge routers in an ordered sequence. All probing agents form a virtual network on top of the physical
network. The probes follow edge-to-edge path in the virtual network. We equivalently refer the tree topology
or the virtual network to an overlay network. A typical spanning tree of the topology, the corresponding
overlay network, direction of all internal links for each probe are shown in Figure 2. The following definitions
and observations are used to describe the properties of the overlay network, and to identify congested links in
the proposed simple and advanced method.

Definition 1 Overlay Network. To connect all edge routers with their neighbors in a network domain, we build
a virtual network and define as an overlay network. The edge routers use this overlay for probing.

Definition 2 Terminal core router. A core router, which is connected to only one other core router in an overlay
network is called a terminal core router. In Figure 2, the core routers C4 and C5 are the terminal core routers.

Definition 3 Probe path. A probe path P is a sequence of routers (either core or edge) < E1, C1, C2, . . . ,

Cn, En > where a router appears in the sequence only once and a physical link exists between two adjacent
routers. A probe packet originates at the edge router E1, passes through the core routers C1, C2, . . . , Cn−1,

and Cn, in the given order, and terminates at the edge router En. We also represent the probe path P by the set
of links, {E1 → C1, C1 → C2, . . . , Cn → En}.

Definition 4 Link direction. A link u → v, we say link from node u to v, is in inward direction (IN) with respect
to node v. Similarly, the same link is in outward (OUT) direction with respect to node u.

Lemma 1 If a core router C is connected to two routers (core or edge) R1 and R2 only, the duplex path
R1 ↔ C ↔ R2 can be replaced with duplex link R1 ↔ R2, and both links are functionally equivalent in the
distributed probing scheme.
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Proof: See Appendix for the proof and figure. 2

Lemma 2 In an overlay network, every core router is connected to at least three other routers.

Proof: If a core router C is connected to two routers only, C together with its two connecting links can be
replaced by a single link (by Lemma 1). If C is a terminal core router and C is not connected to any edge router,
that is, C is connected to only one other router, C can never be included in a probe path and can be simply
removed. Hence, an overlay network can be constructed in which all core routers are connected to at least three
other routers. 2

Lemma 3 An overlay network can be constructed in such a way that every terminal core router is connected
to at least two edge routers.

Proof: Since a terminal core router t is connected to only one other core router (by Definition 1), if t is not
connected to at least two edge routers, t can be removed from the network (by Lemma 1). Therefore, an overlay
network can be constructed, where every terminal core router is connected to at least two edge routers. 2
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Figure 3: (a) Spanning tree of a simple network topology. (b) Each edge router probes its neighbor edge router
in counter-clockwise direction (c) Direction of internal links for each probing.

3.3.1 Simple Method

In this solution, we conduct total two rounds of probing. One in the counter-clockwise direction, and another
round of probing in the clock-wise direction from any edge router. The former one is referred to as first round of
probing, and the latter one is referred to as second round of probing. In each round, probing is done in parallel.

We describe the loss monitoring scheme with a simple network topology. In this example, Figure 3b, edge
router 1 probes the path 1 → 3, router 3 probes the path 3 → 4, and 4 probes the path 4 → 1. Let Pi,j be a
boolean variable that represents the outcome of a probe between edge routers i to j. Pi,j takes on value 1 if the
measured loss exceeds the threshold in any link within the probe path, and 0 otherwise. Notice that Pi,j = 0
for i = j. We express the outcome of a probe in terms of combination of all link status. Let Xi,j be a boolean
variable to represent the congestion status of an internal link i → j. We refer X to a congestion variable in
this paper. For Figure 3c, we can write equations as follows:

X1,2 + X2,3 = P1,3 X3,2 + X2,4 = P3,4 X4,2 + X2,1 = P4,1, (2)
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where (+) represents a boolean “OR” operation. We express status of internal links of any probe path of a
network topology in terms of probe outcomes. The equation with all internal links on probe path Pi,j and its
outcome Pi,j for an arbitrary topology is shown below.

Xi,k +
n=l−1∑

n=k

Xn,n+1 + Xl,j = Pi,j . (3)

Note that loss in path 1 → 3 might not be same as loss in path 3 → 1. This path asymmetry phenomenon
is shown in [25]. In general, Xi,j is independent of Xj,i, ∀ij , i 6= j.

The second round of probing, Figure 3(a), is done from 1 → 4, 4 → 3, and 3 → 1. We express the outcome
of this round of probing in terms of internal links as follows:

X1,2 + X2,4 = P1,4 X4,2 + X2,3 = P4,3 X3,2 + X2,1 = P3,1 (4)

The sets of equations (2 and 4) are used to detect congested link in the network. For example, if the outcome
of the probing shows P1,3 = 1, P1,4 = 1, and rest are 0, we get the following:

X1,2 + X2,3 = 1 X1,2 + X2,4 = 1 (5)

All other probes do not see congestion on its path, i.e., X3,2 = X2,4 = X4,2 = X2,1 = X2,3 = 0. Thus,
the equation set (5) reduces to X1,2 = 1. Similarly, if any of the single link is congested, we can isolate the
congested link. Suppose, two of the links, X1,2 and X2,3, are congested. The outcome of probing will be
P1,3 = 1, P1,4 = 1, and P4,3 = 1, which makes X3,2 = X2,4 = X4,2 = X2,1 = 0. This leaves the solution as
shown in equation(6). Thus, the distributed scheme can isolate links with high loss in this topology.

X1,2 + X2,3 = 1 X1,2 = 1 X2,3 = 1 (6)

Analysis of Simple Method. The strength of simple method comes from the fact that congestion variables
in one equation of any round of probing is distributed over several equations in the other round of probing.
If n variables appear in one equation in the first round of probing, no two (out of the n) variables appear in
same equation in second round of probing (Lemma 4) or vice versa. This property helps to solve the equation
sets because congestion in any probe path of any round is totally spread over several equations in other round.
Theorem 1 shows that if any single probe path is congested with arbitrary number of links, the simple method
can identify all the congested links. In Theorem 2, we show that the simple method determines the status of a
link with very high probability when the network is less congested.

Lemma 4 If P and P ′ are probe paths in the first and the second round of probing respectively, |P ∩ P ′| ≤ 1.

Proof: See Appexdix A. 2

Theorem 1 If only one probe path P is shown to be congested in the first round of probing, the simple method
successfully identifies each congestion link in P .

Proof: Let, the congested probe path be P = {l1, l2, . . . , lk} and Xi is the congestion variable for link
li, 1 ≤ i ≤ k. Xi appears once in equations for each round of probing. Let, Xm is in equation Xm + f(S) = 1
in the second round of probing, where S is a set of congestion variables excluding Xi that appear in the equation.
The expression f(S) does not contain any of the variables Xi for 1 ≤ i ≤ k, i 6= m (Lemma 4). From first
round of probing, we obtain f(S) = 0, because the outcome of all probe paths except P is zero in this round.
Thus, we can determine Xi, which is 1, hence the status of the link li, for any 1 ≤ i ≤ k. 2
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Figure 4: Probability that the simple method determines the status of a link of any arbitrary topology with only
2n probes, where n is the number of edge router in the topology. The simple method performs extremely well
when less than 20% links of a network are congested. If a network is more than 50% congested, the simple
method can not contribute much.

Theorem 2 Let p be the probability of a link being congested in any arbitrary overlay network. The simple
method determines the status of any link of the topology with probability at least 2(1−p)4−(1−p)7+p(1−p)12.

Proof: Let a particular link l appears in probe paths P1 and P2 in first and second round of probing. The status
of a link can be either non-congested or congested. We consider both cases separately and then combine the
results.

When l is non-congested. The status of l can be determined if the rest of the links in either p1 or p2 are non
congested. There are also some other cases where the status of l can be determined. Let the length of probe
paths P1 and P2 are i and k respectively. Since, only common link between paths P1 and P2 is l (Lemma 4), the
following two events are independent: Event1=all other links in p1 are non-congested and Event2=all other
links in p2 are non-congested. Thus, for a non-congested link,
Pr{status of l be determined} ≥ Pr{Event1} + Pr{Event2} − Pr{Event1}Pr{Event2}

= (1 − p)i−1 + (1 − p)k−1 − (1 − p)i−1(1 − p)k−1

= (1 − p)i−1 + (1 − p)k−1 − (1 − p)i+k−2

Now, we estimate the average value of i and k. In our overlay network, the number of links are 2(e+ c−1)
considering both directions of a link. The edge routers are leaves of the topology tree whereas the core routers
are the internal nodes of the tree. Number of leaf nodes is always greater than the number of internal nodes.
Thus, the number of links is ≤ 2(e + e − 1) = 4e. Number of probe paths in any round (first or second) of
probing is e and every link appears exactly once in each round. So, the average length of a path ≤ 4e

e = 4.
Using the average length for the probe paths, i.e., i = k = 4,

Pr{Status of l be determined} ≥ 2(1 − p)3 − (1 − p)6.
When l is congested. If l is a congested link, its status can be determined when all other links that ap-

pear on the probe path of l are determined to be non-congested. As, the average path length is 4 in the
simple method, the probability that a path has all non-congested links is (1 − p)4. To determine the status
of all 3 links that appear with l in a equation, all 3 of them have to non-congested and determined. Thus,
Pr{Status of l be determined} = (1 − p)12.

For any link l (congested or non-congested)
Pr{Status of l be determined} ≥ (1 − p)[2(1 − p)3 − (1 − p)6] + p[(1 − p)12]
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= 2(1 − p)4 − (1 − p)7 + p(1 − p)12. 2

Figure 4 shows the probability to determine status of a link with probability that a network is congested.
This figure shows that simple method determines status of a link with probability more than 0.60 when 20%
links of a network are congested. For 30% congestion, the probability is higher than 0.40. The simple method
does not help much when 50% links of a network is congested. In that case, we use the advanced method, which
is described in this section. This result is validated with the simulation result for two different topologies.

Having congestion on links that affect multiple probe paths might eventually lead to some boolean equations
that do not have unique solutions. Thus, the solution of simple method can have congested links and some
undecided links. In that case, we can either use a special set of probes that were not used before (discussed
in Section 3.3.2), or apply stripe-based probing to a part of the tree to determine the exact locations of the
congested links. Alternatively, we can even report all the links from the unsolved equations at the end of
simple method as congested. These links are referred to as false positive because some non-congested links
are reported as congested. The false positive is calculated as a ratio of undecided links labeled as congested
by simple method to the total number links in the network. Figure 5 shows false positive for two topologies;
Topology 1 shown in Figure 2(b) and Topology 2 shown in Figure 9(b). This figure does not compare the two
topologies, instead, it shows the false positive as a percentage of total links with respect to percentage of links
that are actually congested. The false positive is a small percentage of overall links of a domain. The number
of links that are marked as false positive is very close to the number of actually congested links. The reason
we get false positive is that some good (non-congested) links sit on the same probes of congested links and the
simple method does not have enough probes to isolate them. Notice that the solution does not have any false
negative. We describe the advanced method to find probes that can decide the status of undecided links from
simple method.
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Figure 5: The solution of the simple method can not decide about some links. If those links are considered as
congested links, the solution of the simple method provides false positive by declaring some links as congested.
The graph is shown for two topologies; Topology 1 shown in Figure 2(b) and Topology 2 shown in Figure 9(b).
This figure does not compare the two topologies, instead, it shows the false positive as a percentage of total
links with respect to percentage of links that are really congested. The solution does not have any false negative.

We further analyze the simple method when a network has congestion that spreads from one edge router to
any other edge routers. In real network, numerous flows come from different edge routers and make a series of
links to be congested. In this case, the simple method performs very well. We observe that for edge-to-edge
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congested paths, the simple method does not add any link as false positive. We plot this behavior for both
topologies with all possible edge-to-edge paths in Figure 6. On the average, the simple method can isolate
more than 50% of the congested links for edge-to-edge congestion scenario. Rest of the cases, the solutions
have some equations with more than one variable. We can apply advanced method to be sure about the status
of these links. The percentage of identified links is little high for the path length=6 in case of Topology 1,
Figure 6. Because this path has more shared links comparing to other paths.
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Figure 6: Fraction of identified links by the simple method for all edge-to-edge congested paths in the network.
The X-axis shows all paths with a specific length. All solutions for edge-to-edge congestion path does not have
any false positive. Topology 2 does not have any path of length 3.

3.3.2 Advanced Method

The solution of the simple method might have some false positive links. As the percentage of false positive links
is small comparing to the overall links of the topology, we can proceed to the detection phase with the solution
of simple method considering the undecided links as congested. Alternatively, we can refine the solution of the
simple method to discard the false positive links. Then the output of the simple method is used as the input of
the advanced method. Let the set of equations with undecided variables be E. Now, we traverse the topology
tree to find probes that can help to decide about the values for each undecided variable.

The algorithm of the advanced method is shown in Figure 7. For each variable in equation set E, we need

to probe the network that helps to decide the variable. Each probe needs one start node and one end node. The

algorithm shows functions to find start and end probe nodes. Link direction plays an important role to find these

probes. The link direction is defined in Definition 4. For example, in Figure 2, if link C1 → C3 is congested,

the start probe node can be E2, E5, or E7. On the other hand, if link C3 → C1 is congested, the start probing

node can be E3, E4, or E5.

For an undecided link vi → vj , the function FindNode looks for leaves descended from node vi and vj .

First, the algorithm searches for a node in IN on a subtree descended from vi and then in OUT direction on

a subtree descended from vj . For any node v, the DecidePath explores all siblings of v to choose a path in a

specified direction. The function avoids previously visited path and known congested path. It marks already

visited path so that same path will not be repeated in exploration of an alternate path.

If the network is congested in a way that no solution is possible, the AdvancedMethod can not add anything
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AdvancedMethod()
begin

Conduct probing from root in the counterclockwise direction. Outcome is an unsolved equation set E.
for Each undecided variable Xij of E do

node1 = FindNode(Tree T, vi, IN) /*See Definition 4 for description of IN and OUT direction.*/
node2 = FindNode(Tree T, vj , OUT)
if node1 6= NULL AND Node2 6= NULL then

Probe(Node1, Node2). Update equation set E.
end if
Stop if no more probe exists

end for
end

FindNode(Tree T, Node vi, dir)
begin

if vi is leaf then
return vi

end if
vk = DecidePath(vi)
if vk = NULL then

return NULL
else

node = FindEndNode(T, vk, dir)
end if

end

DecidePath(Node vi, integer dir)
begin

V← siblings(vi)
for Each v of V do

if (dir=IN AND good(v → vi)) OR (dir=OUT AND good(vi → v)) then
return v /*good(L)⇔ L is neither congested nor visited.*/

end if
end for
return NULL

end

Figure 7: Advanced method to obtain probes that help to decide about the status of a congestion variable.

to the simple method. If there is a solution, the AdvancedMethod can obtain probes to decide about links

because this probe finding is an exhaustive search on the topology tree to find leaf-to-leafs path that are not

already congested.

Analysis of Advanced Method. The number of probes required in advanced method depends on the

number of congested links existing in a network. The advanced method starts with the undecided links. When

the network is sparely congested or densely congested, the algorithm exits with fewer run and the number of

trial for each congestion variable is low. To obtain how many trials we need to identify the status of each link,

we need the average length of a probe path d and on how many paths b a link lies on. For an arbitrary overlay

network, we calculate the approximated value of d and b in Lemma 6 and Lemma 5 respectively. Using these

two values we show that, Theorem 3, the advanced method identifies the status of a link in O(n) probing with

a very high probability when the network is 20% congested or less.

Lemma 5 For an arbitrary overlay network with e edge routers, on the average a link lies on e(3e−2)
8 ln e edge-to-
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Figure 8: Probability that the advanced method determines the status of a link of topology shown in Figure 2a.

The X-axis is the probability that a link to be congested. The Y-axis is the probability that a good path (non-

congested) exists for any link. The dotted graph shows the probability that a good path exists. The solid graph

shows the probability that a good and decided path (from the first round) exists.

edge paths.

Proof: See Appendix B. 2

Lemma 6 For an arbitrary overlay network with e edge routers, the average length of all edge-to-edge paths

is 3e
2 ln e .

Proof: See Appendix B. 2

Theorem 3 Let p be the probability of a link being congested. The advanced method can detect the status of a

link with probability at least 1 − (1 − (1 − p)d)b, where d = 3e
2 ln e is the average path length and b = e(3e−2)

8 ln e

is the average number of paths a link lies on.

Proof: The probability that a path of length d is non-congested (1 − p)d. The probability of having all b paths

congested is (1−(1−p)d)b. Thus, the probability that at least one non-congested path exists is 1−(1−(1−p)d)b.

2

The performance of the advanced method is plot in Figure 8 for Topology 1. This figure shows the probabil-

ity that a good (non-congested) path exists for any link. Two graphs are shown: one shows the probability that

a good path exists and the other shows the probability that a good as well as decided path exists. The advanced

method needs only one probe on the average to identify the status of the link when the network is less than 20%

congested. In this case, the total required probes is O(n). Some links might need more than one, which is not

high because a good and decided path exists. If the network is more than 50% congested, the advanced method

can not find a good path easily because the path does not exist, and the advanced method terminates quickly.

When the network is highly congested, we need to check almost all the flows. So, we can go to the detection

phase instead of wasting time to rule out very few good links.
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Figure 9: Preprocessing of a general tree topology to apply distributed probing. The original topology is split into tree topologies.

Then, the results are aggregated to get overall picture of a network.

3.4 General Network Topology

The simple and the advanced methods are applicable to a network topology with a tree structure only. If there

is any loop in the topology or multiple paths from one edge router to another edge router, we need to preprocess

the topology before applying the algorithm. First, we split the topology into a spanning tree, and a set of

subtrees that may be connected or not. The algorithm is applied to all trees to identify the congested links.

We might have multiple probe paths from one edge router to another. In this case, we apply source routing for

probe packets to follow the specified route. Some of the subtrees may not be connected to edge routers, i.e.,

some parts of subtrees may consist of only core routers. To probe those links, we need to connect them to edge

routers. We should be careful to connect these internal links with non-congested links. When all subtrees are

probed, we need to combine them. As probing any path does not affect other paths, applying our scheme on

split tree will not affect each other. We obtain the union of all congested links from each topology as a final set

of congested links for the whole topology.

In Figure 9, the general topology (Figure 9a) is split into two trees. The first one (Figure 9b) is a spanning

tree for the general topology. The other one (Figure 9c) is a tree where two core routers are not connected to any

edge router. We need to add links to these core routers so that we can access this link from edge routers. When

probing on Figure 9b is done we select some good links to connect these core routers with the edge routers.

At the end, all results can be combined together to reflect the overall status of the topology. The topology

preprocessing is done infrequently only when a network is setup, and when any link or router is added.

3.5 Limitations of Distributed Monitoring

There are some limitations for the distributed monitoring approach. For example, in Figure 3a, if both X2,3 and

X2,4 are congested, we can not decide about X2,3. Because we need at least one non-congested outgoing link

from core router 2 to decide about the link X1,2. The argument is the same for X2,1 when both X3,2 and X4,2

are congested. If all links have the same bandwidth, we can report all three links as congested. Even if X1,2

(X2,1) has the combined capacity of the two outgoing (incoming) links, the argument is still valid. In such case,
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the algorithm will report one non-congested link as congested, which is a close approximation of actual result.

Each terminal core has at least two edge routers (by Lemma 3). As long as any non-congested core → edge

link exists, our method can provide partial solution.

The worst case is when all links from edge routers to core routers are congested in a network domain. In

this case, outcome of all probes will be congested. The solution of the simple and advanced method is all links

are congested. This solution is useful because it is very likely that the whole network is congested when all

edge → core links are congested. Thus, we can also go to the detection phase considering the whole network

is congested. This is also true when all core → edge links are congested. If some combinations of E → C or

C → E are not congested, we can use them to provide a partial solution for the network.

4 Detecting Violations and Attacks

4.1 Violation Detection

Violation detection is the second phase of our monitoring process. When delay, loss, and bandwidth consump-

tion exceed the pre-defined thresholds, the monitor decides whether the network experiences a possible SLA

violation. The monitor knows the existing traffic classes and the acceptable SLA parameters per class. For

each service class, we obtain bounds on each SLA parameter that is be used as a threshold. A high delay is an

indication of abnormal behavior inside a network domain. If there is any loss for the guaranteed traffic class,

and if the loss ratios for other traffic classes exceed certain levels, an SLA violation is flagged. This loss can be

caused by some flows consuming bandwidths above their SLA bw. Bandwidth theft is checked by comparing

the total bandwidth obtained by a user against the user’s SLAbw. The misbehaving flows are controlled at the

ingress routers.

4.2 Detecting DoS Attacks

To detect DoS attacks, set of links L with high loss are identified. For each congested link, l(vi, vj) ∈ L,

the tree is divided into two subtrees: one formed by leaves descendant from vi and the other from the leaves

descendant from vj . The former subtree has egress routers as leaves through which high aggregate bandwidth

flows are leaving. If many exiting flows have the same destination IP prefix, either this is a DoS attack or they

are going to a popular site [21]. Decision is taken by consulting the destination entity. In case of an attack,

we control it by triggering filters at the ingress routers, which are leaves of the subtree descendant from vi and

feeding flows to the congested link. For each violation, the monitor takes action such as throttling a particular

user’s traffic using a flow control mechanism.

A scenario of detecting and controlling DoS attack is now illustrated using Figure 10a. Suppose, the victim’s

domain D is connected to the edge router E6. The monitor observes that links C3 → C4 and link C4 → E6

are congested for a specified time duration ∆t sec. From both congested links, we obtain the egress router E6

through which most of these flows are leaving. The destination IP prefix matching at E6 reveals that an excess

amount of traffic is heading towards the domain D connected to E6. To control the attack, the monitor needs

to identify the ingress routers through which the suspected flows are entering into the domain. The algorithm

to identify these ingress routers is discussed in next subsection.
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4.3 Flow Aggregation and Filtering

An important question is how to identify ingress routers through which the flows are entering into the domain.

To identify the flow aggregation, we use delay probes and assign an ID to each router. An ingress router puts

its ID on the delay probe packet. The egress router knows from which ingress routers the packets are coming.

For example, in Figure 10a, say egress router E6 is receiving flows from E1, E2, E3, and E5. These flows

aggregate during their trip to E6, and makes the link C4 → E6 congested. We traverse the path backwards

from the egress router to the ingress routers through the congested link to obtain the entry points of the flows

that are causing attacks. In this example, all edge routers can feed the congested links and they all will be

candidates for activating filters. Knowing the ingress routers and congested links, we figure out the entering

routers for the flows that are causing the attacks.
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Figure 10: Topology used to detect service violations using distributed probing. All edge routers are connected

to one or multiple domains. All core to core router links are 20 Mbps with 30 ms delay and core to edge router

links are 10 Mbps with 20 ms delay. The probes are named with the subscripts of the edge routers.

5 Simulation Results

The performance of our monitoring mechanism is evaluated using simulation. Attacks are simulated to show

that the edge routers can detect service violations and attacks due to flow aggregation towards a downstream do-

main. First, we provide experiments on parameter measurements to show the algorithms described in Section 3

work properly. Then, we conduct experiments on detecting service violations and attacks.

5.1 Measuring Parameters and Monitoring

We use a network topology shown in Figure 10a, which is similar to the one used in [13, 16] to evaluate

stripe-based loss ratio approximations. We want to compare our distributed monitoring with the stripe-based

monitoring scheme. Figure 10b is a more complex topology, which is used to show what happen when multiple
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attacks happen simultaneously and one changes the behavior of the others. Multiple domains (not shown in the

Figure 10) are connected to the edge routers for both topologies to create flows along all links in the domain.

In Topology 1, flows coming through E1, E2, E3 are destined to edge router E6 to make the link C4 → E6

congested. Many other flows are created to ensure that all links carry a significant number of flows.

Interested readers are referred to [16] for detail analysis of our delay and throughput measurement tech-

niques. In this paper, we show how delay pattern changes with excessive traffic in a domain. We measure delay

when the network is properly provisioned or over-provisioned (and thus experiences little loss). When idle, the

edge-to-edge delay of E1 → E6 link is 100 ms; E1 → E7 delay is 100 ms; and E5 → E4 delay is 160 ms.

When there is an attack, the average delay of the E1 → E6 link is increased to as high as 180 ms. Figure 11

shows how the delay increases in presence of attacks that inject extra traffic into the domain. When there is no

attack, the edge-to-edge delay is close to the link transmission delay. If the network path E1 → E6 is lightly

loaded, for example with a 30% load, the delay does not go significantly higher than the link transmission delay.

Even when the path is 60% loaded (medium load in Figure 11), the edge-to-edge delay of link E1 → E6 in-

creases by less than 30%. Some instantaneous values of delay go as high as 50% of the link transmission delay

but the EWMA does not fluctuate a lot. In this example, the network is properly provisioned, i.e., the flows do

not violate the SLAs. In contrast, an excess traffic introduced by an attacker increases the edge-to-edge delay

inside a network domain. In case of attack, most of the packets of attack traffic experience a delay 40-70%

higher (Figure 11) than the link delay. Delay measurement is thus a good indication of the presence of excess

traffic inside a network domain.
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Figure 11: Cumulative distribution function (CDF) of edge-to-edge link delay for link E1 → E6. The delay

changes with network traffic load.

Now, we demonstrate how the distributed probing to detect congested links in a network domain. Some of

the hosts that are connected to domains attached with the edge routers violate SLAs. The inject more traffic

through multiple ingress routers to conduct an attack on link C4 → E6. The intensity of the attack is increased

during the interval from t=15 seconds to t=45 seconds. The attack causes around 35% of packet drops except

an initial jump at 15 sec.

To identify the congested links, the edge routers probe to their neighbors. Figure 12 shows that Probe 46
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(a) Counterclockwise probing.
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(b) Clockwise probing.

Figure 12: Probe outcome both for counterclockwise and clockwise direction. Probe 46 in (a) and Probe 57 in

(b) have high losses, which means that link C4 → E6 is congested.

in counterclockwise direction and probe 57 in clockwise direction experience high losses. Other probes do

not face high losses, that is, most of the internal links are not congested. It is important to note that Probe 46

experiences high loss but Probe 64, which is in the opposite direction to Probe 46, faces very small amount of

loss. This verifies that link loss in both directions of a link can be very different, based on the traffic load on

each direction. Using algorithm specified in Section 3, we detect that link C4 → E6 is the only congested link

in the domain.

All points in the Figure 12 are calculated by taking averages of samples over one second time period. If we

take the average over a longer time period, we can avoid this high fluctuations of loss. Figure 13 shows that

taking averages over a longer time period reduces the chance of considering a non-congested link as congested.

We observe that taking averages over a longer time period helps more in reducing the fluctuations than in

increasing the number of probes per second. The actual loss for this congested link is very high (Figure 14),

which verifies that the distributed probing is able to detect links with high losses.
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Figure 13: Probe outcome using 5-second aver-

ages for the same experiments shown in Figure

12a.
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Figure 14: Actual loss in link C4 → E6. Other

links have low losses. This verifies that our moni-

toring scheme detects the congestion properly.
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5.2 Local Vs. Global Congestion

In this section, we address the question what happens if the congestion status is changed during our probing.

To show an example, we use the Topology 2 (Figure 10b). This topology is more complex and we simulate

congestion in such a way that congestion in one area might affect the congestion of another area. Two attacks

are simulated in this case. The first attack (Attack 1) is due to excessive flows coming from different edge

routers and makes the C4 → E5 link congested. All of the probes in the first round are good except “Probe

45”. This attack continues up to time T = 50 sec (Figure 15) At time 50 sec, we have another attack (Attack

2), which is more severe than Attack 1. This attack causes several links on “Probe 34” path congested. It is

interesting to note that Attack 2 actually causes Attack 1 to be disappeared from the scenario. Because most of

the traffic causes attack on link C4 → E5 are now dropped earlier in their path due to Attack 1 (Figure 15).

This experiment shows that a local congestion might disappear due a global and severe congestion. The

main objective of our work is to pin point a congestion. However, if the congestion is changed while an

experiment is being conducted it catches the latest congestion. The simple method can complete two rounds of

probing within 10 − 20 sec. If both rounds of probing are done in parallel, it takes only 10 sec. If a congestion

does last for 20 sec, we believe that no action is necessary to alleviate it.
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Figure 15: Attack 1 causes link C4 → E5 congested. However, Attack 2 comes from all different edge routers

to E4, which causes the traffic of Attack 1 to drop early. As a result Probe 45 is not congested after 50 sec.

5.3 Detecting Attacks

A major advantage of using the SLA monitor is that it is able to detect denial of service (DoS) and Distributed

DoS (DDoS) attacks in a network domain. When the monitor detects an anomaly (a high delay or a high loss), it

polls the edge devices to obtain the throughput of existing flows. The QoS egress routers measure the outgoing

rate of each flow. Using these rates, the monitor computes the total bandwidth consumption by any particular

user. For details of throughput approximation, readers are referred to [16]. This bandwidth obtained by an user
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is compared to the SLAbw of that user. If any flow gets very high bandwidth than it should, a DDoS attack

is flagged. A DoS attack in a downstream domain can be detected by identifying the congested links, and the

egress routers connected to the congested links. Using destination IP address prefix matching [21], we check

whether many flows are aggregating towards a specific network or host. Consulting with the destination object,

we control these flows at the ingress routers, if necessary.

We demonstrate the detection of no attack and severe attack. “No attack” means no significant traffic in

excess of the capacity. This scenario has little loss inside the network domain. This is the normal case of proper

network provisioning and enforcing traffic conditioning at the edge routers. A severe attack injects excessive

traffic into the network domain from different ingress points. At each ingress point, the flows do not violate the

profiles but overall they do. The intensity of the attack is increased during t=15 seconds to t=45 seconds. The

severe attack causes packet drops of more than 35%. Figure 16 shows that the edge-to-edge delay is increased

more than 100% in presence of severe attack. The outcome of one round of loss probing is shown in Figure

17. The distributed schemes detects high losses in links E2 → C2, C1 → C3, C3 → C4, and C4 → E6. The

link C4 → E6 has a high loss for a short period of time. Since, some TCP flows adjusted their rates, and it

causes the link to be non-congested one again. The egress router for the exiting flows is E6, and ingress routers

through which flows enter into the domain are E1, E2, E3, E4, and E5. No traffic came from E7.
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Figure 16: Cumulative distribution function of
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Figure 17: Congestion on multiple probe paths

due to severe attack. It indicates multiple links

are having high losses.

5.4 Advantages of Distributed Monitoring

The advantages of using distributed monitoring are as follows:

1. The simple method of distributed probing requires O(n) probes to identify links with a high loss whereas

the stripe-based scheme requires O(n2) [16], where n is number of edge routers in the domain. The

advanced method requires O(n) probes when the network is less than 20% congested, however, it does

not exceed O(n2) in worst case.

2. The distributed scheme is able to detect violations in both directions for any link in the domain, whereas

the stripe-based method can detect any violation only if the flow direction of the misbehaving traffic is the
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same as the probing direction from the root. To achieve the same result as the distributed monitoring, the

stripe-based method needs to probe the whole tree from several different points requiring O(n3) probes.

3. The distributed scheme can use TCP-based loss measurements (e.g. Sting [25]) to detect losses in both

directions in one probe cycle.

4. In the stripe based scheme, two leaves/receivers are probed at a time. It takes a long time to complete

probing the whole tree. If all leaves are probed simultaneously, in our example, E1 → C1 link will face

huge amount of traffic at that time. On the other hand, the distributed scheme can do parallel probing

quite naturally.

6 Conclusions

We have proposed a distributed network monitoring scheme to keep a domain safe from service violations and

bandwidth theft attacks. The network is monitored continuously for unusual high delay pattern. When a delay

is high, each edge router probes its neighbors in the overlay tree created on top of the physical network. In

our monitoring scheme, we do not measure actual loss of all internal links, instead, we identify all congested

links with high losses with edge-to-edge measurements. We provide a simple solution to detect congested links.

This method requires fewer probes and identifies congested links when the network is sparsely congested. In

other cases, the simple method provides a close approximation of congested links instead of the exact number

of congested links. To refine the solution of simple method, an advanced method is proposed. Our solution

outperforms the existing monitoring mechanism because they require fewer probes to detect attacks in both

directions of a link. The number of probes required for the proposed way of monitoring is significantly low

(probe traffic is 0.002% of link capacity for an OC3 links). The simulation results indicate that the proposed

scheme detects service violations, bandwidth theft attacks, and DoS attacks caused by flow aggregation towards

a victim network domain.
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distributed probing.
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Figure 19: Intersection of probe paths P and P ′.

If R2 is an edge router R2 → R3 and R2 → R4

do not exist.

Proof: Lemma 1. Let the core router c is connected to only two other routers R1 and R2. No probe path can

be constructed that either includes the link R1 → C and does not include C → R2 or vice versa; or includes

R2 → C and does not include C → R1 or vice versa. The traffic that passes through the link R1 → C also

passes through C → R2. The traffic that passes through the link R2 → C also passes through C → R1.

Therefore, for the purpose of probing, a logically equivalent overlay network can be constructed by removing

C and replacing the links R1 → C and C → R2 with an equivalent single link R1 → R2. R2 → C and

C → R1 can be replaced by R2 → R1. We say that the link R1 → R2 is congested if and only if at least

one of the links R1 → C and C → R2 is congested, i.e. the bandwidth of R1 → R2 is the minimum of the

bandwidths of R1 → C and C → R2. Similarly, the bandwidth of R2 → R1 is the minimum of the bandwidths

of R2 → C and C → R1. 2

Proof: Lemma 4. Let the link R1 → R2 (Figure 19) appears in path P in the first round of probing and path

P ′ in the second round of probing. If R2 is a core router, it is connected to at least two other routers, say R3

and R4 (Lemma 2). P passes through the link R2 → R4 and P ′ passes through the link R2 → R3. Since the

tree does not have any cycle, P and P ′ never meet again. If R2 is an edge router, both P and P ′ terminates at

R2. Therefore, P and P ′ can not have any common link in their paths after node R2. Similarly, it can be shown

that P and P ′ can not have common links before they meet at node R1. That is |P ∩ P ′| ≤ 1. 2
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Proof: Lemma 5. To determine the average number of paths a link l lies on, we split the overlay network into

two subtrees: T1 and T2. The link l lies on an edge-to-edge path whose one end belongs to T1 and another end

belongs to T2. Let the number of edge routers in T1 and T2 be i and e− i respectively. The total possible paths

through l is i(e− i). We observe that the probability that T1 contains i edge routers is, qi ∝
1
i , (approximately).

i.e. qi = k
i . The average number of paths the link l lies on, b =

∑e/2
i=1 qi.i.(e − i).

Now,
∑e/2

i=1 qi =
∑e/2

i=1
k
i = 1 ,i.e. k = 1

ln e
2

.

Therefor, b =
∑e/2

i=1 k(e − i) = e(3e−2)
8 ln e

2

= e(3e−2)
8 ln e−8 ln 2 ≈ e(3e−2)

8 ln e . 2

Proof: Lemma 6. There are e(e − 1) edge-to-edge paths exist for the advanced method. The number of

links in a topology is ≈ 4e (see the proof of Theorem 2). The average length of a path d = b × 4e
e(e−1) , where

b = e(3e−2)
8 ln e is the average number of paths a link lies on (Lemma 5).

Now, d = e(3e−2)
8 ln e × 4e

e(e−1) = 3e−2
2 ln e × e

e−1 ≈ 3e
2 ln e (for large e). 2
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