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Abstract. Emerging database applications require the use of new indexing structures beyond B-trees and R-
trees. Examples are the k-D tree, the trie, the quadtree, and their variants. They are often proposed as supporting
structures in data mining, GIS, and CAD/CAM applications. A common feature of all these indexes is that they
recursively divide the space into partitions. A new extensible index structure, termed SP-GiST is presented that
supports this class of data structures, mainly the class of space partitioning unbalanced trees. Simple method
implementations are provided that demonstrate how SP-GiST can behave as a k-D tree, a trie, a quadtree, or any
of their variants. Issues related to clustering tree nodes into pages as well as concurrency control for SP-GiST are
addressed. A dynamic minimum-height clustering technique is applied to minimize disk accesses and to make
using such trees in database systems possible and efficient. A prototype implementation of SP-GiST is presented
as well as performance studies of the various SP-GiST’s tuning parameters.
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1. Introduction

Emerging database applications require the use of new indexing structures beyond B+
-trees. The new applications may need different index structures to suit the big variety of
data being supported, e.g., video, image, and multidimensional data. Typical applications
are cartography, CAD, GIS, telemedicine, and multimedia applications. For example,
the quadtree (Finkel and Bentley, 1974; Klinger, 1971) is used in the Sloan Digital Sky
Survey to build indexes for different views of the sky (a multi-terabyte database archive)
(Szalay et al., 2000), the linear quadtree (Gargantini, 1982) is used in the recently released
Oracle spatial product (Oracle, 1999), the trie data structure is used in (Aref et al., 1995)
to index handwritten databases, and the pyramid multi-resolution data structure (Tanimoto
and Pavlidis, 1975) is used in the Microsoft TerraServer (Barclay et al., 2000) which is an
online atlas, currently being developed that combines around eight terabytes of image data.
The reader is referred to (Berchtold et al., 1998; Oracle, 1999; Esperanca and Samet, 1996;
Faloutsos and Gaede, 1996; Faloutsos et al., 1997; Gaede and Gunther, 1998; Güting, 1994;
Orenstein and Manola, 1988; Samet, 1990a; Seeger and Kriegel, 1990; Sellis et al., 1997)
for additional database applications that use a variety of spatial and non-traditional tree
structures.
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Having a single framework to cover a wide range of these tree structures, although is very
attractive from the point of view of database system implementation, is hindered by two
main problems. The first problem is the storage/structure characteristics of spatial trees.
Most of the unbalanced spatial tree structures are not optimized for I/O, which is a crucial
issue for database systems. Quadtrees, tries, and k-D trees can be so skinny and long. Unless
the problem of appropriately clustering the tree nodes into pages is addressed properly, this
would lead to many I/O accesses before getting the required query answer. Compare this to
the B+-tree, that in most cases has a height of 2–3 levels, and to the R-tree (Guttman, 1984)
and its variants, the R*-tree (Beckmannn et al., 1990) and the R+-tree (Sellis et al., 1987)
that play an important role as spatial database indexes, e.g., see Brinkhoff et al. (1996),
DeWitt et al. (1994), and Papadias et al. (1998). The second problem is the implementation
effort of building indexes. Hard wiring the implementation of a full fledged index structure
with the appropriate concurrency and recovery mechanisms into the database engine is a
non-trivial process. Repeating this process for each spatial tree that can be more appealing
for a certain application requires major changes in the DBMS core code. After all, one may
still need a new structure that will cause, rewriting/augmenting significant portions of the
DBMS engine to add the new tree index. The Generalized Search Tree (GiST) (Hellerstein
et al., 1995), was introduced in order to provide single implementation for B-tree-like
indexes, e.g., the B+-tree (Knuth, 1973), the R-tree (Guttman, 1984), and the RD-tree
(Hellerstein and Pfeffer, 1994). Although practically useful, the class of unbalanced spatial
indexes, e.g., the quadtree, the trie, and the k-D tree, is not supported by GiST because of
the structure characteristics mentioned.

One important common feature of the quadtree, the trie, and the k-D tree family of indexes
is that at each level of the tree, the underlying space gets partitioned into disjoint partitions.
For example, in the case of a two-dimensional quadtree, at each level of decomposition, the
space covered by a node is decomposed into four disjoint blocks. Similarly, in the case of
the trie (assuming that we store a dictionary of words), the space covered by a node in the
trie gets decomposed into 26 disjoint regions(each region corresponds to one letter of the
alphabet). The k-D tree exhibits similar behavior. We use the term space-partitioning trees
to represent the class of hierarchical data structures that decomposes a certain space into
disjoint partitions. The number of partitions and the way the space is decomposed differ
from one tree to the other.

In this paper we study the common features among the members of the spatial space
partitioning trees aiming at developing a framework that is capable of representing the
different tree structures and overcoming the difficulties that prevent such useful trees from
being used in database engines. The DBMS will then be able to provide a large number
of index structures with simple method plug-ins. As demonstrated in the paper, for the
framework of space partitioning trees, we furnish in the DBMS (only once) the common
functionalities such as the insertion, deletion, and updating algorithms, concurrency control
and recovery techniques and I/O access optimization. For example, in a multimedia or a
data mining application, we may then freely choose the best way to index each feature
depending on the application semantics. By writing the right extensions to the extensible
single implementation, a quadtree, a trie, a k-D tree, or other spatial structures can be made
available without messing with the DBMS internal code.
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The rest of the paper is organized as follows. Section 2 presents the class of space-
partitioning trees. In Section 3, the SP-GiST framework is presented. Section 3 also
includes a description of SP-GiST external user interface, and illustrates the realization of
various tree structures using it. This includes a realization of the k-D tree, the trie, the
Patricia trie, and several variants of the quadtree. Section 4 gives the implementation of the
internal methods of SP-GiST. Concurrency control and recovery for SP-GiST are discussed
in Section 5. Node clustering in SP-GiST is presented in Section 6. The pseudo code of the
clustering algorithm is given in Appendix A. Implementation and experimental results for
the various tuning parameters of SP-GiST are given in Section 7. Section 8 contains some
concluding remarks.

2. The class of space partitioning trees

The term space-partitioning tree refers to the class of hierarchical data structures that re-
cursively decomposes a certain space into disjoint partitions. It is important to point out the
difference between data-driven and space-driven decompositions of space. If the principle
of decomposing the space is dependent on the input data, it is called data-driven decompo-
sition, while if it is dependent solely on the space, it is called space-driven decomposition.
Examples of the first category are the k-D tree (Bentley, 1975) and the point quadtree
(Klinger, 1971). Examples of the second category are the trie index (de la Briandais, 1959;
Fredkin, 1960), the fixed grid (Nievergelt et al., 1984), the universal B-tree (Bayer, 1997),
the region quadtree (Finkel and Bentley, 1974), and other quadtree variants (e.g., the MX-
CIF quadtree (Kedem, 1982), the bintree, the PM quadtree (Samet and Webber, 1985), the
PR quadtree (Orenstein, 1982) and the PMR quadtree (Nelson and Samet, 1986)).

There are common underlying features among these spatial data structures. The term
quadtrie was introduced in (Samet, 1990a) to reflect the structure similarity between the
trie and the quadtree. Similarly, the k-D tree and the MX quadtree have many structural
similarities, e.g., both structures recursively partition the space into a number of disjoint
partitions. On the other hand, the two trees differ in the number of partitions to divide the
space and also in the decomposition principle. The decomposition is data-driven in the case
of the k-D tree, while it is space-driven in the case of the MX quadtree.

The structural and behavioral similarities among many spatial trees create the class of
space-partitioning trees. In contrast, the differences among these trees enable their use in a
variety of emerging applications. The nature of spatial data that the application is dealing
with, as well as the types of queries that need to be supported, aid in deciding which space-
partitioning tree to use.

Space-partitioning trees can be differentiated on the following basis:

• Structural differences

– SD1: The type of data they represent.
– SD2: The decomposition fan-out (the number of partitions).
– SD3: The resolution of the underlying space.
– SD4: Allowing single-arc nodes.
– SD5: The use of buckets.
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Figure 1. An example PR quadtree.

• Behavioral differences

– B D1: The decomposition principle (data or space driven partitioning).

The structural differences or design options can be viewed as Shape Parameters for the
realized tree. For example, in the realization of the PR quadtree, or more precisely the PR-
quadtrie, the represented data is “point” (SD1). The decomposition depends on the space not
on the data inserted (compare to the k-D tree) (BD1). Each time a partitioning of the space
quadrant into four equal quadrants (SD2 and SD4) takes place to divide the quadrant that has
two points so that each point is attached with one quadrant. The decomposition resolution
is “variable” in the sense that the partitioning stops whenever one data point resides in the
quadrant (SD3). Figure 1 shows an example of the PR quadtree. At the leaf level, nodes
can be “white” (i.e., contains no data) or “black” (i.e., contains one data point (SD5)).

Using the same analogy, we can analyze the structure and behavior of the trie. The
data represented in a trie is of type “word” (SD1). The decomposition of the trie is space-
dependent (BD1), as we always decompose the space into 26 partitions (SD2); one partition
for each letter of the alphabet. In one variant of the trie, the resolution is “not variable” (SD3)
as we need to decompose the space until we consume all the letters of the inserted word (refer
to figure 2(a) for illustration). This is in contrast to stopping the decomposition only when
a space partition uniquely identifies the inserted word (see figure 2(b)). The same analysis
can be applied to realize other quadtree and trie variants, the k-D tree, and the bin-tree.

In the following sections, we will introduce a general framework, termed SP-GiST, which
we can use to implement a big collection of space-partitioning trees. SP-GiST has one core
implementation as well as user plug-ins that reflect the required structural and behavioral
characteristics. The existence of such a framework will facilitate the adaption of this class
of space-partitioning trees into database engines.

3. SP-GiST framework interface

SP-GiST is a general index framework that covers a wide range of tree indexes representing
the large class of space-partitioning search trees represented in Section 2.
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Figure 2. Two variants of the trie data structure : (a) Resolution is not variable (b) resolution is variable.

The structural characteristics of space-partitioning trees that distinguish them from other
tree classes are: (1) Space-partitioning trees decompose the space recursively, each time,
a fixed number of disjoint partitions is produced. (2) Space-partitioning trees are unbal-
anced trees (3) Space-partitioning trees suffer from limited fan-out, e.g., the quadtree has
only a fan-out of four. So, space-partitioning trees can be skinny and long. (4) Two
different types of nodes exist in a space-partitioning tree, namely, index nodes (inter-
nal nodes) and data nodes (leaf nodes). The framework reflects these facts by having
two main parts; the internal tree methods that reflect the similarities among all mem-
bers of the class of space-partitioning trees, and the external interface that enables us
to identify the features specific to a particular tree reflecting the differences listed in
Section 2.

By specifying user access methods as in GiST (Hellerstein et al., 1995), SP-GiST
has interface parameters and methods that allow it to represent the class of space-
partitioning tree indexes and reflect the structural and behavioral differences among
them.

3.1. Interface parameters

The user can realize a particular space-partitioning tree using the following interface
parameters:
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• NodePredicate: This parameter gives the predicate to be used in the index nodes of the
tree (addresses the structural difference SD1). For example, a quadrant in a quadtree or
a letter in a trie are predicates that are associated with an index node.

• Key Type: This parameter gives the type of the data in the leaf level of the tree. For
example, “Point” is the key type in an MX quadtree while “Word” is the key type in a
trie. The data type Point and the data type Word have to be pre-defined by the user.

• NumberOfSpacePartitions: This parameter gives the number of disjoint partitions pro-
duced at each decomposition (SD2). It also represents the number of items in index
nodes. For example, quadtrees will have four space partitions, a trie of the English al-
phabet will have 26 space partitions, the k-D tree will have only two space partitions at
each decomposition.

• Resolution: This parameter gives the maximum number of space decompositions and is
set depending on the space and the granularity required.

• PathShrink: For space-partitioning trees, recursive decomposition can lead to long sparse
structures. Parameter PathShrink is useful in limiting the number of times the space is
recursively decomposed in response to data insertion. PathShrink can be one of three
different policies (refer to figure 3 for an illustration of the use of PathShrink in the context
of the trie):

– Never Shrink: Data is inserted in the node that corresponds to the maximum resolution
of the space. This may result in multiple recursive decompositions of the space.

Figure 3. The effect of the parameter PathShrink on the trie: (a) Never Shrink, (b) Leaf Shrink, and (c) Tree
Shrink.
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– Leaf Shrink: Data is inserted at the first available leaf node. Decomposition will not
depend on the maximum possible resolution. In this strategy, no index node will have
one leaf node as we decompose only when there is no room for the newly inserted data
item.

– Tree Shrink: The internal nodes are merged together to eliminate all single child
internal nodes. This strategy is adapted from structures like the Patricia trie that aim
at reducing the height of the tree as much as possible.

For example, in the case of PathShrink =“Never Shrink”, when storing the word “imple-
mentation” in the trie, the word will be stored in a leaf after a 14-nodes path, one level per
input character. On the other hand, in the case of PathShrink =“ Leaf Shrink”, the input
word may be stored in a leaf after the three-node path “i”, “m”, “p”, and “lementation”,
since based on the current words in the trie, splitting up to the letter “p” makes a unique
leaf entry for the word “implementation”. Finally, in the case of PathShrink = “Tree
Shrink”, the input word may be stored in a leaf after a three-node path “i”, “mp”, l,
“ementation”. Since the only child of the index node “m” is the index node “p”, both
nodes are merged together to reduce path length.

PathShrink is the way the framework uses to map the structural differences SD3 and
SD4. As shown, many variants of spatial tree can be realized according to these structural
differences.

• NodeShrink: This parameter determines if empty partitions should be kept in the tree
or not. When NodeShrink is set to true, the resulting space partitioning tree is best
described as a forest, because only the partitions that have subtrees are represented. When
NodeShrink is set to false all the partitions are kept. In case of shrinking index nodes,
the nodes become variable-length nodes. Figure 4 shows the effect of the parameter
NodeShrink on the trie where the words in the leaf nodes are the only data inserted. Note
that NodeShrink has no effect on the path length of the tree (as opposed to PathShrink).

• BucketSize: This parameter gives the maximum number of data items a data node can
hold. It also represents the Split Threshold for data nodes. For example, quadtrees have
the notion of a bucket size that determines when to split a node (e.g., as in the PMR
quadtree (Nelson and Samet, 1986)). The use of buckets (SD5) is an attractive design
option for many database applications where we are concerned about storing multiple
data items per bucket for storage performance efficiency.

3.2. External methods (behavior)

The external methods are the second part of the SP-GiST interface that allows the user to
specify the behavior of each tree. The main purpose is to map the behavioral difference
B D1 in Section 2. Note the similarity between the names of the first two methods and the
ones introduced in the GiST framework (Hellerstein et al., 1995) although they are different
in their functionalities.

Let E : (p, ptr) be an entry in an SP-GiST node, where p is a node predicate or a leaf data key
and ptr is a pointer. When p is a node predicate, ptr points to the child node corresponding to
its predicate. When p is a leaf data key, ptr points to the data record associated with this key.
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(a)

(b)

Figure 4. The effect of the parameter NodeShrink: (a) NodeShrink = false, and (b) NodeShrink = true.

• Consistent(Entry E, Query Predicate q, level): A Boolean function that is false when
(E.p ∧ q) is guaranteed unsatisfiable, and is true otherwise. This method will be used by
the tree search method as a navigation guide through the tree. Argument level is used
in order to determine consistency depending on the current decomposition level. For
example, in a quadtree, a query of a data point (x, y) is consistent only with the entry that
points to the quadrant containing this point.

• PickSplit(P, level, splitnodes, splitpredicates): Returns Boolean, where P is a set of
BucketSize+1 entries that cannot fit in a node. PickSplit defines a way of splitting the
entries into a number of partitions equal to NumberOfSpacePartitions and returns a
Boolean value indicating whether further partitioning should take place or not. The
parameter level is used in the splitting criterion because splitting will depend on the
current decomposition level of the tree. For example, in a trie of English words, at level
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i, splitting will be according to the i th character of each word in the over-full node.
PickSplit will return the entries of the split nodes in the output parameter splitnodes,
which is an array of buckets, where each bucket contains the elements that should be
inserted in the corresponding child node. The predicates of the children are also returned
in splitpredicates.

• Cluster(): This method defines how tree nodes are clustered into disk pages. The method
is explained in more detail in Section 6.

The interface methods realize the behavioral design options listed in Section 2. Methods
Consistent and PickSplit determine if the tree follows the space-driven or the data-driven
partitioning. For example, in a k-D tree, which is a data-driven space partitioning tree,
method Consistent compares the coordinates of the query point (the point to be inserted or
searched for) against the coordinates of the point attached to the index node. The values of
these coordinates are determined based on data that is inserted earlier into the k-D tree. On
the other hand, method Consistent for a space-driven space partitioning tree, e.g., the trie,
will only depend on the letters of the newly inserted word. The comparison is performed
against the letter associated with the index node entry, which is space-dependent, and is
independent of the previously inserted data.

We can also show that method PickSplit completes the specification of the behavioral
design option by specifying the way to distribute node entries among the produced partitions.
Examples of PickSplit for various tree structures are given in the following section.

3.3. Realization of space-partitioning trees

Using the SP-GiST interface, given in the previous sections, we demonstrate how to realize
some commonly used space-partitioning indexes. More specifically, we present the real-
ization of the k-D tree, variants of the quadtree, the trie, and the Patricia trie.

The k-D tree: k-D trees (Bentley, 1975) are a special kind of search trees, useful for
answering range queries about a set of points in the k-dimensional space. The k-D tree
uses a data-driven decomposition of the space (see Section 2). The tree is constructed by
recursively partitioning the space into two sub-spaces with respect to one of the dimensions
at each tree level.

The k-D tree insertion algorithm for the two-dimensional case (i.e., k = 2) with points
in the xy plane is as follows: The algorithm selects any point and draws a line through it,
parallel to the y-axis. This line partitions the plane vertically into two sub-planes. Another
point is selected and is used to horizontally partition the sub-plane in which it lies. In
general, a point that falls in a region created by a horizontal partition will divide this region
vertically, and vice versa. This division process induces a binary tree structure, (e.g., see
figure 5).

The realization of the k-D tree is given in Table 1. PathShrink is set to “Leaf Shrink”
because we put each input point at the first available place depending on the previously
inserted points. Each node will hold only one point, (BucketSize = 1). NodeShrink is set to
false, so each index node will have a slot for the left subtree and a slot for the right subtree.
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Table 1. Realization of the k-D Tree using SP-GiST.

Parameters PathShrink = Leaf Shrink

NodeShrink = False

BucketSize = 1

NumberOfSpacePartitions = 2

Node Predicate = “left”, “right”, or blank.

Key Type = Point

Consistent(E, q, level) IF (level is odd AND q.x satisfies E.p.x)

OR

(level is even AND q.y satisfies E.p.y)

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) Put the old point in a child node with predicate “blank”

Put the new point in a child node with predicate “left” or “right”,

RETURN FALSE

Figure 5. An example k-D tree.

We have only two space partitions for the “right” and “left” to a point (NumberOfSpacePar-
titions = 2 ).

The Quadtree: The term quadtree describes a class of hierarchical data structures whose
common property is the recursive decomposition of space into quadrants. The quadtree can
be realized by SP-GiST. In the next subsections, examples of various types of quadtrees are
presented for point data, rectangles, and polygonal data. Note that for all the variants, the
number of space partitions is equal to four (NumberOfSpacePartitions = 4 ), with a bucket
size of B items (BucketSize = B). NodeShrink is set to false, so each index node will have
a slot for each partition even if it is empty. Setting NodeShrink to true would realize a
quadtree with all white nodes eliminated (see figure 6) (Samet, 1990a).
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(a)

(b)

Figure 6. An example MX quadtree: (a) NodeShrink= false, and (b) NodeShrink = true.

The quadtree can be viewed as a trie structure in two dimensions—with only two possible
characters in each dimension, in trie terminology, or even a one dimensional trie with only
a four character alphabet set. Thus in the literature, space-driven quadtrees are often called
quadtries (Samet, 1990b).

When we treat data points as nonzero elements in a square matrix, the resulting data
structure is called the MX quadtree (MX for matrix). In the MX quadtree, leaf nodes
are black or empty (white) corresponding to the presence or absence, respectively, of data
points in the appropriate position in the matrix. Each point in an MX quadtree corresponds
to a 1×1 square. Figure 6 gives an example of an MX quadtree. Notice that data nodes
of the MX quadtree all appear at the same level. The number of space decompositions is
predefined depending on the desired space resolution.

For the MX quadtree, realized in Table 2, PathShrink is set to “Never Shrink”. Therefore,
the tree is expanded through successive splitting to the maximum space resolution. Thus,
PickSplit will not be invoked as each point will fall in one node.

The MX quadtree is applicable as long as the domain of data points is discrete and
finite. If this is not the case, the data points cannot be represented using an MX quadtree
since the minimum separation between the data points will be unknown. This leads to
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Table 2. Realization of the MX quadtree using SP-GiST.

Parameters PathShrink = Never Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 4

Node Predicate = Quadrant represented by (x1, y1, x2, y2)
where (x1, y1) are the values of the coordinates
of the top left corner
and (x2, y2) are the values of the coordinates
of the bottom right corner

Key Type = Point

Consistent(E, q, level) IF (q coordinates inside E.quadrant)

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) RETURN FALSE

Table 3. Realization of the PR quadtree using SP-GiST.

Parameters PathShrink = Leaf Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 4

Node Predicate = Quadrant represented by (x1, y1, x2, y2)
where (x1, y1) are the values of the coordinates
of the top left corner
and (x2, y2) are the values of the coordinates
of the bottom right corner

Key Type = Point

Consistent(E, q, level) IF (q coordinates inside E.quadrant)

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) Partition and allocate data points into quadrants
according to the locations of the data points

IF any partition is still over-full RETURN TRUE

ELSE RETURN FALSE

the idea of associating data points with quadrants and hence realizing the PR quadtree (P
for point and R for region) (Orenstein, 1982). Now, each data point maps to a quadrant
and not to a 1 × 1 square as in the MX quadtree. Figure 1 gives an example of the PR
quadtree.

The PR quadtree can be realized using SP-GiST by setting PathShrink to “Leaf Shrink”
as we put each input point at the first available leaf node. The leaf node is not necessarily
of size 1 × 1. Realization of the PR quadtree using SP-GiST is given in Table 3.
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Figure 7. An example MX-CIF quadtree.

The MX-CIF quadtree is a quadtree variation for storing rectangles. It associates each
rectangle, say R, with the quadtree node corresponding to the smallest block that contains R
in its entry. Rectangles can be associated with both leaf and non-leaf nodes. The subdivision
ceases whenever a node’s block contains no rectangles. Figure 7 gives an example MX-CIF
quadtree. Notice that more than one rectangle can be associated with a given node.

The MX-CIF quadtree can be realized by SP-GiST, as given in Table 4. PickSplit is not
applicable here, because according to the MX-CIF insertion algorithm, there is not much
choice as to where a rectangle gets inserted.

Table 4. Realization of the MX-CIF quadtree using SP-GiST.

Parameters PathShrink = Leaf Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 4

Node Predicate = Quadrant represented by (x1, y1, x2, y2)
where (x1, y1) are the values of the coordinates
of the top left corner
and (x2, y2) are the values of the coordinates
of the bottom right corner

Key Type = Rectangle

Consistent (E, q, level) IF (Node predicate is the minimum bounding quadrant
of q AND the E.p is Blank)

RETURN TRUE

IF (E.p contains q) RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) RETURN FALSE
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Table 5. Realization of the PMR quadtree using SP-GiST.

Parameters PathShrink = Leaf Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 4

Node Predicate = Quadrant represented by (x1, y1, x2, y2)
where (x1, y1) are the values of the coordinates
of the top left corner
and (x2, y2) are the values of the coordinates
of the bottom right corner

Key Type = Line Segment represented by end points

Consistent (E, q, level) IF (inserted line intersects E.quadrant )

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) Partition the line segments according to their
intersections with quadrants

RETURN FALSE

Another quadtree variant is the PMR quadtree (Nelson and Samet, 1986) that is used to
store polygonal maps. The key is of type line segment in the PMR quadtree, where line
segments serve as the building block to construct polygons.

The PMR quadtree is an edge-based data structure. A line segment is stored in a PMR
quadtree by inserting the line segment into the nodes corresponding to all the blocks that it
intersects. If the bucket capacity is exceeded, the node’s block is split once, and only once,
into four equal quadrants. Thus, bucket capacity is really a splitting threshold. The PMR
quadtree can be realized using SP-GiST, as given in Table 5.

The Trie: A trie (de la Briandais, 1959; Fredkin, 1960) is a tree in which the branching at
any level is determined by only a portion of the key as in figure 4(a). The trie contains two
types of nodes; index and data nodes. In the trie of figure 4(a), each index node contains 27
link fields. In the figure, index nodes are represented by rectangles, while data nodes are
represented by ovals.

All characters in the key values are assumed to be one of the 26 letters of the alphabet.
A blank is used to terminate a key value. At level 1, all key values are partitioned into
27 disjoint classes depending on their first character. Thus, LINK(T, i) points to a subtrie
containing all key values beginning with the i th character (T is the root of the trie). On
the j th level the branching is determined by the j th character. When a subtrie contains
only one key value, it is replaced by a node of type data. This node contains the key
value, together with other relevant information such as the address of the record with this
key value, etc. The trie can be realized using SP-GiST, as given in Table 6. Notice that
PathShrink is set to “Leaf Shrink” (refer to Section 3.1). NodeShrink is set to false in this
realization of the trie. Another option is to set the NodeShrink to true to realize the forest
trie (Knuth, 1973), as discussed in Section 3.1.
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Table 6. Realization of the Trie using SP-GiST.

Parameters PathShrink = Leaf Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 26

Node Predicate = letter or Blank

Key Type = String

Consistent(E, q, level) IF (q[level] == E.letter) OR

(E.letter == BLANK AND level > length(q))

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) Partition the data strings in P according to
the character values at position “level”

IF any data string has length < level, insert data string
in Partition “blank”

IF any of the partitions is still over-full

RETURN TRUE

ELSE RETURN FALSE

The regular trie suffers from the problem of long skinny paths of single arc nodes. For
example, for a trie with a bucket size of 2, inserting the three words “abate”, “abacus”, and
“abort” will cause the node to split. Since we are at the first level, the split will depend on
the first character in each word. Since all the words have “ab” as their first and second
characters, splitting must continue until the third character, resulting in a skinny trie (see
figure 8).

The Patricia trie (Morrison, 1968; Knuth, 1973) is a special trie structure that addresses
this problem. It has the property that all nodes that have only one arc are merged with their

Figure 8. An example trie with BucketSize = 2: the final tree after inserting the three words.
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Figure 9. An example Patricia trie with BucketSize = 2: (a) after inserting the first two words, and (b) after
inserting the third word.

parent nodes. To avoid false matches, each node in the Patricia trie must have either a count
of the number of eliminated nodes or a pointer to the eliminated symbols. In the previous
example, (refer to figure 9), the Patricia trie will split only once, thus eliminating the single
arc nodes and storing the eliminated symbols (“ab”) in the parent node.

In the Patricia trie, PathShrink is set to “Tree Shrink”. When splitting a node, we search
for the common prefix of all words. The common prefix is returned as the predicate of
the parent node, while splitting is performed based on the next letter after that prefix. The
realization of the Patricia trie using SP-GiST is given in Table 7.

4. SP-GiST internal methods

The methods for insertion, deletion, and search in SP-GiST are internal operations that are
implemented inside the SP-GiST index engine. These methods are used in conjunction
with the external methods to realize specific space-partitioning trees. The user of SP-GiST
provides only the external methods, while the internal methods are hard coded into the
SP-GiST index engine. The internal methods are general for the class of space-partitioning
trees, and their behavior is tuned by making use of the user-defined external methods and
parameters.

The internal methods are designed to accommodate for the space-partitioning, recursive
decomposition, bucket sizes, insertion resolution, and node clustering (refer to the structural
and behavioral characteristics of space-partitioning trees, given in Section 2).

Recall that unlike the GiST structure, SP-GiST has to support two distinct types of nodes;
index and data nodes. Index nodes (non-leaf nodes) hold the various space partitions at
each level. Each entry in an index node is a root of a subtree that holds all the entries that
lie in this partition. The space partitions are disjoint. Besides having a slot for each space
partition, the index node contains an extra blank slot to point to data nodes attached to the
partition represented by this node. On the other hand, data nodes (leaf nodes) hold the key
data and other pointer information to physical data records. We can think of data nodes as
Buckets of data entries. Thus, a splitting strategy determined by PickSplit will be applied
to split over-full data nodes.
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Table 7. Realization of the Patricia Trie using SP-GiST.

Parameters PathShrink = Tree Shrink

NodeShrink = False

BucketSize = B

NumberOfSpacePartitions = 26

Node Predicate = letter or Blank

Key Type = String

Consistent(E, q, level) IF (q[level] == E.letter) OR

(E.letter == BLANK AND level > length(q))

RETURN TRUE

ELSE RETURN FALSE

PickSplit(P, level) Find a Common prefix among words in P

Update level = level+length of the common prefix

Let P predicate = the common prefix

Partition the data strings in P according to
the character values at position “level”

IF any data string has length < level, insert data string
in Partition “blank”

IF any of the partitions is still over full

RETURN TRUE

ELSE RETURN FALSE

The insert algorithm, given in Table 8, depends on the following interface parameters
and external methods:

1. Parameter PathShrink specifies how deep we should proceed with the space decompo-
sition.

2. Method Consistent specifies which branch to follow.
3. Method PickSplit to split over-full nodes. The return value of PickSplit tells us when we

should stop the splitting process.

Method Insert begins by checking Parameter PathShrink. If PathShrink is set to “Never
Shrink”, method Insert performs a successive creation of index nodes to the maximum space
resolution. If the parameter is set to “Leaf Shrink” or “Tree Shrink”, the insertion algorithm
searches for the first leaf node with a predicate that is Consistent with the key to be inserted.
In the case of “Tree Shrink”, some eliminated index nodes may be needed while locating the
leaf. Hence, an internal split is performed to “expand” the eliminated index nodes. If the leaf
node is over-full, then method PickSplit will be invoked continuously to distribute the entries
among non over-full children or until it reaches the maximum resolution of the underlying
space. Notice that method Insert invokes method cluster to dynamically re-cluster the nodes
properly after insertion. Node clustering is further explained in Section 6.
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Table 8. SP-GiST insertion algorithm.

1. INSERT (TreeNode root, Key, level)

2. CurrentNode = root /* Initially root is null */

3. IF PathShrink is “Never Shrink” THEN

4. LOOP WHILE level < SpaceResolution AND level < Key length

5. IF node is NULL THEN E = Create a new node of type INDEX

6. FOR each slot i in the index node LOOP

7. IF (Consistent(E[i],key,level)) THEN index = i

8. IF None is consistent /*due to NodeShrink*/

9. THEN Create the missing index slot w.r.t level

10. index = the position of the new slot

11. CurrentNode = E[index].ptr /* the child pointed by entry E[index]*/

12. level = level + 1

13. IF CurrentNode is INDEX node /* pick a child to go */

14. Compare the key with the CurrentNode predicate

15. IF no match AND PathShrink is “Tree Shrink”

16. THEN get the common prefix between the two

17. Change CurrentNode predicate to the common prefix

18. Create a new INDEX node with the rest of the old node predicate

19. Let CurrentNode be the new index node

20. FOR each slot i in the index node LOOP

21. IF (Consistent(E[i], key, level)) THEN index = i

22. IF None is consistent /*due to NodeShrink*/

23. THEN Create the missing index slot w.r.t level

24. index = the position of the new slot

25. CurrentNode = CurrentNode[index].ptr

26. INSERT (CurrentNode, key, level + 1) /* recursive */

27. IF CurrentNode is full THEN /* DATA node and may need to be split*/

28. LOOP WHILE PickSplit(node, level)

29. n = Create new node of type INDEX

30. Create Children for the split entries

31. Parent(n) = Parent(CurrentNode)

32. Adjust branches of ‘n’ to point to the new children

33. level = level + 1

34. ELSE insert the key in CurrentNode /* not a full node */

35. Cluster() /* to recluster the tree nodes in pages */
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Table 9. SP-GiST search algorithm.

1. SEARCH (TreeNode root, Key, level)

2. Found = false

3. CurrentNode = root /* Initially root is null */

4. LOOP WHILE level < SpaceResolution AND CurrentNode is an index node

5. Compare the key with the CurrentNode predicate

6. IF no match AND PathShrink is “Tree Shrink”

7. THEN Found = FALSE

8. break

9. FOR each slot i in the index node LOOP

10. IF (Consistent(E[i], key, level)) THEN index = i

11. IF None is consistent /*due to NodeShrink*/

12. THEN Found = FALSE

13. break

14. CurrentNode = E[index].ptr /* the child pointed by entry E[index]*/

15. level = level + 1

16. IF CurrentNode is NOT NULL /* leaf node */

17. Search for the key among leaf node entries

18. IF Key is in the leaf node THEN Found = TRUE

19. RETURN Found

Method Search in SP-GiST is exactly similar to that of the GiST scheme (see Hellerstein
et al., 1995), and is given in Table 9 for completeness. Method Search uses method
Consistent as the main navigation guide. Starting from the root, the algorithm will check
the search item against all branches using the method Consistent till reaching leaf nodes
(data nodes in SP-GiST).

The algorithm for method Delete in SP-GiST uses logical deletion. Deleted items are
marked deleted and are not physically removed from the tree. This will save the effort of
reorganizing the tree after each deletion, specially for data-driven space-partitioning trees.
A rebuild is used from time to time as a clean procedure.

5. Concurrency and recovery in SP-GiST

Concurrency and recovery in GiST have been addressed in Chakrabarti and Mehrotra
(1999a) and Kornacker et al. (1998). In Kornacker et al. (1998), the authors provide
general algorithms for concurrency control in tree-based access methods as well as a recov-
ery protocol and a mechanism for ensuring repeatable read isolation (Gray, 1978). They
suggest the use of Node Sequence Number (NSN) for concurrency control, first introduced
in Kornacker and Banks (1995).

For SP-GiST, a split (only at the leaf level) transforms a data node into an index node.
Data is then distributed among new leaf nodes rooted at that split node. This fact simplifies
the concurrency control mechanism significantly. For example, consider the case when a
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search for a key is interleaved with an insertion that causes the splitting of the target node.
By the time the search reaches the target node, it can not falsely conclude the non-existence
of the searched key, e.g., in contrast to a B-Tree scenario, because the new node is an index
node. In that case, no right links need to be maintained between leaves as the search will
need to continue deeper in the tree not on the siblings level. Thus, no special sequence
number is needed for the concurrent operation to know that the node in question has been
split. The operation will directly continue working with the child nodes.

Phantom protection in GiST has also been addressed in two different techniques. Pred-
icate locking (Eswaran et al., 1976) is used in Kornacker et al. (1998) while the au-
thors in Chakrabarti and Mehrotra (1999a), propose a dynamic granular locking approach
(GL/GiST) to phantom protection. We adopt the granular locking technique since it is
more preferable and less expensive than predicate locking. The fact that a “Containment
Hierarchy” exists in space-partitioning trees, represented by SP-GiST, makes the algorithm
introduced in Chakrabarti and Mehrotra (1998, 1999a) highly applicable and much simpler.
Hence, in SP-GiST, because the node predicates form a containment hierarchy, we simply
use the node predicates for granular locks.

The main difference in SP-GiST is that a page may contain multiple SP-GiST nodes.
A clustering algorithm will hold the mapping between nodes and pages. In this context,
we assume that the node size is smaller than or equal to the page size. Hence the problem
transforms to locking at a finer granularity. Treating nodes clustered in pages as records,
granular locks (Gray and Reuter, 1993) are used. The recovery technique used in Kornacker
et al. (1998) is directly applicable to SP-GiST.

6. Node clustering in SP-GiST

Node clustering means choosing the group of nodes that will reside together in the same disk
page. Considering physical storage of the tree nodes, a direct and simple implementation
of a node is to assign a disk page for each node. However, for very sparse nodes, this simple
assignment will not be efficient for database use. We provide to the user a default node
clustering method that is shown to perform well in the dynamic case (Diwan et al., 1996).
However, we allow the user to override the default clustering method and provide a different
node clustering policy that is more suitable for the type and nature of the operations to be
performed on the constructed index. This will enhance the query response time of SP-GiST.
We propose the interface method Cluster for this purpose.

Introducing new nodes in the tree structure, e.g., due to insertions, will internally in-
voke the dynamic clustering algorithm defined in Cluster to reconstruct the tree disk page
structure and reflect the change. However, for unexperienced users or for typical database
applications, SP-GiST has a default node clustering algorithm that achieves minimum height
and hence minimum I/O access. The dynamic clustering algorithm in Diwan et al. (1996)
is a good clustering algorithm and we use it as our default in SP-GiST. The pseudo code
and a brief outline of the clustering algorithm is given in Appendix A.

The user can choose other clustering algorithms that reflect the application semantics,
specially for non-traditional data types as in multimedia or video databases. Some alterna-
tives are: (1) Fill-Factor Clustering: Tries to keep each page half-full for space utilization
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Figure 10. Effect of BucketSize on the maximum path length and number of used pages in the trie for different
settings of PathShrink.

efficiency. (2) Deep Clustering: Chooses the longest linked subtree from the collection
of page nodes to be stored together in the same page. This clustering method will en-
hance performance for depth-first traversal of trees. (3) Breadth Clustering: Chooses
the maximum number of siblings of the same parent to be stored together in the same
page.
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Figure 11. Effect of BucketSize on the maximum path length and number of used pages in the quadtree for
different settings of PathShrink.

7. Implementation and experimental results

We implemented SP-GiST using C++ on SunOS 5.6 (Sparc). As a proof of concept, using
SP-GiST, we implemented the extensions for some data structures namely, the MX quadtree,
the PR quadtree, the trie, and the Patricia trie. The implementation has proven the feasibility
of representing space-partitioning trees using the interface proposed by SP-GiST and the
settings in the tables in Section 3.3. We performed experiments on various settings of the
tunable interface parameters; BucketSize and PathShrink. In our implementation we adopt
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the minimal height clustering technique in Diwan et al. (1996). Results show that applying
this clustering technique reduces the path length in terms of pages significantly.

As explained in Section 3.1, the interface parameter PathShrink can take one of three
values; “Never Shrink”, “Leaf Shrink”, or “Tree Shrink”. For the trie, setting PathShrink to
“Never Shrink” will have the effect of realizing the original trie, where splitting is performed
to the maximum resolution of the space, leading to a long sparse tree. Setting PathShrink
to “Leaf Shrink” will realize a common variant of the trie where data can be put in the first
available node. On the other hand, if PathShrink is set to “Tree Shrink”, it will realize the
Patricia implementation of the trie where no single-arc nodes are allowed.

Figure 10 gives the effect of this parameter on the trie data structure for various settings
of BucketSize for a dataset of 10000 records with “string” keys. As expected, for the trie
and the Patricia trie, the path length and the number of pages improve as the bucket size
increases since less splitting takes place. On the other hand, the bucket size does not have an
effect on the original trie. In this case, splitting will take place not because of the bucket
size limit but to decompose the space to the maximum resolution. In the case of the original
trie, each record will fall in a single node regardless of the setting of the bucket size.

For the quadtree, the same argument holds. Experimental results for point datasets of
10000 points are given in figure 11. In this case, setting PathShrink to “Never Shrink” will
have the effect of realizing the MX quadtree while setting it to “Leaf Shrink” will realize
the PR quadtree where data can be put in the first available node. Experiments with setting
PathShrink to “Tree Shrink” show the realization of another variant of quadtree, where all
white nodes are eliminated (Samet, 1990b), making it more attractive for databases and
solving the problem of long degenerate quadtrees when the workload is highly skewed.

8. Conclusions

SP-GiST is a generalized space-partitioning tree implementation of a wide range of tree data
structures that are not I/O-optimized for databases. This makes it possible to have single
tree index implementation to cover various types of trees that suit different applications.
Emerging database applications will require the availability of various index structures
due to the heterogeneous collection of data types they deal with. SP-GiST is an interesting
choice for multimedia databases, spatial databases, GIS, and other modern database systems.
We have shown how to augment SP-GiST with parameters and methods that will enable the
coverage of this class of space-partitioning trees. Clustering methods were also addressed
to realize the use of these structures in practice in non-traditional database applications.

Recovery and concurrency for SP-GiST are addressed to enable the realization of SP-
GiST in commercial database systems. Experiments proved the concept of SP-GiST and
provided insight on the effect of the tunable interface parameters on the tree structure and
performance.

Appendix A : Minimum height clustering algorithm

The clustering algorithm in Diwan et al. (1996) re-clusters the tree nodes into disk pages
after updates to an already clustered state, and hence is dynamic, and guarantees minimal
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height mapping after deleting or inserting in the tree. The pseudo code of the algorithm is
given in Table A.1. The algorithm begins by removing all deleted nodes from the disk pages.
All new nodes or affected roots of subtrees are kept in a set of affected nodes. Processing all
the affected nodes starts bottom-up (no node is processed until all its children are processed).

Table A.1. Minimum height clustering algorithm.

1. PROCEDURE ReCluster-Bottom Up(TreeNode root)

2. S = {};
3. FOR each node n in delete-list (List of deleted nodes) DO

4. Remove n from its current page

5. IF n is the last node in the page

6. THEN delete the page

7. decluster(root)

8. /* S is now the set of nodes that are affected */

9. LOOP WHILE there are nodes in S that are not yet processed

10. Choose an affected node P that is either a leaf or

11. all of whose children are either not in S or have been processed

12. process-node(P)

1. PROCEDURE decluster(node n)

2. add n to S

3. IF (n is not a new inserted node) THEN

4. remove n from its current page

5. IF n is the last node in the page

6. THEN delete the page

7. FOR each child nl of n DO

8. IF (n1 is a new inserted node or if the subtree from n1 is modified)

9. THEN decluster(n1)

10. ELSE

11. IF (nl is in the same page as n)

12. THEN move nl and all its descendants in the same page as n to a new page

1. PROCEDURE process-node(TreeNode P)

2. IF P is a leaf node

3. THEN create a new page C containing node P

4. ELSE Let P1 · · · Pn , be the children of P

5. Let C1 · · · Cn be the pages containing P1 · · · Pn , respectively

6. Let Pi1 · · · Pim , be the children among the above whose page height is the greatest

7. IF node P and the contents of the pages Cil · · · Cim can be merged in 1 page

8. THEN merge the contents of Cil · · · Cim , into a new page C

9. delete Ci1 · · · Cim

10. ELSE create a new page C containing only P
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The algorithm tries to put the longest path of nodes together in the same page. The authors
in Diwan et al. (1996) have shown that the algorithm achieves minimal height mapping.
They suggested some heuristics of merging sparse pages to achieve minimum fill factor of
at least 50%.
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