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Abstract

We analyze a problem in computer network security, wherein packet filters are deployed to defend a network against
spoofed denial of service attacks. Information on the Internet is transmitted by the exchange of IP packets, which must
declare their origin and destination addresses. A route-based packet filter verifies whether the purported origin of a
packet is correct with respect to the current route map. We examine the optimization problem of finding a minimum
cardinality set of nodes to filter in the network such that no spoofed packet can reach its destination. We prove that this
problem is NP-hard, and derive properties that explicitly relate the filter placement problem to the vertex cover prob-
lem. We identify topologies and routing policies for which a polynomial-time solution to the minimum filter placement
problem exists, and prove that under certain routing conditions a greedy heuristic for the filter placement problem
yields an optimal solution.
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1. Introduction

Given the vulnerability of communication net-
works to a wide array of security attacks, a num-
ber of network security measures have been
proposed to counter these attacks [1,4,10,18].
One of the pressing problems facing the global
Internet is distributed denial of service (DDoS)
attacks, wherein a set of compromised hosts
ed.

mailto:barmbrus@stanford.edu
mailto:cole@sie.arizona.edu
mailto:cole@ise.ufl.edu
mailto:park@cs. purdue.edu
mailto:park@cs. purdue.edu


1284 B. Armbruster et al. / European Journal of Operational Research 176 (2007) 1283–1292
concurrently send large amounts of traffic targeted
at a server, gateway, or network [3,8]. The aim of
the attack is to disrupt normal operation of the
targeted network system by depleting its resources.
Many DDoS attacks disguise their true origin by
inscribing bogus information in the source address
field of the IP (Internet Protocol) packet header,
referred to as IP source address spoofing. This
causes recovery to take on the order of hours
and days, at which point damage has already been
done. IP traceback—the problem of locating the
attack source—has been an active area of research
[15,17].

Whereas most DDoS defenses are reactive in
nature, a proactive approach called route-based
distributed packet filtering [16] is aimed at prevent-
ing spoofed DDoS packets from reaching their tar-
gets in the first place. Route-based filtering uses
route constraints in transportation networks to
determine whether a packet, given its source and
destination address, is misrepresenting its true ori-
gin. In semi-maximal route-based filtering, only
the source address is utilized to affect filtering,
which enables the linear filter table size required
for implementation in resource-bounded routers.
Distributed route-based packet filtering applies
this action at select transit nodes in the network
so that with a small deployment at ‘‘checkpoints,’’
effective discarding of spoofed packets is achieved.
Although the scope of scenarios to which this fil-
tering concept applies is broader than Internet
DDoS attacks—e.g., distributed intrusion detec-
tion and sensor networks in physical transporta-
tion systems—DDoS network security is the
focus area of this paper.

Consider a communication network whose
connectivity is represented as a graph. The fields
of a packet header, in particular, its source and
destination addresses, are inscribed by the origi-
nating node. Node o can ‘‘attack’’ another node
d by forging the source address of a sequence of
packets as node s and sending them to d. The role
of route-based packet filters is to identify and
remove packets from the network whose source
addresses can be ascertained to be spoofed, before
they can aggregate and impart harm at their tar-
get. They must do so without violating the
requirement of safety: a packet whose source
address is not spoofed must not be discarded.
We study the following optimal filter placement
problem: Given a network and its routing, find
a minimum cardinality set of nodes where route-
based filters are placed such that no packet with
a falsely reported origin is permitted to reach its
destination.

The feasibility criterion is called perfect security,
a special case of more relaxed security measures
studied in [16] where certain triplets (o, s, d) are
allowed through. The optimization criterion exam-
ined in this paper, minimizing the size of the filter
node subset, is not the only meaningful criterion.
For example, one may consider the number of
edges as the cost function, or a notion of process-
ing overhead that varies depending on the traffic
load a node encounters. In the global inter-domain
Internet context where a single node represents an
entire domain, deployment of cooperative security
solutions is hindered by policy barriers across dif-
ferent administrative boundaries. Bilateral agree-
ments require significant effort to establish, and
multilateral agreements are that much harder to
come by. This provides a practical motivation,
from a deployment perspective, for considering
the number of filter nodes as the optimization cri-
terion. The ‘‘processing overhead’’ of a node with
many edges—likely a large ISP (Internet Service
Provider) that provides transit service to other
domains—is not localized to a single physical rou-
ter since the ISP will have entry/exit/switching sta-
tions, called POPs (points-of-presence), at major
cities where it interfaces with other domains.
Route-based filters would need to be installed only
on border routers that connect to other domains.
In the intra-domain context, high-degree nodes
correspond to routers with many links, and pro-
cessing overhead is amplified proportionally to
the number of edges.

We assume that route-based filters have access
to routing information to determine if a packet
with source address s destined to d is spoofed, sub-
ject to safety. In the global inter-domain Internet,
route asymmetry—the path from o to d is not the
same as from d to o—is common, which makes
maintaining accurate route-based filter tables a
nontrivial challenge. The focus of this paper is
on studying an optimal filter placement problem
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assuming reasonably accurate route-based filter
tables are available.

Our theoretical results complement the experi-
mental results in [16] but are not directly compara-
ble. This is so since the first part of the paper
discusses general hardness of achieving perfect
security, and the second part discusses polynomi-
ally solvable special cases of potential relevance
to large-scale communication networks. The spe-
cial cases are candidate building blocks of these
empirical graphs but do not make up the whole
graph. Decomposition of large-scale empirical net-
works into constituent components is needed to
relate the optimum filter size of the building blocks
to the optimum filter placement of the whole
graph.

The remainder of the paper is organized as fol-
lows. In Section 2, we formalize the optimization
problem and prove that it is strongly NP-hard. In
Section 3, we introduce an integer programming
framework for solving the general minimum filter
placement problem, along with a characterization
of feasible solutions for a restricted version of the
problem that admits a decomposition algorithm.
In Section 4, we focus our attention on optimal
polynomial time algorithms for a special class of
problems inspired by large-scale communication
networks, such as the global inter-domain Internet
[7]. We conclude with a summary of our results and
a discussion of future research directions.
2. Problem description and NP-completeness

2.1. Network model

The network is given by a directed graph
G(N, A), where N is the set of nodes in the net-
work, jNj P 3, and A is the arc set. Define the
communication set as the set of all node pairs that
engage in the exchange of packets. Formally, the
communication set is given by C � N · N �
{[i2N(i, i)} such that (u, v) 2 C if and only if pack-
ets at u 2 N can travel to v 2 N under a given rout-
ing policy R.

A set R(u, v) is defined for every (u, v) 2 C that
consists of all permissible paths that a packet
may use from u to v. We allow jR(u, v)jP 1 for
(u, v) 2 C to account for multi-path routing. The
paths obey a destination-based routing scheme,
wherein intermediate nodes in a path forward
packets based only on the packet’s destination
address. A path p 2 R(u, v) of length k is given by
a sequence of nodes (p0, p1, . . . , pk) where p0 = u

and pk = v. We denote RALL = ¨(u,v)2CR(u, v).
We define nodes(p) as the set of nodes contained
in path p, and arcs(p) as the set of edges in path
p. Without loss of generality, we assume that A is
irreducible, that is, for all (i, j) 2 A, we have
(i, j) 2 arcs(p) for some p 2 RALL.

Next, we define an abstract description of the
network filtering system, including the filters and
packets that traverse the network. Filters are
allowed to be placed on nodes throughout the net-
work. Each packet is associated with its true ori-
gin, its purported origin, and its destination. A
packet filter has access to the purported origin
and destination addresses of the packet, plus the
arc on which the packet arrived at the filter. We
consider both maximal and semi-maximal filters.
A maximal route-based filter is defined as

FMðo; a; dÞ

¼
0; if a 2 arcsðpÞ for some p 2 Rðo; dÞ;
1; otherwise.

�
ð1Þ

That is, FM(o, a, d) returns a 0 if a packet traveling
from o to d could possibly use arc a under routing
R, and 1 otherwise. A drawback of the maximal
filter is that an O(jNj2) table must be used, which
is prohibitively large for large-scale networks. As
an alternative, a weaker filter function returns 0
if node o could use arc a in any of its routings.
Formally, a semi-maximal is defined as

FSðo; aÞ ¼
0; 9d 2 N such that a 2 arcsðpÞ

for some p 2 Rðo; dÞ;
1; otherwise.

8><
>:

ð2Þ

If either filter function returns a 1, then it can be
ascertained that the packet’s source address has
been forged, and the packet is discarded. Note that
with the use of either filter mechanism, no packet
with a correct address will be dropped: safety is



1286 B. Armbruster et al. / European Journal of Operational Research 176 (2007) 1283–1292
assured. In general, maximal filters are more
powerful than semi-maximal filters, i.e., FS(o, a) 6
FM(o, a, d) for all (o, d) 2 C and a 2 A. This rela-
tionship is strict for (o, d) 2 C and a 2 A when a
path p 2 R(o, b) exists for some (o, b) 2 C with
a 2 arcs(p), but no such path exists in R(o, d).

We make the following additional assumption
on the network system. Regardless of the filter
type being used, no packet at a filter node—a node
where filtering is carried out—may forge its origin
address. This mechanism, called egress filtering, is
technically easy to carry out. A node that goes
through the trouble of deploying route-based fil-
ters is assumed to disallow forged packets to ema-
nate from its own domain. Second, a packet with a
spoofed origin–destination pair (o, d) 62 C will
automatically be dropped at node d, irrespective
of the presence of a filter at that node. This mech-
anism is referred to as a ‘‘trivial filter.’’
2.2. Optimal filter placement

The minimum filter placement problem (MFPP)
determines the minimum number of filters
required to achieve perfect security, i.e., all packets
with forged origin addresses are discarded. We
first prove that this problem is strongly NP-hard,
regardless of whether maximal or semi-maximal
filters are used. We define the corresponding deci-
sion problem:

FILTER: Given a connected network G(N, A)
with jNjP 3, a communication set C, a set of
routes RALL, and an integer 1 6 k 6 jNj, does
there exist a (maximal or semi-maximal) filter
placement H � N, jHj 6 k, that achieves perfect
security?

Without loss of generality (due to the use of
destination-based routing), we assume that RALL

is polynomially bounded in n = jNj so that the
problem size is polynomial in n.

Proposition 1. FILTER is strongly NP-complete.

Proof. First, we show that FILTER is in NP. For
every pair of nodes (o, d) 2 C, o 62 H, a check
can be made for every possible value of
s 2 N � {o} such that (s, d) 2 C, to verify that a
packet with true origin o, purported origin s, and
destination d will be filtered by some node in H.
(If (s, d) 62 C, the packet will automatically be
dropped by the trivial filter rule.) This takes poly-
nomial time.

Next, we show that FILTER is NP-hard by
reducing VERTEX COVER [11] to FILTER. An
instance of VERTEX COVER (VC) is specified as
follows: Given an undirected, connected graph
G(V, E) with jVjP 3, and an integer 1 6 c 6 jVj,
does there exist a subset S of c or fewer nodes such
that if (u, v) 2 E, then at least one of u and v

belongs to S?
We transform an arbitrary instance of VC to

FILTER as follows. The graph G is transcribed with
N = V and arcs (u, v) and (v, u) in A if and only if
(u, v) 2 E. We set k equal to c, and set the
communication set C equal to A, that is, commu-
nication only takes place between adjacent nodes.
Finally, routing R only involves single-arc routes
that connect adjacent nodes.

Suppose the VC instance is a yes-instance and
is verified by the solution S. Consider the selec-
tion of filters H = S. For every route
(u, v) 2 RALL, either u 2 H or v 2 H, or both. If
u 2 H, a packet starting at u must have a valid
origin address. If u 62 H, then v 2 H. Since any
incoming packet on the arc (u, v) must be from u,
the filter at node v (whether maximal or semi-
maximal) would drop any packet on this arc
without source address u. Since this is true for all
routes (u, v) 2 RALL and jHj 6 k, FILTER also
yields a yes-instance.

Suppose VC is a no-instance. This implies that
in the FILTER instance, for any set H containing k

(or fewer) nodes, there will exist some edge
ðû; v̂Þ 2 A such that û 62 H and v̂ 62 H , and v̂ is
adjacent to at least two nodes by connectedness
and jVjP 3. Let b designate a node adjacent to v̂
other than û. Then a packet from û could forge its
address as b and send to v̂ without being discarded
by a filter, violating perfect security. Since a
solution exists to the VC instance if and only if
there exists a solution to the transformed FILTER

instance, we have that FILTER is NP-complete.
Moreover, since no numerical data was used in the
transformation, we have that FILTER is NP-com-
plete in the strong sense. This completes the
proof. h
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Remark 2. Observe that the reduction in the
proof of Proposition 1 does not explicitly consider
the case in which C is complete, that is, (u, v) 2 C

for all u, v 2 N and u 5 v. However, the foregoing
transformation can be modified to demonstrate
that FILTER remains strongly NP-complete when
C is complete. The reduction from VC to FILTER

adds one additional dummy node w,
N = V [ {w}. The arc set A is created as before,
with the addition of arcs (u, w) and (w, u) " u 2 V.
Routing between two distinct nodes u, v 2 N

remains unique (i.e., jR(u, v)j = 1). If (u, v) 2 A,
R(u, v) consists of the single-arc path (u, v). Other-
wise, the dummy node w is used as an intermediate
node, and R(u, v) consists of the two-arc path
(u, w, v). We set k equal to c + 1. It is easy to show
that node w must be a filter node, and therefore by
the same logic as given in the proof of Proposition
1, the MFPP is strongly NP-hard for arbitrary
communication sets.

Remark 3. A filter deployment that is VC does
not, in general, imply perfect security. For exam-
ple, in a 5-node chain network (u, v, w, x, y) where
v and x are filter nodes, w can disguise itself as u

or v when sending to y. The maximal or semi-
maximal filter at x is unable to distinguish such
spoofed packets. The effectiveness of VC as a filter
placement strategy depends on the underlying
graph connectivity.
3. Solution strategies and special cases

We begin this section by providing an integer
programming formulation for solving MFPP.
Then we examine special cases of practical rele-
vance and provide solutions that exploit the spe-
cial structure of these problems.
3.1. Integer programming model

We formulate MFPP as a 0/1 integer program-
ming problem. Consider a communication pair
(o, d) 2 C, along with a forgeable source address
s 2 N such that (s, d) 2 C. Define Nsod as the set
of nodes i such that a filter at node i would drop
any packet originating from o with destination d

and spoofed source address s. By the egress filter-
ing assumption, o 2 Nsod. The following set cover-
ing problem solves MFPP:

minimize
X
i2N

yi ð3aÞ

s.t.
X

i2N sod

yi P 1

8ðo;dÞ 2 C; 8s 6¼ o : ðs;dÞ 2 C ð3bÞ
yi 2 f0;1g 8i 2 N . ð3cÞ

The objective function (3a) minimizes the number
of filters placed in the network, the constraints in
(3b) eliminate the possibility of any node o suc-
ceeding with a forgeable address s when sending
to destination node d, and (3c) imposes an integer
restriction on the filter selection variables y. The
next lemma gives a necessary and sufficient condi-
tion for achieving perfect security.

Lemma 4. A filter placement y = (y0, . . . , yn�1)

achieves perfect security if and only if "(o, d) 2 C

and (p0, p1, . . ., pk) 2 R(o, d), k P 1,

(i) when k = 1 and (u, d) 2 C for some

u 5 o 2 N, we have that yo + yd P 1, and
(ii) when k > 1, ypi

¼ 1 for all 0 < i < k.

Proof. We start with the ‘‘only if’’ claim. Part (i)
was established in the proof of Proposition 1.
For part (ii), suppose that for some 0 < i < k,
yi = 0. By Remark 3, node pi can attack node d

by spoofing any address s 2 {p0, . . . , pi�1} such
that (s, d) 2 C (including s = p0) which violates
perfect security. The ‘‘if’’ claim in the lemma
clearly follows from the foregoing analysis and
the egress filtering property (i.e., a filter node
cannot initiate an attack). h
3.2. Complete communication scenarios

Note that (3) is a general set covering formula-
tion that may be tackled by integer programming
strategies [2,5,6,9]. Instead of addressing the gen-
eral problem, we restrict our attention to problems
in which C is complete (i.e., all distinct node pairs
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of N are present in C). Define an endpoint as a
node that never serves as an intermediate point
in routing a packet. That is, i 2 N is an endpoint
if i 2 nodes(p) for some p 2 R(u, v), (u, v) 2 C,
implies that i = u or i = v. The following proposi-
tions capture necessary conditions for feasible fil-
ter placement to achieve perfect security.

Proposition 5. A solution to the MFPP with com-

plete C must also be a vertex cover of the
corresponding undirected graph.

Proof. The proposition follows from Lemma 4,
completeness, and irreducibility. h

Proposition 6. For any solution y to MFPP, if

w 2 N is not an endpoint then yw = 1.

Proof. If node w is not an endpoint, then there
must exist a communication pair (u, v) 2 C and a
path p 2 R(u, v) given by nodes (u, p1, . . . , pk�1, v)
where w = pt for some 1 6 t 6 k � 1. By Lemma
4, node w must be a filter node. h

An algorithm for MFPP could begin by deter-
mining all non-endpoint nodes by considering each
path in RALL. One can then construct an endpoint

network eGðeN ; eEÞ where eN consists entirely of end-
points and ði; jÞ 2 eE if and only if either
(i, j) 2 R(i, j) or (j, i) 2 R(j, i). Let minimum vertex
cover problem (MVCP) be the optimization vari-
ant of VERTEX COVER. The following proposition
provides an algorithm to solve the MFPP, and
indicates that for the complete communication
set case, no advantages are afforded by utilizing
maximal filters versus semi-maximal filters.

Proposition 7. Let D be the set of all non-endpoint
nodes in G, and consider a solution S to MVCP over

the endpoint network eG. Then filtering nodes

H = D [ S results in an optimal solution to the

MFPP, regardless of whether maximal or semi-

maximal filters are used.

Proof. First, let us verify that H is a feasible solu-
tion to MFPP on G, even in the presence of semi-
maximal filters. Consider a pair of nodes (u, v) 2 C

and a path p 2 R(u, v) given by (u, p1, . . . , pk�1, v).
If u is an endpoint, then p1 knows that the set of
possible addresses emanating from u is confined
to u and destination addresses are superfluous. If
u is a non-endpoint, then u 2 D, and by egress fil-
tering, no attack can emanate from u. Only filters
deployed at arcs connecting endpoints are
relevant.

Next, we verify that H is a minimum cardinality
feasible solution. By Proposition 6, all nodes in D

must be filter nodes in any feasible solution. Now
suppose by contradiction that a smaller cardinality
feasible solution bH existed, with bH ¼ D [ bS . Since
jbS j < jSj, then bS must not be a vertex cover with
respect to eG. The solution bH is not feasible by
Proposition 5 which leads to a contradiction. h

The proof of Proposition 7 gives an optimal
algorithm for solving MFPP. First, place filters
on all non-endpoints. Next, create an endpoint
graph eG, and solve the MVCP on it. Typically,eG will not be connected, implying that several
smaller vertex cover problems must be indepen-
dently solved on the connected components of eG.
(This is not always so, as indicated by Remark
2.) This decomposition requires the solution of
several smaller problems rather than one large
problem and allows for parallelism at the most
time-consuming step of the algorithm. From a the-
oretical viewpoint, it also describes the precise
relationship between the vertex cover and filter
placement problems and leverages known
(in)approximability properties of VC. They
include the well-known 2-factor approximation
scheme [13,14], and, on the negative side, the 7/
6-factor lower bound which holds unless P = NP.

Remark 8. The foregoing analysis assumes that
the objective of the MFPP is to minimize the total
number of deployed filters, rather than weighting
filter deployments by overhead required to carry
out their filtering operations. While this assump-
tion is made for the sake of convenience in
exposition, it is straightforward to extend this
analysis to the case in which our objective is to
minimize a weighted number of filter deployments.
The decomposition algorithm remains the same,
except that we would now solve a weighted
minimum vertex cover problem over each end-
point network remaining after filters are assigned
to the non-endpoints.
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3.3. Polynomially solvable cases

One further advantage of the algorithm sug-
gested by Proposition 7 is that it identifies a class
of filter placement problems that are polynomially
solvable. For example, problems with complete
communication sets that yield no vertex cover
problem phase, or yield a set of vertex cover prob-
lems that are themselves polynomially solvable or
are bounded by some constant, are solvable in
polynomial time via this algorithm. We list specific
network topologies below.

3.3.1. Tree networks

Suppose the network G is given by a tree with
bidirectional edges. There is a unique path between
every pair of nodes and the endpoints of the net-
work consist of the leaf nodes in G. Filtering all
other nodes yields an endpoint graph containing
no edges (jNj P 3). Hence, the optimal solution
is to filter all nodes with degree at least two. Note
that a star topology is a special case of a tree net-
work with a single transit (i.e., non-endpoint) node
where a single filter node suffices to achieve perfect
protection.

3.3.2. Cycle (self healing ring) networks

Suppose that G(N, A) is given by N =
{1, 2, . . . , n}, with A consisting of bidirectional
edges (i, i + 1) for i = 1, . . . , n � 1 and (n, 1). For
each communication pair (u, v) 2 C, u < v, there
exist two paths in R(u, v): a clockwise path pþuv ¼
ðu; uþ 1; . . . ; vÞ, and a counterclockwise path
p�uv ¼ ðu; u� 1; . . . ; 1; n; n� 1; . . . ; vÞ. No node is
an endpoint in this scenario, and thus all nodes
must be filter nodes.

3.3.3. Bipartite networks

Consider a graph G(N, A), where N = N1 [ N2

and N1 \ N2 = ;, and each arc (i, j) is bidirectional
with either i 2 N1 and j 2 N2, or vice versa. Regard-
less of the routing scheme, after preprocessing by
filtering non-endpoints, the remaining problem
seeks to find a minimum vertex cover on a bipartite
network. This problem is polynomially solvable.

From the aforementioned networks, one may
compose more complex networks such as a ring
of trees (or stars)—a common configuration in
metropolitan area networks where the ring serves
as a backbone and the tree serves as an access net-
work—and peering connections between two tier-1
Internet Service Providers (ISPs) whose connectiv-
ity resembles that of a bipartite graph.
4. Special cases arising in large-scale

communication

Most large-scale communication topologies
consist of a set of client nodes, which connect to
router nodes that serve as hubs. The routing nodes
communicate with one another via some mesh
connectivity providing survivability in the event
of equipment failure. In this section we analyze
the MFPP on such topologies, describing cases in
which the decomposition approach given in the
previous section executes in polynomial time and
showing a case in which a greedy vertex cover heu-
ristic solves the MFPP to optimality.

Consider a topology described by a set of client
nodes Nc and router nodes Nr (N = Nc [ Nr, and
Nc \ Nr = ;). Each arc is bidirectional, and either
links a client to a router, or links two routers. We
call such topologies semi-bipartite. This structure is
inspired by a typical communication topology
(either small or large scale), in which each client
node is connected to the larger network by at least
one hub node. All routing from one client node to
another goes from the client node to one of its hub
nodes, through a (usually brief) series of hub node
links, and finally to its destination. In our frame-
work client nodes do not connect to one another
directly.

The resulting topology is not a bipartite graph,
since there exist arcs whose endpoints both lie
within Nr. However, the properties of bipartite
graphs mentioned in Section 3.3 play a role in per-
mitting problems of this nature to be solved to
optimality.

Proposition 9. Consider an MFPP instance with

complete routing on a semi-bipartite graph G(N, A),

where N is partitioned into Nc and Nr, jNcj P jNrj.
Define bA ¼ fði; jÞ 2 A : i 2 N c or j 2 N cg. If

there exists a matching on the network ĜðN ; bAÞ of

size Nr, then an optimal solution H exists in which

H = Nr.
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Proof. If a matching of cardinality jNrj exists to bG,
then the minimum cardinality vertex cover on bG
has jNrj nodes. Clearly, filtering the set of nodes
Nr is one such vertex cover to both bG and G. Also,
since all non-endpoints lie in Nr, the necessary con-
ditions given by Propositions 5 and 6 hold true,
and H = Nr is an optimal solution. This completes
the proof. h

It is common for the conditions of Proposition
9 to hold true in large-scale communication net-
works, since jNrj is normally much smaller than
jNcj, and the degree of nodes in Nr is generally
much larger than that of the nodes in Nc. In fact,
either of the following two conditions are sufficient
for a matching of cardinality jNrj to exist in bG.

Condition 1. For each (u, v) 2 C with u 2 Nc,
there commonly exists a primary path and a set
of backup paths. Suppose that for every i 2 Nr,
there exists a primary path p 2 R(u, v) for some
(u, v) 2 C, u 2 Nc, such that arc (u, i) is the first arc
in p. (A ‘‘primary’’ path may serve as the path
taken during normal system operation, for
instance.) Clearly, this would satisfy the matching
condition of Proposition 9. If in addition we
assume complete routing, then the hypotheses of
Proposition 9 are fulfilled.

Condition 2. Define dmin
r to be the minimum

degree of a node in Nr on the bipartite graph bG,
and define dmax

c to be the maximum degree of
any node in Nc on bG (or G). If dmin

r P dmax
c , then

Hall’s Theorem [12] can be used to guarantee a
matching of cardinality jNrj. This condition is sat-
isfied in many practical communication networks,
since the degree of hub nodes is typically much lar-
ger than the degree of client nodes. Hall’s Theorem
guarantees a matching of size jNrj if and only if for
every subset B � Nr, we have that jNðBÞjP jBj,
where NðBÞ represents the set of nodes {k 2 Nc:
(i, k) 2 A for some i 2 B}. To see that the condi-
tions of Hall’s Theorem hold under Condition 2,
suppose by contradiction that a B � Nr existed
such that jNðBÞj < jBj. Then since NðBÞ � N c,
the total number of edges emanating from NðBÞ
is no more than dmax

c jNðBÞj, and since B � Nr,
the total number of edges emanating from B in
graph bG is no fewer than dmin

r jBj. Since
jNðBÞj < jBj and dmax
c 6 dmin

r , we have that
dmax

c jNðBÞj < dmin
r jBj. However, since edges inci-

dent to nodes in B are connected only to nodes
in NðBÞ, while edges incident to nodes in NðBÞ
may connect to nodes other than those in B, we
must have that dmax

c jNðBÞjP dmin
r jBj. This contra-

dicts the assumption that jNðBÞj < jBj and
dmax

c 6 dmin
r , and hence, a matching must exist.

Remark 10. Proposition 9 addresses the MFPP
with complete routing on a semi-bipartite graph
when there exists a matching of size Nr. However,
the general problem on such graphs in which no
guarantee exists on the size of the matching is
strongly NP-hard. While a proof of this claim is
omitted for the sake of brevity, the required trans-
formation copies the nodes and edges of a VC
instance onto a subgraph, and adds a dummy node
w that is adjacent to each of the transcribed nodes.
The nodes in this subgraph form the set of routing
nodes, with connectivity as described above. The
cardinality of the client node set equals the number
of nodes in the routing set, and each client node is
connected to node w. Routing between each pair
of nodes is done by a single-link path if possible,
and otherwise by a two-link path via node w. After
putting a filter on node w as required by Lemma 4,
the problem now reduces to a minimum vertex
cover problem on the graph transcribed from the
VC instance.

One means of estimating the solution of the
MFPP has been by executing the following well-
known greedy vertex cover heuristic on the graph
G.
4.1. Greedy vertex cover heuristic (GVCH)

For each i 2 N, initialize bH :¼ ;, and let di

equal the number of nodes j 2 N such that either
(i, j) 2 A or (j, i) 2 A. We call di the uncovered

degree of node i, since it represents the number
of edges incident to i that have not yet been
covered.

Step 1. Choose node i such that di = maxk2Ndk. If
di = 0, stop and return the heuristic solu-
tion bH . Otherwise, proceed to Step 2.



Fig. 1. Example topology demonstrating the tightness of
Lemma 11.
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Step 2. Add node i to bH . Set di = 0, and for all
arcs (i, j) 2 A or (j, i) 2 A, reduce dj by
one. Return to Step 1.

Since this algorithm is an incumbent methodol-
ogy for solving the filter placement problem, it is
interesting to characterize sufficient conditions
under which GVCH yields an optimal solution
for MFPP instances.

Lemma 11. Consider a network with complete (and

destination-based) routing and a semi-bipartite

topology, and define dmin
r and dmax

c as in Condition

2. Then if dmin
r > dmax

c , GVCH will identify the

optimal filter placement problem solution to MFPP.

Proof. Under the assumptions of Lemma 11, Con-
dition 2 holds true, which implies by Proposition 9
that an optimal solution H = Nr exists to MFPP.
At each step of GVCH, the node with the largest
uncovered degree is chosen. The first vertex chosen
must clearly belong to Nr. By induction, suppose
that the first k < jNrj vertices are selected from
Nr to belong to bH . Then each unselected node in
Nr must still have an uncovered degree of at least
dmin

r , since no nodes from Nc belong to bH . Since
the uncovered degree of a node is non-increasing
through the algorithm, the maximum uncovered
degree of any node in Nc is no more than dmax

c ,
and hence the k + 1st node selected in bH must also
belong to Nr. Finally, this process will repeat
exactly jNrj times until all nodes in jNrj are cov-
ered, or else dmin

r ¼ 0 which would contradict the
assumption that dmin

r > dmax
c . This completes the

proof. h

It is interesting to show that the condition of
Lemma 11 is tight; that is, no guarantee on an
optimal solution via the GVCH exists if
dmin

r ¼ dmax
c . Fig. 1 displays a network where

Nc = {1, 2, 3, 4, 5} and Nr = {6, 7, 8}. By Proposi-
tion 9, the optimal MFPP solution would filter
all nodes in Nr. Observe that dmax

c ¼ 1 and
dmin

r ¼ 1. GVCH would select nodes 6 and 7 first
(in some order), but would have an arbitrary
choice to make between nodes 5 and 8, since the
uncovered degree of nodes 5 and 8 would equal
1 and all other uncovered node degrees would be
zero. If node 5 were chosen, the resulting solution
would indeed be an optimal vertex cover, but not a
feasible filter placement since node 8 could forge a
packet’s address as node 5 when sending to any
node other than 5.

Furthermore, note that it is common for nodes
to exist whose purpose is to perform routing oper-
ations among the routers themselves, and only lim-
ited service to client nodes (or perhaps none at all).
The presence of these ‘‘super-routers’’ violates the
assumptions of Lemma 11, since Nmin

r would likely
be smaller than N max

c . In this case, the GVCH may
fail to place filters on super-routers, despite the
fact that these nodes can be used to attack a broad
array of client nodes.
5. Summary and future research

In this paper, we introduce a problem arising in
the strategic deployment of packet filters to reduce
the susceptibility of computer networks to DDoS
attacks. We prove that the problem of providing
perfect security against forged address attacks
using the least number of packet filters is strongly
NP-hard, and under common network routing
assumptions, can be solved by decomposing the
network into multiple vertex cover problems.
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However, for several special topological struc-
tures, this minimum filter placement problem is
polynomially solvable. The greedy vertex cover
heuristic commonly used in practice is guaranteed
to provide the optimal solution to the minimum
filter placement problem under some basic topolo-
gies and routing policies, but not necessarily under
those that commonly arise in more complex large-
scale communication systems (such as the
Internet).

A large number of related problems may be
investigated stemming from the results of this
study. One project that we will undertake is a sce-
nario in which imperfect security is required,
since perfect security often requires a rather large
deployment of packet filters. Such an approach
might try to limit the total number of possible
attacks, the maximum cardinality of attacks that
can commence from a particular node, or the
maximum number of origins that can attack
any node. The latter metric is perhaps the most
useful, since it allows a node under attack to
focus the list of suspected attackers to a limited
subset of candidates. A different objective may
minimize the expected number of filters through
which legitimate packets must traverse, given a
probability distribution on how often certain
origin–destination pairs exchange packets, rather
than the cardinality of filters placed in the
network. Similarly, an expectation can be
placed on the frequency of attacks from various
sources, given a degree of trust established for
each node.
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