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Abstract

This paper studies the quality of service (QoS) provision problem in noncooperative networks where
applications or users are selfish and routers implement generalized processor sharing based packet
scheduling. We formulate a model of QoS provision in noncooperative networks where users are given
the freedom to choose both the service classes and traffic volume allocated, and heterogenous QoS
preferences are captured by a user’s utility function. We present a comprehensive analysis of the
noncooperative multi-class QoS provision game, giving a complete characterization of Nash equilibria
and their existence criteria, and show under what conditions they are Pareto and system optimal. We
show that, in general, Nash equilibria need not exist, and when they do exist, they need not be Pareto
nor system optimal. For certain “resource-plentiful” systems, however, we show that the world indeed
can be nice with Nash equilibria, Pareto optima, and system optima collapsing into a single class.
We study the problem of facilitating effective QoS in systems with multi-dimensional QoS vectors
containing both mean- and burstiness-related QoS measures. We extend the game-theoretic analysis
to multi-dimensional QoS vector games and show under what conditions the aforementioned results
carry over.
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1 Introduction

1.1 Background

With the increased deployment of high-speed local- and wide-area networks carrying a mul-
titude of information from e-mail to bulk data to voice, audio, and video, provisioning ad-
equate quality of service (QoS) to the diverse application base has become an important
problem [3,13,27,33]. This paper describes a QoS provision architecture suited for best-effort
environments, based on ideas from microeconomics and noncooperative game theory.

We construct a noncooperative multi-class QoS provision model where users are assumed to
be selfish, and packets are routed over switches where, as a function of their enscribed priority,
differentiated service is delivered. The diverse spectrum of application QoS requirements is
modeled using utility functions. Users or applications 4 can choose both the service classes and
the traffic volumes assigned to them. The interaction of users behaving selfishly in accordance
with their QoS preferences leads to a noncooperative game whose dynamic properties we seek
to understand.

The traditional approach to QoS provision uses resource reservations along a route to be
followed by a traffic stream so that the stream’s data rate and burstiness can be suitably ac-
commodated. Although research abounds [8,9,12,13,18,28,33,35,36,10], analytic tools for com-
puting QoS guarantees rely on shaping of input traffic to preserve well-behavedness across
switches which implement some form of packet scheduling discipline such as generalized pro-
cessor sharing (GPS), also known as weighted fair queueing [11,35]. Real-time constraints of
multimedia traffic and the scale-invariant burstiness associated with self-similar network traf-
fic [29,39,48,37] limit the shapability of input traffic while at the same time reserving bandwidth
that is significantly smaller than the peak transmission rate. Thus QoS and utilization stand in
a trade-off relationship with each other [37] and transporting application traffic over reserved
channels, in general, incurs a high cost.

This makes it important to organize today’s best-effort bandwidth, as examplified by the
Internet, into stratified services with graded QoS properties such that the QoS requirements of
a compendium of applications can be effectively met. This is particularly useful for applications
that possess diverse but—to varying degrees—flexible QoS requirements. It would be overkill
to transport such traffic over reserved channels. On the other hand, relying on homogenous
best-effort service, characteristic of today’s Internet, would be equally unsatisfactory. A dual
architecture capable of supporing reserved and stratified best-effort service is needed which,
in turn, helps amortize the cost of inefficiencies stemming from overprovisioned resources for
guaranteed traffic through the filling-in effect [25].

Recently, microeconomic/game-theoretic approaches to resource allocation have received
significant interest with application domains spanning a number of different con-

4 We will use the terms users, applications , and sometimes, players, interchangeably.
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texts [7,15,16,19,21,24,26,30,34,38,41,42,45,46]. The overall goal of this area is to formulate
a resource allocation problem in the framework of microeconomics and game theory, and show
that under certain conditions, the system achieves “desirable” allocations from stabilibity, fair-
ness, and optimality points-of-view. The latter are important in making stratified best-effort
bandwidth practically usable by QoS-sensitive applications: predictable service, both in terms
of dynamic stability and the rendering of appropriate QoS, are crucial prerequisites to feasibly
realizing such an architecture.

The models and approaches proposed in the literature differ along several dimensions, some
of the important ones being whether applications or users are assumed to be cooperative or
selfish, whether pricing is used or not, and how much computing responsibility is delegated
to the user. Several papers have addressed the issue of multi-class QoS provision in high-
speed networks [7,22,31,42,41,38]. Some of the works employ a cooperative framework or place
significant computing responsibilities on the part of the user [31,41], some investigate the effect
of pricing incentives [7], and others represent flow/congestion control and routing models that
only partially address the quality of service problem [22,34,42].

Our approach differs from previous works in two significant ways. First, we give a comprehen-
sive noncooperative resource allocation model for multi-class QoS provision where users are
endowed with heterogenous QoS preferences and make decisions based on selfish user needs.
Second, users are allowed to choose both the service classes and traffic volumes assigned to
them at a router or switch and the properties associated with utility functions are derived
from the networking context. The latter leads to non-concave utility functions and we analyze
its impact on the resulting game structure.

Our model, although principally intended to model resource sharing and arbitration at a
router—the building block of wide area networks—in the context of QoS provision, is more
general in nature and can be applied to other settings including the delivery of packaged
network services by an ISP (Internet Service Provider). Specifically, assuming that a service
provider exports a number of different services—platinum, gold, silver, bronze—to the user,
it is generally the case that the more users subscribe to a particular service class the less the
quality of service experienced in that class due to congestion effects. The behavioral character-
istics of such a system when users have heterogenous preferences and act selfishly to optimize
individual utility falls within the framework of the model studied here.

1.2 Basic notations and modeling assumptions

Our results rely on a set of elementary assumptions which are described next. The formal
network QoS provision game is defined in Section 2. We are given n applications or users and
m service classes where each user i ∈ [1, n] has a traffic demand given by its mean data rate λi.
Each user can choose where and how much of its traffic to apportion to the m service classes
given by its allocation vector Λi = (λi1, λi2, . . . , λim)T where λij ≥ 0 and

∑
j λij = λi.

The QoS achieved in service class j ∈ [1,m] is determined by a QoS function cj (e.g., packet
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loss rate), and cj is monotone in qj where qj =
∑

i λij. The generalization to multi-dimensional
QoS vectors is shown in Section 3.4. Each user is endowed with a utility function Ui(λij, cj)
which indicates the satisfaction received by user i when sending volume λij of traffic receiving
QoS level cj through service class j. We assume that Ui is monotone in λij, cj.

The above assumptions are fairly natural given that all that we have said is that the QoS
associated with a service class deteriorates when more traffic is pumped into it, users disapprove
of bad service quality, and users don’t mind sending more if the “cost” is the same. Two
simple observations follow from the above. First, since cj is a function of the allocation vectors
Λ1, Λ2, . . . , Λn, by function composition, Ui is a function of the allocation vectors and the latter
constitute the only independent variables. Second, by composition of monotone functions, Ui

remains monotone in λij. These implied facts will become relevant later.

1.3 Summary of new results

Before we state the results, three notions are of import to their understanding (defined formally
in Section 2.3): Nash equilibrium, Pareto optimum, and system optimum. Roughly speaking,
a configuration is a Nash equilibrium if each player cannot improve its individual lot through
unilateral actions affecting its traffic allocations. Thus if every player finds herself in such a
“local optimum,” then from the noncooperative perspective, the system is at an impasse—i.e.,
stable rest point. A configuration is a Pareto optimum if in order to improve the lot of some
player, the lot of others must be sacrificed. A configuration is system optimal if the sum of the
individual lots is maximized.

Nash equilibria and existence conditions We give a complete characterization of Nash
equilibria and their existence conditions. We show that Nash equilibria need not exist and
we show that this is attributable to the non-concave—in particular, quasi-concave 5 but not
concave—nature of utility functions arising in the general networking context. For the special
case of unsplittable games, however, where a user’s traffic flow is prohibited from being split
into separate subflows going into different service classes, we show that Nash equilibria always
exist.

Relationship to Pareto and system optimality We analyze the conditions under which
Nash equilibria—if they exist—are Pareto and system optimal. The latter is shown to be related
to the Pareto optimality of a certain normal form configuration derived from Nash equilibria.
We also show that there are Nash equilibria that are Pareto but not system optimal, and that
there exist Nash equilibria that are not Pareto optimal and vice versa.

Resource-plentiful systems We show that for certain “resource-plentiful” systems, Nash

5 Recall that a (vector) function f(x) is quasi-concave (quasi-convex ) iff for all ε the set {x : f(x) ≥ ε}
({x : f(x) ≤ ε}) is convex.
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equilibria, Pareto optima, and system optimal all conincide collapsing into a single class. This
item is interesting from the perspective that it gives a sufficient condition under which Nash
equilibria are guaranteed to be desirable in the optimality sense. We also show that for resource-
plentiful systems a certain self-optimization procedure leads to quick, robust convergence to
globally optimal Nash equilibria.

Extension to multi-dimensional QoS vectors We extend the game-theoretic analysis
to multi-dimensional QoS vector games containing s ≥ 1 different QoS measures. The mono-
tonicity assumptions described in Section 1.2 are generalized to the s-dimensional QoS vector
case. We show that the main results carry over if a uniformity assumption is placed either on
application preference or on QoS vector functions.

1.4 Related work

Microeconomic approaches to resource allocation In recent years, there has been a
surge of work in “microeconomic approaches to resource allocation” where ideas and tools
from microeconomics and game theory have been applied in the formulation and solution
of problems arising in flow control, routing, file allocation, load balancing, multi-commodity
flow, and quality of service provision, among others [15,42,22,21,34,24,26,16,45,46,30,7,41,38].
A collection of papers covering a broad range of topics can be found in [6]. A brief survey
of some of the literature is provided in [14]. Some standard references to game theory and
microeconomics include [1,17,40,43,44].

Many of the earlier papers, including some recent ones [16,15,26,31,41], have espoused a coop-
erative game theory framework to model user interactions and derive results based on Pareto
optimality. Although fruitful to investigate due to the powerful tools available in cooperative
game theory, a potential drawback of this approach is the assumption that users or applica-
tions behave cooperatively in networking contexts. For the long-term establishment of virtual
circuits or the leasing of telephone lines, the cooperative user model may indeed be viable 6 .
However, for best-effort applications that comprise much of today’s Internet traffic, users are
largely anonymous with respect to thousands of other users who concurrently share network
resources at any given time, and a noncooperative framework where each user is assumed to
optimize individual performance based on his or her limited available information about the
network state is better suited.

The noncooperative framework can be traced as far back as ’81 to a paper by Yemini [49] who
has since been more strongly associated with the cooperative approach. The noncooperative
network resource allocation approach has been actively pursued by Lazar and his co-workers

6 It is also possible that intermediaries perform long-term leasing of network resources which are
then packaged and made available as high-level services to the user. Aspects of such activities may
be modeled as coalition behavior.
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beginning in the late ’80s [20,2] with more recent work carried out jointly with Korilis and
Orda [21–24,34]. Their main work has revolved around an optimal flow control problem, and
the development of techniques needed to show the existence of Nash equilibria [22]. Korilis
et al. [23,24] have also looked at the problem of using interventions by an impartial external
entity—the network manager—to steer a system toward Nash equilibria that are system opti-
mal. Of special interest is Orda et al.’s work on routing games [34] which is intimately related
to the multi-class QoS provision model studied in this paper. This is further explicated below.

Another significant thrust in noncooperative network games is due to recent work by
Shenker [42] where it is shown how choosing a packet scheduling discipline can influence the
nature of the Nash equilibria attained. In the context of a congestion control model, it is shown
that for a large class of packet scheduling disciplines, a configuration being Nash need not im-
ply that it is Pareto optimal. A packet scheduling discipline called Fair Share is described
and it is shown to lead to Nash equilibria with desirable properties including uniqueness and
reachability by a class of self-optimization procedures.

On the implementation side, the work of Waldspurger et al. [45] deserves attention since it is
one of the few works that have built a nontrivial working system—CPU allocation and load
balancing in workstation networks—and demonstrated that a system based on microeconomic
principles can indeed work in practice. Other implementations worth noting include Wellman’s
work on multicommodity flow problems [46,47].

QoS-related network games Several papers have addressed the specific issue of multi-class
QoS provision in high-speed networks using microeconomic models [7,31,41,19]. In [31,41],
utility functions are defined with link bandwidth and switch buffers acting as substitutable
resources. Pareto-optimal allocation of resources among service classes is affected either by the
network exercising admission control [41] or by users performing purchasing decisions [31]. In
both approaches, it is assumed that QoS guarantees are computable, given specific resource
reservations. As stated earlier, an important goal of our approach is to shield the user from
having to make complex computations to estimate service quality.

In [7], a general framework for investigating pricing in networks is proposed with service dis-
cipline and pricing policy acting as design variables. Simulation results are shown that depict
the existence of “desirable” price ranges related to system optimality. The simulations were
carried out using a 2-service class packet scheduling algorithm where a shared FIFO queue
was partitioned into two segments with high priority packets being queued at the front and
low priority packets being queued at the back. Four types of applications with different QoS
requirements were tested with priority settings set either to 1 or 2.

Comparison with congestion control models by Korilis et al. and Shenker The flow
or congestion control models of Korilis et al. [22] and Shenker [42] represent a form of quality
of service provision and we explicate the differences between our model and theirs, given that
all three follow the noncooperative framework. The main difference between the models by
Korilis et al. and Shenker, and the model studied in the paper is that, indeed, theirs is a
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flow/congestion control model . Phrased in the language of the QoS provision model defined
in Section 1.2 (a formal definition is given in Section 2.3), both [22] and [42] correspond to
the situation where n = m, each player i is permanently assigned to the fixed service class i,
and either λii ≥ 0 [42] or 0 ≤ λii ≤ λi [22], but in both cases, λij = 0 for i 6= j. That is, a
player, being tied to a fixed service class, has the option of controlling how much traffic [42]—
or using what time schedule [22]—to send his traffic but not where. Since delay or any other
performance measure will deteriorate with increased traffic volume, but volume itself, keeping
other things fixed, will generally increase utility, there is an optimum volume assignment—i.e.,
optimal flow or congestion control—that maximizes player i’s utility.

In our model, there is no a priori fixed 1-1 correspondence of players to service classes. Indeed,
the very essence of the QoS provision problem is to give each player i ∈ [1, n] the freedom
to choose where she wants to send her traffic, from service class 1 all the way to service class
m. Hence, our QoS provision model is more general and fundamentally different from the flow
control models in its implications, being more complex and producing equilibria structures
that are different from those of [22], [42].

Comparison with Orda et al.’s routing model In [34], Orda et al. present a noncoop-
erative routing game where a set of users with fixed throughput demands have a choice of
assigning their flow to a set of parallel links or routes . Although motivated by different con-
texts, assuming independence between the parallel links—i.e., the performance characteristics
(e.g., queueing delay) on some link or route depends only on the aggregate traffic volume as-
signed to it—a 1-1 correspondence can be established between Orda et al.’s routing model and
the QoS provision model studied here.

Phrased in our language, the set of parallel links correspond to the service classes j ∈ [1,m], and
a user i’s average throughput demand λi is assigned to the m routes given by the assignment
vector Λi = (λi1, λi2, . . . , λim). Orda et al. then define a cost function J i

j which corresponds
to our utility function Ui(λij, cj). Both depend on the player i as well as the service class (or
route) j. Since J i

j is interpreted as a cost function, their’s is a minimization problem.

Orda et al. study the routing game under three successively more restrictive assumptions on the
cost function J i

j (called type-A, type-B, and type-C). In type-B and type-C, the cost function
J i

j takes on the form λijcj(qj) thus losing its dependence on i except for the weighting term λij.
As is formally defined in Section 2.3, in our QoS provision game, the utility function has the
form λijUi(cj(qj)); thus the utility’s dependence on heterogenous user preferences is preserved.
Hence the results proved in [34] for type-B and type-C functions correspond to a population
of users with homogenous preferences, and thus do not carry over to the more general QoS
provision game studied here.

As for type-A games where dependence on individual preferences is preserved, the assumption
is made that J i

j is convex (concave in our context) in λij. However, as has been explicated
in Section 1.2, the two monotonicity assumptions—cj is increasing in qj and Ui is decreasing
in cj—which are basic postulates applicable to most networking contexts of interest, are in-
compatible with the assumption that J i

j is convex is λij. In fact, a simple consequence of the
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monotonicity assumption is that J i
j is quasi-convex in λij. This is so since the composition

of the two monotone functions again relates Ui monotonically (decreasing) to λij, and mono-
tone functions are trivially quasi-convex. Convexity and quasi-convexity, in the QoS provision
context, however, can lead to different consequences.

Many-switch systems In [4,5], we describe an architecture for noncooperative multi-class
QoS provision in many-switch systems 7 or wide area networks. Motivated by the analytical
results and insights of this paper, we use the single-switch model as a building block in con-
structing a scalable architecture for multi-class QoS provision in WAN environments. We solve
the end-to-end QoS provision problem in many-switch systems and the inter-switch couplings
they introduce using distributed control that shields the user from complex computations while
preserving the basic premise of selfishness. We show that the network system is able to provide
predictable, stratified service without resource reservation and is adaptive under stationary
and nonstationary changes to network state.

The rest of the paper is organized as follows. In Section 2, we describe the overall set-up
and formulate the network QoS provision model. Section 2.3 discusses the differences between
our model and the model of Orda et al. [34], and the impact of heterogenous preferences in
bringing about non-concave utilities. This is followed by Section 3 which gives a game-theoretic
analysis of the QoS provision game structure. Section 3.3 discusses the resource-plentiful case
and Section 3.4 extends the game-theoretic analysis to multi-dimensional QoS vectors. The
proofs of our results are contained in a separate Appendix for the reader’s reference. We
conclude with a discussion of our results and future work.

2 Noncooperative network QoS provision game

2.1 Network model

The network model is depicted in Figure 5.1. A switch or router is shared by two traffic
classes—reserved and nonreserved (or best-effort)—where the former constitutes background
or cross traffic and the latter is the aggregate application traffic. That is, λNR =

∑n
i=1 λi where

λ1, λ2, . . . , λn are the mean arrival rates of n application traffic sources. The service rate of
the system is given by µ and we will assume that the switch implements a form of GPS packet
scheduling with service weights α1, α2, . . . , αm where αj ≥ 0, j ∈ [1,m], and

∑m
j=1 αj = 1.

Here, m denotes the number of service classes. The total service rate µ is split between the
two traffic classes µ = µR + µNR. Service class j of the nonreserved traffic class thus receives
a service rate of αjµ

NR.

7 Also called network of switches in [42].
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In keeping with the ATM framework, we assume fixed-size packets (i.e., cells) and we employ
output-buffered switches. We implement a generic form of weighted fair queueing achieving
perfect isolatedness and conservation of work. The latter come into effect when performing
simulations. We ignore efficient implementation considerations of WFQ, treating the processing
cost at switches as fixed. The assumption of fixed-size packets simplifies the faithful rendering
of service rates commensurate with the weights α1, . . . , αm.

2.2 Application model

Utility function Given a generic network model where packets are tagged by priority labels
receiving differentiated service at switches, we need a framework and control mechanism which
is able to exploit this feature to provide service to applications with diverse QoS needs such that
the collective good of the whole system is maximized. A utility function is a map U : Rs → R+,
s ≥ 1, from QoS vectors to the nonnegative reals indicating the level of satisfaction or utility
a certain quality of service brings to an application or user. It is a purely theoretical tool to
reason about application behavior assuming certain qualitative shapes about its preferences.
Figure 5.2 shows two candidate utility functions, on the left, for “nonurgent” e-mail, and on
the right, for a real-time video application. The packet loss rates have been exaggerated for
illustrative purposes.

The shapes of the utility functions indicate that non-urgent e-mail is much more tolerant to
high packet loss, and unless the loss rate is “exceedingly” high, the e-mail application is almost
equally satisfied whether the loss rate is 0 or somewhat higher. The video application, on the
other hand, can only tolerate much smaller loss rates, and its utility is concentrated toward 0.

Selfishness Selfishness, in our context, will mean that each application i ∈ [1, n] will try to
take actions so as to maximize its individual utility Ui. The forms for Ui as well as user i’s
decision variables for the multi-class QoS provision problem are defined in the next section.

2.3 Definition of network QoS provision game

QoS provision problem Assume we are given m service classes and n applications or players
represented by their mean arrival rates λ1, . . . , λn and utility functions U1, . . . , Un. We arrive
at a resource allocation problem in the following way. Let λij ≥ 0, i ∈ [1, n], j ∈ [1,m], denote
the traffic volume of the i’th application assigned to service class j. Thus, λi =

∑m
j=1 λij. That

is, application i is given the freedom to choose which service classes to assign her traffic to and
how much. We also consider the special case when traffic assignments are restricted to be “all
in one bag,” i.e., λij ∈ {λi, 0}, for all j ∈ [1,m].

Let Λ = (λij : i, j) denote the resource assignment matrix, and let c1, c2, . . . , cm be the packet
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loss rates of the m service classes. Each packet loss rate is a function of Λ,

cj = cj(Λ), j ∈ [1,m].

Assuming isolatedness (cf. Section 1.2), we have cj = cj(qj) where qj =
∑n

i=1 λij is the to-
tal traffic volume assigned to class j. This relation is only approximate for work conserving
switches. The precise modeling of nonlinearities arising from work conservation, although in-
teresting in its own right, is a general issue not specific to our context, and we will ignore its
effect in this paper.

We will also make the assumption that cj is monotone in qj, i.e., dcj/dqj ≥ 0, a property
satisfied by virtually all service disciplines of interest 8 . We will also assume that dUi/dc ≤ 0.
That is, making the packet loss rate smaller 9 can never decrease the utility experienced by
player i.

The model can be extended to the case when application QoS requirements are represented
by multi-dimensional QoS vectors x ∈ Rs, s ≥ 1. For example, in addition to packet loss rate,
x may specify delay requirements as well as restrictions on their fluctuations such as jitter.
It turns out that the analysis of the multi-dimensional case reduces to the scalar case under
certain conditions, and we will proceed with packet loss rate c as the sole QoS indicator.

The weighted utility of application i, given assignment Λ, is defined as

Ūi(Λ) =
m∑

j=1

λijUi(cj).

Note that the utility function used in Section 1.2, Ui(λij, cj), corresponds to λijUi(cj). Subject
to the above constraints, the static optimization problem can be formulated as

max
Λ

Ū(Λ) =
n∑

i=1

Ūi(Λ). (2.1)

This is a nonlinear programming problem with equality constraints.

Nash equilibria, Pareto optima, and system optima Any Λ∗ that satisfies (2.1) is
called system optimal . Thus system optimality corresponds to optimizing the usual resource
allocation objective function. An assignment Λ∗ is Pareto optimal if for all Λ,

∀i : Ūi(Λ
∗) ≤ Ūi(Λ) =⇒ ∀i : Ūi(Λ

∗) = Ūi(Λ).

8 We sometimes use continuous notation for expositional purposes. Our results do not depend on cj

and Ui being smooth.
9 An analogous assumption is made in the multi-dimensional QoS vector case (Section 3.4).
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That is, Pareto optimality states that total utility Ū can only be improved at the expense of one
or more individual utility Ūi. In general, Pareto optimality does not imply system optimality.
But, clearly, Λ being system optimal implies Λ is Pareto optimal.

The formulation of Nash equilibrium needs a further definition. Given Λ, let Λi =
(λi1, λi2, . . . , λim) denote the i’th player’s assignment vector. Λi is also called the strategy
of player i. Let

Li(Λ) = {Λ′ : Λ′
k = Λk, k 6= i, and ‖Λ′

i‖1 = λi }

where ‖x‖1 =
∑m

j=1 |xj|. That is, Li(Λ) is the set of all unilateral strategies for player i.

An assignment Λ∗ is a Nash equilibrium if ∀i ∈ [1, n], ∀Λ ∈ Li(Λ
∗),

Ūi(Λ) ≤ Ūi(Λ
∗).

That is, in a Nash equilibrium, player i cannot improve its individual utility Ūi by unilaterally
changing its strategy.

In general, a system optimal assignment need not be a Nash equilibrium and little can be said
about the relation between system optimality, Pareto optimality, and Nash equilibria. In the
context of the noncooperative network environment where every player acts selfishly, we are
interested in characterizing assignments that are Nash since they represent stable fixed points
of the system—i.e., equilibria. From a resource allocation perspective, we would also like to
know under what conditions Nash equilibria are Pareto and system optimal.

Simplifying assumption To make the analysis tractable, we will work with (unit) step
utility functions where for each player i ∈ [1, n],

Ui(c) =




1, if c ≤ θi,

0, otherwise.

Here θi ≥ 0 is a threshold that represents the i’th application’s preference. Since cj = cj(qj),
j ∈ [1,m], there exist bij ≥ 0 such that

Ui(cj(qj)) =




1, if qj ≤ bij,

0, otherwise.

With a slight abuse of notation, we will sometimes write Ui(qj) for the composite function
when the distinction is clear from the context.

Non-concave utilities The simplification is reasonable from two perspectives. First, from
the technical side, we do not lose very much by sacrificing continuity of the utility function
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since Lemma 3.5—which shows the existence of 2-application/2-service class games with no
Nash equilibria—can be shown to hold even when Ui is continuous and quasi-concave (but
not concave) in each λij. This also holds for Theorem 3.6 which generalizes Lemma 3.5 to
n-application/m-service class games. The crucial factor in proving non-existence is the quasi-
concavity property which allows Ui to be concave and convex over local segments and thus
produce “holes” when forming convex combinations. In particular, even though Ui is quasi-
concave in each λij, Ūi =

∑
j λijUi need not be quasi-concave.

Second, threshold or step utility functions have been implicitly applied in practical and an-
alytical settings to model and encode/convey QoS preferences. For example, hard real-time
systems, as defined in the real-time systems literature, have this “all or nothing” property.
Furthermore, irrespective of whether the user of an application possesses a step utility pref-
erence or not, when interacting with a network system through an application, the user must
ultimately code and convey her preference to the underlying system. Bounds on packet loss
rate, delay, jitter, and other QoS measures have been used to encode application traffic QoS
requirements in different contexts including ones where they are used to compute resource
reservations and in some commercial applications [32].

3 Properties of noncooperative QoS provision game

3.1 Nash equilibria and existence conditions

This section investigates the structure of Nash equilibria giving a complete characterization of
Nash equilibria in the noncooperative multi-class QoS provision game as well as their existence
conditions. First, let us impose a total order on the n players given by

i ≤ i′ ⇐⇒ θi ≤ θi′ .

Unless otherwise stated, we will assume such a fixed order in the rest of the paper. Following
is a simple but often used fact on the induced ordering of the traffic volume thresholds bij. It
is a consequence of the total ordering of θi and the monotonicity of cj.

Proposition 3.1 ∀i ∈ [1, n − 1], ∀j ∈ [1,m], bij ≤ bi+1j.

Next, we define certain subsets of service classes—parameterized by user i—that come into
play when characterizing Nash equilibria. Let I+

i = { j ∈ [1,m] : qj > bij, λij > 0 }, I−
i =

{ j ∈ [1,m] : qj < bij }, and I0
i = { j ∈ [1,m] : qj = bij }. That is, I+

i denotes the set of service
class indices where player i has assigned a positive flow and the total traffic volume allocated
exceeds player i’s threshold. Thus user i attains 0 utility in these service classes. Conversely for
I−
i and I0

i , however, it is not required that user i have a nonzero assignment in these classes.
Let qi

j =
∑

k 6=i λkj. That is, qi
j is the traffic volume assigned to service class j not counting

player i’s contribution (if any). Hence qj = λij + qi
j.
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Let J+
i = { j ∈ [1,m] : qi

j ≥ bij } and J−
i = { j ∈ [1,m] : qi

j < bij }. Hence J+
i is the set of

service classes where, irrespective of player i’s actions, player i cannot garner any utility. Let
J∗

i = { j ∈ [1,m] : bij − qi
j = mink∈J−

i
bik − qi

k }. J∗
i is the subset of service classes of J−

i where
the positive utility achievable by user i is minimal.

The next two results give uniform upper bounds on the individual utility of a fixed player
where uniformity is with respect to all unilateral strategy changes by the player. Recall that
the latter is denoted by Li(Λ) where Λ is any configuration.

Proposition 3.2 Given Λ, i ∈ [1, n], let vi =
∑

j∈J−
i

bij − qi
j. Then

∀Λ′ ∈ Li(Λ), Ūi(Λ
′) ≤ vi.

Proposition 3.3 Given Λ, i ∈ [1, n], let λi > vi and J+
i = ∅. Then ∃j∗ ∈ J∗

i such that

∀Λ′ ∈ Li(Λ), Ūi(Λ
′) ≤ vi − (bij∗ − qi

j∗).

The two propositions are used in the proof of the following theorem which gives a complete
characterization of Nash equilibria.

Theorem 3.4 (Nash characterization) Λ is a Nash equilibrium iff ∀i ∈ [1, n] either

(a) I+
i = ∅, or

(b) I−
i = ∅, J+

i 6= ∅, J−
i ⊆ I0

i , or
(c) I−

i = ∅, J+
i = ∅, ∃ j∗ ∈ J∗

i such that J−
i \ {j∗} ⊆ I0

i .

In words, for each player i, one of three conditions must hold: a user either achieves full
individual utility λi (part (a)), or partial utility vi =

∑
j∈J−

i
bij − qi

j “dumping” the excess

traffic λi − vi into one or more service classes belonging to J+
i (part (b)), or partial utility

vi − (bij∗ − qi
j∗) with excess traffic being assigned to one of the service classes in J∗

i (part (c)).
Service classes belonging to J+

i form the most natural dumping ground for channeling excess
traffic since player i cannot derive utility from j ∈ J+

i no matter what. If J+
i = ∅, J∗

i takes on
a surrogate role.

The next lemma gives a simple sufficiency condition for 2-application/2-service class games in
which Nash equilibria do not exist.

Lemma 3.5 Consider the family of 2-application/2-service class systems such that the
thresholds bij on the total traffic volume of the service classes satisfy b1j < b2j, j = 1, 2
(i.e., the ordering of Proposition 3.1 is strict). Furthermore, assume the following inequalities
hold:

(a) λ2 < b11 + b12,
(b) λ2 + λ1 > b21 + b22 > b11 + b12,
(c) λ2 > max{b11, b12}.
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Then, for such choices of λi, bij, no Nash equilibrium exists.

Games satisfying the above conditions are easy to construct, and the reason that there are
no Nash equilibria is because the game leads to a limit cycle. This type of behavior has also
been observed in simulation studies. Next we generalize the “Nash Non-Existence condition” to
n-application/m-service class games. The proof of Theorem 3.6 can be reduced to Lemma 3.5
and is a straightforward consequence.

Theorem 3.6 (Nash non-existence) Consider a n-application/m-service class game
where the ordering implied by Proposition 3.1 is strict. If there are players i′ and i∗ with
i∗ > i′ satisfying

(a)
∑
i6=i′

λi <
∑
j

bi′j,

(b)
∑
i

λi >
∑
j

bi∗j,

(c)
∑
i≤i′

λi +
∑

i>i∗
λi < min

j
bi∗j,

then no Nash equilibrium exists.

Whereas Lemma 3.5 and Theorem 3.6 constituted simple, easily constructable conditions for
Nash non-existence, the next theorem gives a complete characterization of n-application/m-
service class games for which Nash equilibria do exist.

Theorem 3.7 (Nash existence) Consider a n-application/m-service class game where the
ordering implied by Proposition 3.1 is strict. Then a Nash equilibrium exists if and only if at
least one of the following holds:

(a) Each player is “domitable;” i.e., ∀i,
∑
i′ 6=i

λi′ ≥ ∑
j

bij.

(b) Let i∗ = min{i : J−
i 6= ∅}. There is a configuration Λ such that ∀i > i∗, I+

i = ∅, and one
of the three conditions of Theorem 3.4 holds for player i∗.

The above characterization has several interesting features. First, the theorem states that if
any Nash equilibrium exists at all, then, in fact, a Nash equilibrium exists (possibly different)
satisfying conditions that are much more restrictive than those of Theorem 3.4. Second, re-
moving the existential quantifier in part (b) of the theorem is not possible 10 without replacing
it by another existential quantifier of similar scope. This is due to the fact that the problem
of checking if a Nash equilibrium exists—given the parameters of a game—is NP -complete 11 .
The proof of hardness relies on the hardness of checking whether there is a configuration sat-
isfying constraint (b) in the theorem. The latter, in turn, is proved using a reduction from
minimum cost multicommodity network flow with step cost functions.

10 More precisely, “highly unlikely” since our argument depends on the P 6= NP conjecture.
11 This result, and the machinery to prove it, are omitted in this paper.
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The relevance of these remarks is that, even though it is possible to completely characterize
QoS provision games for which a Nash equilibrium exists, it is not possible to give an effective
characterization in the sense of feasible computability. Thus control algorithms, even if privy
to information about the network state, cannot, in general, accurately determine whether a
network system with given resources and user demands is prone to instability in the Nash
sense.

Let us consider a retricted QoS provision game where each user must channel his entire traffic
into a single service class. That is, traffic is unsplittable. When viewed in the routing context,
this would correspond to a circuit-switched system where a connection, once assigned a route,
must follow the path during the entire lifetime of the connection. In our model, this corre-
sponds to placing the further restriction that λij ∈ {0, λi} for all users i and service classes j.
Interestingly, for this restricted game, we can show that a Nash equilibrium always exists.

Theorem 3.8 (unsplittable games) Any unsplittable game has a Nash equilibrium.

Relating back to the issue of concavity and Nash existence, for unsplittable games, the problem
of having to consider function values over convex combinations when utility is quasi-concave
does not arise since the domain is discrete. Existence, however, does not mean that a Nash
equilibrium is always reached starting from any initial configuration. In Section 3.3, Theo-
rem 3.15, we show that for certain “resource-plentiful” systems, there is robust convergence to
Nash equilibria from any initial state.

3.2 Relationship to Pareto and system optimality

In this section, we characterize the relationship between Nash equilibria, Pareto optimal, and
system optima for the multi-class QoS provision game. First, we state a useful lemma that can
be used to relate Pareto optimality of a configuration to system optimality.

For a configuration Λ, an equivalent assignment Λ′ can be found with the same total utility
so that the players are partitioned into two sets around a unique, dividing player iΛ′ . The
first set consists of players with indices larger than iΛ′ with respect to the ordering induced
by Proposition 3.1, with all players having full utility. The second set consists of players with
smaller indices than iΛ′ , all of them having zero utility. The third set is the singleton set {iΛ′}
consisting of the dividing player who has partial utility. We will call such an assignment Λ′ a
normal form of Λ.

Lemma 3.9 (normal form) Let Λ be a configuration with Ū(Λ) <
∑n

i=1 λi. Let iΛ ≡
max{i : Ūi(Λ) < λi}. Then ∃Λ′ with Ū(Λ′) = Ū(Λ) such that

(a) ∀i < iΛ′, Ūi(Λ
′) = 0, and

(b) ∀i > iΛ′, Ūi(Λ
′) = λi.

The usefulness of the normal form of a configuration (including Nash) comes into play when

15



checking for system optimality of a Nash assignment. This is so since, as we shall see, it is
sufficient to check Pareto optimality of the normal form to establish system optimality of
the original configuration. Moreover, a normal form is easy to obtain from the original Nash
configuration (construction in the proof of Lemma 3.9) and checking for Pareto optimality is
generally easier than checking for system optimality.

Theorem 3.10 (Pareto & system optimal) Given a configuration Λ, let Λ′ be its normal
form. Then Λ is system optimal iff Λ′ is Pareto optimal.

An immediate corollary of the theorem is that a Nash equilibrium is system optimal iff its nor-
mal form is Pareto optimal. Although Theorem 3.10 gives an interesting relationship between
Pareto optimality and system optimality and is useful for reasoning about Nash equilibria in
other contexts, it falls short of further exploiting potential structure specific to Nash equilibria.
It is an open question whether there is some “independence” relation between Nash equilibria
and system optima for the general multi-class QoS provision game.

Given the form of Theorem 3.10, one may wonder whether all assignments that are Nash and
Pareto optimal are also system optimal. The next result gives a counterexample which shows
that Theorem 3.10 is “tight” in the sense that, when conditioned with Nash equilibria, there
are assignments that are both Nash and Pareto but not system optimal.

Proposition 3.11 There exist Nash equilibria that are Pareto optimal but not system opti-
mal.

Next, we characterize those Nash equilibria that are Pareto optimal. First, consider a modified
game, parameterized by some assignment Λ, defined as follows. The thresholds for the players
remain the same as in the original game. However, for each player i, the mean arrival rates
are taken to be γi ≡ Ūi(Λ). Moreover, there is an additional player 0 whose thresholds b0j

are all 0, but whose traffic demand is γ0 =
∑

i λi − ∑
i γi. Note that the configurations Λ′ in

the original game for which ∀i : Ūi(Λ
′) ≥ Ūi(Λ) correspond (many-to-one) to system optimal

configurations M for the modified game. Let ij := mini6=0{γij > 0}.

Theorem 3.12 (Nash-Pareto characterization) Let Λ be a Nash equilibrium and let i∗

be the player such that ∀i > i∗, Ūi(Λ) = λi; i.e., i∗ is the largest player with incomplete utility.
Then Λ is a Pareto optimum if and only if the following hold:

(a) ∀i ≤ i∗, I+
i ⊆ {j : qj > bi∗j}.

(b) ∀j [qj ≤ bi∗j ⇒ ∀i j 6∈ I+
i ]. Notice since Λ is Nash, it follows from the hypothesis above

and Theorem 3.4 that qj = bi∗j.
(c) The two sets of players S1 ≡ {i > i∗ : ∃j λij > 0, ∃i′ ≤ i∗ j ∈ I+

i′ } and S2 ≡ {i > i∗ :
∃j λij > 0, qj ≤ bi∗j} are disjoint.

(d) For any system optimum configuration M of the modified game, i.e., Ū(M) ≥ ∑n
i=1 γi,

one of the following holds for each service class j:

(d1)
n∑

i=0
γij = bijj when ij is defined,

(d2)
∑
i6=0

γij ≥ bi∗j,
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(d3) γ0 > bi∗j − ∑
i6=0

γij +
∑

j′ 6=j
bij′j −

∑
i

∑
j′ 6=j

γij.

Note that in part (c) of Theorem 3.12, an even stronger statement is true: Consider the directed
graph G whose vertices are the players i > i∗ and whose edges are defined as follows. An edge
(i1, i2) exists in G if and only if {j : λi1j > 0, λi2j > 0} 6= ∅ or ∃ j1, j2 with λi1j1 > 0, λi2j2 > 0,
and qj2 ≤ bi1j2 . Then there is no path from any vertex in S2 to any vertex in S1 in the graph G.
In other words, for all players i > i∗, there is a path from S2 to i, or from i to S1, or neither,
but not both.

There are several interesting points to note in the above characterization. First, parts (a) and
(b) depend on the combination of facts that Λ is both Nash and Pareto. Parts (c) and (d),
however, depend only on the fact that Λ is Pareto. Second, removing the universal quantifier
in (d) (“For any configuration M . . . ”) is impossible for reasons similar to removing the
existential quantifier in the statement of Theorem 3.7. The problem of deciding whether a
configuration is not Pareto is NP -complete as long as the thresholds of each player are allowed
to vary arbitrarily across the classes. Third, the optimization problems that correspond to the
above decision problems possess convex feasible regions but the objective functions are highly
nonlinear and even discontinuous.

On the other hand, the feasible region can be naturally partitioned into convex subregions over
each of which the objective function is, in fact, linear. In each such region, the traffic volume qj

of each class lies between an adjacent pair of threshold values bijj and bij+1j. The properties (a)
to (c) in the above theorem, and, in fact, most of the structural results in this paper, rely on the
behavior of objective functions whose level sets are convex within the subregions where they
are linear. However, the level sets of these objective functions are nonconvex and consist of an
intractably large number of disconnected components once we move outside the boundaries of
these subregions. Therefore, searches for optima across boundaries of these subregions rapidly
result in combinatorial explosion. The monotonicity properties of Proposition 3.1 do not seem
to control this explosion.

In general, a simple consequence of the above discussion is that many Nash equilibria exist
which are not Pareto optimal. In fact, the normal form of a Nash assignment Λ obtained
from the construction in the proof of Lemma 3.9 is typically itself Nash, and can be used to
exhibit assignments that are Nash but not Pareto optimal. Thus, in general, gaps exist in all
the important relations between configurations that are Nash equilibria, Pareto optimal, or
system optimal.

3.3 Resource-plentiful systems and dynamical behavior

In this section, we show that for certain “resource-plentiful” systems Nash equilibria always
exist, and furthermore, they are always Pareto and system optimal. We also show that starting
from any initial configuration robust convergence to a Nash equilibrium is achieved.
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We define a dynamic game via the dynamic update process P as follows. We assume that the
players move asynchronously, and at each step t, a single player it unilaterally and selfishly
reassigns its λit so that the new assignment Λt maximizes its individual utility Ūit(Λ). We
further assume that no player moves unnecessarily—i.e., a player only makes changes to its
assignment if it thereby strictly increases its individual utility. Moreover, for each user i there
is an infinite sequence of time steps ti1 < ti2 < · · · where i is allowed to perform an update
(including a “no move” update).

Theorem 3.13 (resource-plentiful system) For all i ∈ [1, n], let

m∑
j=1

qj ≤
m∑

j=1

bij. (3.14)

Then Λ is a Nash equilibrium if and only if Λ is a system optimum if and only if Λ is a Pareto
optimum. Moreover the optimum value achieved is Ū(Λ) =

∑
j

qj =
∑
i

λi.

First, note that λ =
∑

j qj. Resource plentifulness manifests itself via
∑m

j=1 bij. Since bij =

c−1
j (θi) where cj is the packet loss function and θi is user i’s utility threshold (cf. Propo-

sition 3.1), the more resources there are available in the system (e.g., bandwidth), the less
pronounced cj will be and the larger bij (keeping θi fixed). Condition (3.14) then states that
there are sufficient resources available to potentially accommodate each user’s requirements,
and Theorem 3.13 shows that this is indeed the case even when users are selfish. The next
theorem shows that such desirable configurations can be realized in a noncooperative manner
starting from any initial configuration.

Theorem 3.15 (convergence) Assume the supposition of Theorem 3.13 holds. Then, start-
ing from any initial configuration Λ0, the dynamic update process P converges to a Nash equi-
librium Λ. Moreover, Λ is attained as soon as the sequence of players (i.e., moves) in the
process P includes the subsequence n, n − 1, . . . , 1.

3.4 Extension of game-theoretic analysis to multi-dimensional QoS vectors

In Section 2, we formulated a noncooperative QoS provision game based on singleton QoS
vectors, x = (c), where c was a bound on packet loss rate. Here, we will extend the model
to multi-dimensional QoS vectors x ∈ Rs, s ≥ 1, and show that the singleton vector analysis
carries over unchanged.

Let x = (x1, x2, . . . , xs)
T , and let xj = (xj

1, x
j
2, . . . , xj

s)
T denote the quality of service rendered

to service class j ∈ [1,m]. As before, we make the monotonicity assumption dxj
r/dqj ≥ 0,

r ∈ [1, s], j ∈ [1,m], which is satisfied by most packet scheduling policies of interest including
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weighted fair queueing. Each player’s utility function Ui(x), i ∈ [1, n], has the form

Ui(x) =




1, if ∀r ∈ [1, s], xr ≤ θi
r,

0, otherwise,

where θi = (θi
1, θ

i
2, . . . , θi

s)
T ≥ 0 is the multi-dimensional threshold vector that represents the

i’th application’s preference.

In order to deal with the multi-dimensional QoS vectors and thresholds uniformly, we hence-
forth make one of two uniformity assumptions: either assume that the thresholds θi

r can be
ordered such that the ordering is uniform over r, i.e.,

∀r ∈ [1, s],∀i ∈ [1, n] : θi
r ≤ θi+1

r , (3.16)

or we assume that the functional forms xj
r are uniform over r for each j, i.e.,

∀j ∈ [1,m] : xj
1 = xj

2 = · · · = xj
s. (3.17)

By isolatedness, xj
r = xj

r(qj), r ∈ [1, s], j ∈ [1,m], and just as in Proposition 3.1, the condition
xj

r(qj) ≤ θi
r can now be stated as qj ≤ br

ij using the definition

br
ij = (xj

r)
−1(θi

r).

Let bij be the minimum over r, i.e., bij = minr∈[1,s] b
r
ij.

We can now rephrase Ui(x
j) as

Ui(x
j) =




1, qj ≤ bij,

0, otherwise.

Moreover, under the assumption that the functional forms xj
r are uniform over r for each j

where xj
∗ satisfies ∀j ∈ [1,m], ∀r ∈ [1, s], xj

r = xj
∗, and using the monotonicity of xj

∗, it can be
observed that the following identity holds:

bij = min
r∈[1,s]

(xj
∗)

−1(θi
r) = (xj

∗)
−1( min

r∈[1,s]
θi

r). (3.18)

That is, the min operator commutes with (xj
∗)

−1.

Now we are ready to state a total ordering on bij for fixed j corresponding to its counterpart
Proposition 3.1.

Proposition 3.19 For the multi-dimensional QoS vector model with assumption (3.16) or
(3.17), there exists an ordering of the players i ∈ [1, n] such that ∀i ∈ [1, n − 1], ∀j ∈ [1,m],

bij ≤ bi+1j.
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Proposition 3.20 The game-theoretic results of Section 3 hold for the multi-dimensional
QoS vector model with assumption (3.16) or (3.17).

The proof structure of our game-theoretic results rely on Proposition 3.1 to order application
QoS preferences. The QoS vectors (i.e., scalar packet loss indicator) and their functions affect
the proof only through Proposition 3.1. Thus, under either of the uniformity assumptions,
and with Proposition 3.19 in hand, it is straightforward to check that the proofs carry over
unchanged giving Proposition 3.20.

4 Conclusion

We have presented a study of the quality of service provision problem in noncooperative multi-
class network environments where applications or users are assumed to be selfish. Users are
endowed with heterogenous QoS preferences, and they are allowed to choose both where and
how much of their traffic to send. Our framework and its conclusions are best suited—but not
exclusively so—for best-effort traffic environments where the network is not required to provide
stringent QoS guarantees which can only be accomplished, currently, by employing conservative
resource reservations. Rather, service classes with differentiated QoS levels matching the needs
of constituent applications are induced by the latter’s selfish interactions, providing reasonably
stable and predictable QoS levels as a function of network state.

We have formulated a noncooperative multi-class QoS provision model and given a comprehen-
sive analysis of its properties. We have shown that Nash equilibria—which correspond to stable
fixed points in noncooperative games—need not be Pareto nor system optimal; in fact, Nash
equilibria need not even exist. We have given a complete characterization of Nash equilibria
and their existence conditions, and we have studied the game-theoretic structure relating Nash
equilibria to Pareto optima and system optima. In general, gaps exist between the classes at
all levels, producing a picture of the world that is nontrivial and complex. Much of this is due
to the presence of applications with diverse QoS requirements, the fact that they are allowed
to choose where to send their traffic, and the basic axioms underlying network systems. For
“resource-plentiful” systems, however, we have shown that Nash, Pareto, and system optima
all coincide, and moreover, convergence is monotone and fast if a form of asynchronous self-
optimization is used. We have extended the analysis to systems with multi-dimensional QoS
vectors containing both mean- and variance-related QoS measures. We have shown that the
game-theoretic results carry over if a uniformity assumption is placed either on application
preference thresholds or on QoS vector functions.

Many interesting and challenging problems remain, some of a mostly technical nature, and
others motivated by performance evaluation and practical issues arising out of implementation-
related considerations. Current work is directed in two main avenues, one, in the extension of
the game-theoretic analysis to arbitrary monotone utility functions and the incorporation of
pricing which requires further development of analytical tools and techniques, and two, in the
study of many-switch systems—a prime target being the realization of such QoS provision
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architectures in wide area network environments including the Internet. In the latter, the
interaction among switches or routers introduces couplings that give rise to new complexities
and a slew of challenging distributed control problems. An architecture for noncooperative
multi-class QoS provision in many-switch systems and its properties can be found in [4,5].
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5 Appendix

5.1 Proofs of Section 3.1

Proof of Proposition 3.1. Since θi ≤ θi+1, i ∈ [1, n − 1], by monotonicity of cj, j ∈ [1,m],

c−1
j (θi) ≤ c−1

j (θi+1).

Noting that bij = c−1
j (θi) completes the proof. ¥

Proof of Proposition 3.2. Since for all j ∈ J+
i , Ui(cj(Λ

′)) = 0, the upper bound vi follows
immediately. ¥

Proof of Proposition 3.3 First, J∗
i 6= ∅ since J−

i 6= ∅. Since λi > vi and J+
i = ∅, for at least

one j ∈ J−
i , qj > bij. This implies that Ui(cj(Λ

′)) = 0. It is easily checked that

max
Λ′∈Li(Λ)

Ūi(Λ
′)

is achieved by Λ′ such that λ′
i` = bi` − qi

` if ` 6= j∗, and λ′
ij∗ = λi − ∑

6̀=j∗ λ′
i`, where j∗ is some

element in J∗
i . Hence, Ūi(Λ

′) =
∑

6̀=j∗ bi` − qi
` = vi − (bij∗ − qi

j∗). ¥
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Proof of Theorem 3.4 (⇐ ). Assume I+
i = ∅ (part (a)). Since ∀j, λij > 0 =⇒ qj ≤ bij, we

have Ūi(Λ) = λi, the trivial upper bound on Ūi.
Assume (b) holds. By Proposition 3.2, Ūi(Λ) ≤ vi where vi =

∑
j∈J−

i
bij − qi

j. I−
i = ∅ and

J−
i ⊆ I0

i imply Ūi(Λ) = vi, thus achieving the upper bound which holds for any Λ′ ∈ Li(Λ).
Notice that J+

i , J−
i do not depend on the actions of player i.

Assume part (c). I−
i = ∅ and ∃ j∗ ∈ J∗

i such that J−
i \ {j∗} ⊆ I0

i imply that Ūi(Λ) ≥
vi − (bij∗ − qi

j∗). If J∗
i = ∅, which holds iff J−

i = ∅, then we are done. Assume J∗
i 6= ∅. Notice

that the case J−
i ⊆ I0

i is covered by part (b) or (a). Hence, we can assume j∗ ∈ I+
i . I−

i = ∅
and j∗ ∈ I+

i imply that vi < λi. Thus, we can apply Proposition 3.3 which in conjunction with
the lower bound on Ūi(Λ) yields Ūi(Λ) = vi − (bij∗ − qi

j∗).

(⇒). We will prove the contrapositive. That is, assuming ∃ i ∈ [1, n], given Λ, such that

I+
i 6= ∅ ∧ ( I−

i 6= ∅ ∨ J+
i = ∅ ∨ J−

i * I0
i )

∧ ( I−
i 6= ∅ ∨ J+

i 6= ∅ ∨ ∀j∗ ∈ J∗
i : J−

i \ {j∗} * I0
i ),

we will show that Λ is not Nash. There are nine clauses to be considered which are grouped
into five cases (i)–(v).
(i) (I+

i 6= ∅ ∧ I−
i 6= ∅), (I+

i 6= ∅ ∧ I−
i 6= ∅ ∧ J+

i = ∅), (I+
i 6= ∅ ∧ I−

i 6= ∅ ∧ J−
i * I0

i ),
(I+

i 6= ∅ ∧ I−
i 6= ∅ ∧ J+

i 6= ∅), (I+
i 6= ∅ ∧ I−

i 6= ∅ ∧ ∀j∗ ∈ J∗
i : J−

i \ {j∗} * I0
i ). They all have in

common the conjunction I+
i 6= ∅ ∧ I−

i 6= ∅. The latter implies ∃ j, j′, j 6= j′, such that λij > 0,
qj > bij, and qj′ < bij′ .
We can construct an assignment Λ′ ∈ Li(Λ) such that λ′

i` = λi`, ` ∈ [1,m] \ {j, j′}, and
λ′

ij = λij − ε, λ′
ij′ = λij′ + ε, where ε = min{λij, bij′ − qj′}. This yields

Ūi(Λ
′) − Ūi(Λ) ≥ ε

from which it follows that Λ is not a Nash equilibrium. It can be easily checked that the
argument applies to the other four clauses.
(ii) (I+

i 6= ∅ ∧ J+
i = ∅ ∧ J+

i 6= ∅) = F. The implication reduces to a tautology.
(iii) (I+

i 6= ∅ ∧ J−
i * I0

i ∧ J+
i 6= ∅). J−

i * I0
i implies that J−

i 6= ∅. For j ∈ J−
i \ I0

i , either
qj < bij or qj > bij. If qj < bij, then the argument from (i) can be applied. Assume qj > bij.
This implies that Ui(cj(Λ)) = 0. Since J+

i 6= ∅, for all j′ ∈ J+
i , j′ 6= j and Ui(cj′(Λ)) = 0.

We can construct Λ′ ∈ Li(Λ) such that λ′
i` = λi`, ` ∈ [1,m] \ {j, j′}, and λ′

ij = λij − ε,
λ′

ij′ = λij′ + ε, where ε = qj − bij. We still have Ui(cj′(Λ
′)) = 0, however,

Ui(cj(Λ
′)) = bij − qi

j > 0

since j ∈ J−
i and q′j = bij. Hence Λ is not Nash.

(iv) (I+
i 6= ∅ ∧ J+

i = ∅ ∧ ∀j∗ ∈ J∗
i : J−

i \ {j∗} * I0
i ). J+

i = ∅ implies J−
i 6= ∅, J∗

i 6= ∅. In fact,
|J−

i | ≥ 2. This follows from ∀j∗ ∈ J∗
i : J−

i \ {j∗} * I0
i since J∗

i ⊆ J−
i , and assuming |J−

i | < 2
would imply J−

i \ {j∗} = ∅ which would violate J−
i \ {j∗} * I0

i .
Let j ∈ J−

i , j′ ∈ J∗
i , with j 6= j′. If qj < bij, then the argument from (i) applies and we are

done. Similarly for j′. Let qj > bij. If |I+
i | ≥ 2, then we can choose j′′ ∈ I+

i with j 6= j′′ and
apply the argument in (iii) with I+

i in place of J+
i . Assume |I+

i | = 1, i.e., I+
i = {j}. We need

only consider the case qj′ = bij′ . Notice that J−
i \ J∗

i 6= ∅ since, if J−
i = J∗

i then J−
i \ {j} ⊆ I0

i
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by |I+
i | = 1, which would contradict the assumption ∀j∗ ∈ J∗

i : J−
i \ {j∗} * I0

i .
Construct the assignment Λ′ ∈ Li(Λ) such that λ′

i` = λi`, ` ∈ [1,m] \ {j, j′}, and λ′
ij = λij − ε,

λ′
ij′ = λij′ +ε, where ε = qj−bij. Now, Ui(cj′(Λ

′)) = 0 but Ui(cj(Λ
′)) = bij−qi

j. Since j ∈ J−
i \J∗

i

and j′ ∈ J∗
i ,

(bij − qi
j) − (bij′ − qi

j′) > 0

which implies Ūi(Λ
′) − Ūi(Λ) > 0.

(v) (I+
i 6= ∅ ∧ J−

i * I0
i ∧ ∀j∗ ∈ J∗

i : J−
i \ {j∗} * I0

i ). In the proof of (iv), J+
i = ∅ was only

needed to establish J−
i 6= ∅ which we can get from J−

i * I0
i . Hence the argument of (iv) carries

over unchanged. ¥

Proof of Lemma 3.5. To the contrary, assume Λ is a Nash equilibrium for the example
described in the proposition. Due to the first inequality satisfied by the λi’s and the bij’s, it
follows that there is a service class j1 for which λ2j1 = q1

j1
< b1j1 . Using this observation and

applying the Nash characterization from Theorem 3.4 to the player 1, we obtain (without loss
of generality, by the choice of j1),

qj1 ≤ b1j1 . (5.1)

Now, due to the second inequality (b) in the proposition, it follows that service class j2 6= j1

has assigned traffic volume

qj2 > b2j2 . (5.2)

Furthermore, using (5.1) and the third inequality in the proposition,

λ2j2 6= 0. (5.3)

Moreover, since b1j < b2j, for all j, we know from (5.1) that λ1j1 ≤ qj1 ≤ b1j1 < b2j1 . Thus we
get

λ1j1 = q2
j1

< b2j1 . (5.4)

Using (5.2), (5.3), and (5.4), and applying the Nash characterization from Theorem 3.4 to
player 2, we get qj1 ≥ b2j1 which contradicts (5.1) since b1j < b2j, for all j. ¥

Proof of Theorem 3.7. (⇐). First notice that (a) implies the existence of a Nash equi-
librium. This follows by observing that since each player is domitable—i.e., the n equations∑

i′ 6=i λi′ +
∑

j bij + ai; are satisfied (the ai act as positive slack constants)—one can always
find a configuration Λ where each player is dominated in each class. In other words, there is
a choice of the 2nm assignment variables λij and slack variables sij which will satisfy the nm
constraints: ∀i ∀j

∑
i′ 6=i λi′j = bij + sij (which is straightforward), which in addition satisfy the

2n constraints: ∀i
∑

j λij = λi and ∀i
∑

j sij = ai. Next, notice that (b) implies the existence
of a Nash equilibrium because, if Λ satisfies the conditions in (b), then each of the players
satisfies one of the three conditions of Theorem 3.4.
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(⇒). Now we show that the negations of (a) and (b) together imply that every configuration
Λ is not Nash. The negation of (a) implies that for each configuration Λ, some player is
not dominated in some class. This, together with the negation of (b) implies that for each
configuration Λ there is a smallest player i∗ which is not dominated in some class, and either
there is a player i > i∗ which does not have complete utility in Λ or none of the three Nash
conditions holds for the player i∗. In the latter case, clearly Λ is not Nash. In the former case
(assuming one of the three Nash conditions holds for the player i∗), it follows that there is
some class j∗ where qj∗ ≤ bi∗j∗ . However, since some player i > i∗ does not have full utility
in Λ, in order for Λ to be Nash, qj ≥ bij > bi∗j must hold for every class j due to the strict
ordering of thresholds imposed by the statement of the Theorem. Hence it follows that Λ is
not Nash. ¥

Proof of Theorem 3.8. Let m be the number of service classes. If m = 1, then we are
done. Assume m ≥ 2. Designate one of the service classes, say 1, as a special service class
called the dumping ground . Consider the constructive process which starts out with the empty
assignment and proceeds to assign the traffic of the n players in descending order n, n−1, . . . , 1
starting with player n. At step k (k ∈ [1, n]), we assign the traffic of player n− k + 1, λn−k+1,
to some service class j ∈ [2,m] if player n − k + 1 attains full utility in j. By Proposition 3.1
and the descending order of assignment, we are assured that a player already assigned to j
will continue to achieve full utility. If no such service class exists, player n − k + 1 is assigned
to service class 1. By construction, it follows that the configuration reached is Nash. ¥

5.2 Proofs of Section 3.2

Proof of Lemma 3.9. Let SiΛ = { i ∈ [1, n] : i < iΛ, Ūi(Λ) 6= 0 }. By the definition of iΛ, for
all i > iΛ, Ūi(Λ) = λi, which gives (b). If SiΛ = ∅, then we are done.
Assume SiΛ 6= ∅. We will construct an assignment Λ′ from Λ such that it satisfies property (a)
while preserving (b). Notice that by Theorem 3.4 and λiΛ > ŪiΛ(Λ), qj ≥ biΛj for all j ∈ [1,m].
Also, by Proposition 3.1, biΛj ≥ bij for all i ∈ SiΛ . Let

ν = λiΛ − ŪiΛ(Λ), π =
∑
i<iΛ

Ūi(Λ).

To achieve (a), we will distribute the excess utility π into service classes j with qj > biΛj thus
nullifying their contribution. To avoid otherwise disturbing the utility assignment, we will move
a commensurate amount from ν, exactly filling the gap left by π. That is, q′j = qj, j ∈ [1,m],
in the modified assignment Λ′. If ν > π, the reassignment can be achieved in one round. If
ν ≤ π, a refined construction is used that iteratively shrinks the violating player set SiΛ until
it becomes empty. Following is a formal description of the construction.
Case (i). Assume ν > π. Let K− = { j ∈ [1,m] : qj = bij, λij > 0, i ∈ SiΛ }, K+ = { j ∈
[1,m] : qj > biΛj, λiΛj > 0 }. We construct Λ′ as follows. For i ∈ SiΛ , j ∈ K−,

λ′
ij = 0, λ′

iΛj = λiΛj +
∑

k∈SiΛ

λkj.
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For i ∈ SiΛ , j ∈ K+,

λ′
ij = λij + εij, λ′

iΛj = λiΛj −
∑

k∈SiΛ

εkj,

where εij ≥ 0,
∑

k∈SiΛ
εkj ≤ λiΛj, and

∑
i∈SiΛ

,j∈K+ εij = π. For all other i and j, λ′
ij = λij.

By construction, q′j = qj for j ∈ [1,m], and since the excess utility π has been transferred into
service classes belonging to K+, we have Ūi(Λ

′) = 0 for i ∈ SiΛ . Hence, iΛ′ = iΛ. Also, notice
that

ŪiΛ(Λ′) = ŪiΛ(Λ) + π

since player iΛ’s unutilized traffic volume has been tranferred to service classes in K− where,
by Proposition 3.1, they now count.
Case (ii). Assume ν ≤ π. We will perform a similar switch as in case (i), however, over (possibly)
several rounds each time monotonically shrinking SiΛ and obtaining a new estimate for iΛ′ by
decrementing the previous estimate.
In the first round, we transfer a traffic volume of ν from players i ∈ SiΛ with assignments in
K− to service classes belonging to K+. To preserve, q′j = qj, j ∈ [1,m], we transfer an equal
amount from player iΛ’s assignments in K+ to K−. This is possible since ν ≤ π. This yields

ŪiΛ(Λ′) = ŪiΛ(Λ) + ν = λiΛ .

Thus, iΛ′ ≤ iΛ − 1.
If SiΛ′ = ∅ then we are done. If SiΛ′ 6= ∅, we recursively repeat the switching process with iΛ′

in place of iΛ until SiΛ′ = ∅. Since the dividing player’s index monotonically decreases by at
least one in each round, the process terminates in at most iΛ − 1 rounds. ¥

Proof of Theorem 3.10. Let Λ′ be the normal form constructed in the proof of Lemma 3.9.
We will prove the following statement from which the theorem follows immediately: Λ′ is not
system optimal iff there is a Λ∗ with Ū(Λ∗) > Ū(Λ′) such that
(a) ∀i ∈ [1, n], Ūi(Λ

∗) ≥ Ūi(Λ
′), and

(b) ∃ i ≤ iΛ′ such that Ūi(Λ
∗) > Ūi(Λ

′).
That is, Λ′ is not Pareto optimal. Note that Ū(Λ′) = Ū(Λ) by the definition of Λ′.
The ‘⇐’ direction of the statement above is trivial. To show the ‘⇒’ direction, we start with a
Λ̃ with Ū(Λ̃) > Ū(Λ′), which exists since Λ′ is not system optimal. For all i > iΛ′ , Ūi(Λ

′) = λi,
hence any increase in the utility Ū(Λ̃) over Ū(Λ′) must come from one or more i ≤ iΛ′ for
which Ūi(Λ̃) > Ūi(Λ

′). Indeed, Ūi(Λ
′) = 0 for i < iΛ′ , hence (b) and part of condition (a),

i.e., ∀i < iΛ′ , Ūi(Λ̃) ≥ Ūi(Λ
′), are already satisfied. We will construct Λ∗ from Λ̃ such that the

remaining part of (a), i.e., ∀i ≥ iΛ′ , Ūi(Λ̃) ≥ Ūi(Λ
′), is satisfied as well. Let

L− = { i ≤ iΛ′ : Ūi(Λ̃) > Ūi(Λ
′) }, L+ = { i ≥ iΛ′ : Ūi(Λ̃) < Ūi(Λ

′) }.

28



Clearly, L− ∩ L+ = ∅. Moreover, iΛ′ need not be an element of either L− or L+. Let

π =
∑

i∈L−
Ūi(Λ̃) − Ūi(Λ

′),

ν =
∑

i∈L+

Ūi(Λ
′) − Ūi(Λ̃).

By Ū(Λ̃) > Ū(Λ′), we have π−ν > 0. We can perform a switch in assignments between players
in L− and L+, similar to the proof of Lemma 3.9, obtaining an assignment Λ∗ which preserves
q∗j = q̃j, j ∈ [1,m], and which satisfies ∀i ∈ L+, Ūi(Λ

∗) = Ūi(Λ
′), ∀i ∈ L−, Ūi(Λ

∗) ≥ Ūi(Λ
′),

and for at least one element i ∈ L−, Ūi(Λ
∗) > Ūi(Λ

′).
Pick any two players i− ∈ L−, i+ ∈ L+. Then, ∃j−, j+ ∈ [1,m], j− 6= j+, such that

λi−j− > 0, bi−j− ≥ qj− and λi+j+ > 0, bi+j+ < qj+ .

The inequalities follow from Lemma 3.9. j− 6= j+ follows from the inequalities and the fact
that if j− = j+,

bi−j− ≥ qj− = qj+ > bi+j+ = bi+j− ,

which leads to a contradiction due to the threshold ordering implied by Proposition 3.1.
Let ε = min{λi−j− , λi+j+}. We can move an ε amount of i−’s assignment from j− to j+, and an
equal amount of i+’s assignment from j+ to j−. By Proposition 3.1, player i+’s utility strictly
increases by ε whereas player i−’s utility strictly decreases by the same amount. The other
players’ utilities remain undisturbed since the total volume assignment to each service class
was held invariant.
Since π− ν > 0, this reassignment process can be repeated until a total traffic volume of ν has
been shifted from players in L− to players in L+ and vice versa. Since ∀i > iΛ′ , Ūi(Λ

′) = λi,
by the definition of ν, we have that ∀i > iΛ′ , Ūi(Λ

∗) = λi, and thus ∀i > iΛ′ , Ūi(Λ
∗) ≥ Ūi(Λ

′).
For players i < iΛ′ , Ūi(Λ

∗) ≥ Ūi(Λ
′) remains satisfied since Ūi(Λ

′) = 0.
The only consideration left is player iΛ′ . If iΛ′ /∈ L− ∪ L+, then we are done. If iΛ′ ∈ L−,
then after the switch operation, either ŪiΛ′ (Λ

∗) ≥ ŪiΛ′ (Λ
′)—in which case we are done—or

ŪiΛ′ (Λ
∗) < ŪiΛ′ (Λ

′). In the latter, we may perform a further switch between player iΛ′ and
players i < iΛ′ until iΛ′ ’s utility has been suffiently increased vis-à-vis ŪiΛ′ (Λ

′). This is possible
since π − ν > 0. If iΛ′ ∈ L+, and after the switch we still have ŪiΛ′ (Λ

∗) < ŪiΛ′ (Λ
′), then the

same process as with iΛ′ ∈ L− can be done yielding the desired ordering result. ¥

Proof of Proposition 3.11. The following describes a counter example consisting of a
system of 3 players and 3 service classes and an assignment Λ which is Nash and Pareto but
not system optimal. As usual, using Proposition 3.1, for each service class j, we can assume
that b1j ≤ b2j ≤ b3j.
For service class 1, take b11 = b21, and b31 = b11 +1. For service class 2, take b12 = b22 = b32 = e
where e is a very small positive quantity. For service class 3, take b23 = b33 and b13 = s. Also,
let b32 < b31 < b33.
The assignment Λ is defined as follows. The assignments to service class 1 are: q1 = λ11 =
λ1 = b11, and λ21 = λ31 = 0. The assignments to service class 2 are: q2 = λ22 = λ2 = b22 + E,
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where E is a very large quantity and λ12 = λ32 = 0. The assignments to service class 3 are:
q3 = λ33 = b33 and λ13 = λ23 = 0. This assignment Λ is clearly a Nash equilibrium: λ22 = λ2

is unutilized, but player 2 cannot unilaterally reassign its share to improve its utility. Players
1 and 3 have full utility. Hence the total utility for assignment Λ is λ3 + λ1.
This assignment Λ, however, is not system optimal. The total utility can be increased using
the following changes to the assignment: the quantity λ1 can be moved to service class 2 from
service class 1 so that the new λ11 is now 0, but the new λ21 is now equal to λ1. A part of λ2

equivalent to the quantity λ1 + 1 is moved into service class 3 so that service class 2 now has
total volume q2 that is one less than its previous value. Therefore λ2 is now partitioned into
λ23 = λ1 + 1, with the remainder of λ2 assigned to λ23 while λ21 remains 0. Finally, a part of
λ3 equivalent to the quantity λ1 + 1 is moved to service class 1 so the volume of service class
1 increases overall by 1 unit, and service class 3 retains the same volume as before. Now λ3 is
partitioned into λ31 = λ1 + 1, with the remainder of λ3 assigned to λ33 while λ32 remains 0.
The utility of player 3 remains the same as before, i.e., it has full utility λ3. The utility of
player 1 has decreased from λ1 to 0 and the utility of player 2 has increased from 0 to λ1 + 1.
Hence the total utility after completion of the above reassignment is λ1 + λ3 + 1 and hence it
has increased by 1 overall which shows that the assignment Λ is not system optimal. It is not
hard to see that Λ is, in fact, Pareto optimal; i.e., for any assignment Λ′ that has higher total
utility, there must be at least one player, in particular, player 1, whose individual utility in Λ′

is less than that in Λ. ¥

Proof of Theorem 3.12. Before we give the proof, we first define a concept that is used
often. A k-flip is a map from one configuration Λ to another Λ′, denoted by a sequence
(i1, j1, i2, j2, . . . , ik, jk) with min{λi1,j1 , . . . , λik,jk

} = ν > 0 called the flip value. The map
is defined as follows. The new assignments λ′

ij remain the same as λij except in the following
cases: for each l with 1 ≤ l ≤ k,

λ′
il,j(l+1) (mod k)

= λil,j(l+1) (mod k)
+ ν, λ′

il,jl
= λil,jl

− ν.

Notice that a flip leaves total volumes unchanged in all classes. Also, player il’s utility does
not decrease if it holds that:

qjl
≤ biljl

⇒ qj(l+1) (mod k)
≤ bilj(l+1) (mod k)

.

In fact, player il’s utility strictly increases if qjl
> biljl

, whereas qj(l+1) (mod k)
≤ bilj(l+1) (mod k)

.
Notice that 2-flips have already been used extensively in earlier proofs.

(⇒). To show (a), assume to the contrary, i.e., ∃i < i∗ ∃j ∈ I+
i \ {j : qj > bi∗j}, in particular,

j ∈ I+
i \ I+

i∗ . Since i∗ has incomplete utility, we know that I+
i∗ 6= ∅, and by Theorem 3.4, we

know that qj = bi∗j. Let j∗ ∈ I+
i∗ . Now, we obtain Λ′ from Λ by performing the 2-flip (i, j, i∗, j∗),

which ensures that the individual utilities of all players except i∗ remain unchanged and i∗’s
utility increases by the flip value. This contradicts that Λ is Pareto.
Now (b) follows from (a) and the fact that Λ is Nash (the conditions of Theorem 3.4 applied
to i∗), and i > i∗ ⇒ I+

i = ∅.
To show (c), assume to the contrary that there is a path from ib ∈ S2 to ia ∈ S1 in G.

Case 1: (ia = ib = i). Consider a class ja ∈ I+
i′ for some i′ ≤ i∗, such that λi,ja > 0. The class
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ja causes i to be in S1. Consider also a class jb with λijb
> 0 and qjb

≤ bi∗jb
which causes i to

be in S2.
Case 1 (i): (i′ = i∗). That is, ja ∈ I+

i∗ . Now, we obtain Λ′ from Λ by performing the 2-flip
(i, jb, i

∗, ja), which, using the definition of ja and jb, ensures that the individual utilities of all
players except i∗ remain unchanged, and i∗’s utility increases by the flip value. This contradicts
that Λ is Pareto.
Case 1 (ii): (i′ 6= i∗). We have ja 6∈ I+

i∗ . Pick a class jc ∈ I+
i∗ . First obtain Λ′′ using the 2-flip

(i∗, jc, i
′, ja), which ensures (using part (a)) that all players in Λ′′ have the same utility as in

Λ, and therefore, Λ′′ is Pareto if Λ is Pareto. Now, in fact, in Λ′′, it holds that ja ∈ I+
i∗ , and

thus the proof of Case 1 (i) can be directly employed to contradict the fact that Λ′′ is Pareto
thereby contradicting the fact that Λ is Pareto.

Case 2: (ia 6= ib). Consider the class jb that causes ib to be in S2 and the class ja that causes
ia to be in S1.
Case 2 (i): (i′ = i∗). That is, ja ∈ I+

i∗ . Since there is a path from ib to ia in G, say ib =
i1, i2, . . . , ik = ia, we use the definition of the edges of G to construct a flip sequence as
follows. The existence of the edges (il, il+1) for 1 ≤ l < k implies the existence of classes
jb = j1, j2, . . . , jk = ja, such that the flip sequence (ib = i1, jb = j1, i2, j2, . . . , ik = ia, jk = ja)
has non-zero flip value. Moreover, by the definition of the edges of G, and using the definition
of ja and jb, we obtain Λ′ from Λ by performing this k-flip which ensures that the individual
utilities of all players except i∗ remain unchanged, and i∗’s utility increases by the flip value.
This contradicts the fact that Λ is Pareto.
Case 2 (ii): (i′ 6= i∗). A preprocessing is performed exactly like Case 1 (ii), and thereafter, the
proof of Case 2 (i) is applied.
To show (d), assume to the contrary that there is a system optimum configuration M of the
modified game as well as a service class j∗ for which the negations of (d1), (d2), and (d3) hold:

• n∑
i=0

γij∗ 6= bij∗j∗ when ij∗ ≥ 1 is defined; this implies γij∗ < bij∗j∗ since Ūi(M) = γi for i 6= 0.

• ∑
i6=0

γij∗ < bi∗j∗

• γ0 ≤ bi∗j∗ − ∑
i6=0

γij∗ +
∑

j′ 6=j∗
bij′j −

∑
i

∑
j′ 6=j∗

γij.

We can now create a configuration Λ′ from Λ (in fact, from M)—where the utility of no player
decreases and that of i∗ increases—as follows. Beginning with the service class j∗ and the
player i∗, we assign λ′

i∗j∗ ≡ γi∗j∗ + min{λi∗ − γi∗ , bi∗j∗ −∑
i6=0 γij∗}. The remaining unallocated

volumes (of all players) are now allocated to the classes in any manner that satisfies:
(i) ∀i ∀j λ′

ij ≥ γij,
(ii) ∀j 6= j∗

∑
i

λ′
ij ≤ bijj,

(iii)
∑
i

λ′
i∗j∗ ≤ bi∗j.

It is clear that such an allocation is always possible since the γij and bijj satisfy the negations
of (d1), (d2) and (d3) listed above. Now, because of (i), (ii) and (iii), it follows that ∀j 6= j∗,
the amount that each player i contributes to its utility Ūi(Λ

′) through the class j is at least
γij, and in fact the player i∗ contributes strictly more than γi∗j∗ through class j∗. Since M was
chosen so that ∀i γi = Ūi(Λ), we have now exhibited a Λ′ which shows that Λ is not Pareto.

(⇐). We assume Λ is not Pareto and derive a contradiction to part (d). If Λ is not Pareto,

31



without loss of generality, there is a Λ′ where the individual utilities of all players are at least
as large as in Λ, and in fact, the utility of the player i∗ strictly increases in going from Λ to Λ′.
But each such configuration Λ′ corresponds to a configuration M ′ of the modified game (based
on Λ′) with

Ū(M ′) =
n∑

i=1

γ′
i =

∑
i

Ūi(Λ
′). (5.5)

Clearly, each such configuration M ′ embeds a configuration M of the modified game (based on

Λ) with Ū(M) =
n∑

i=1
γi =

∑
i

Ūi(Λ). By “embed” we mean that

∀j :
n∑

i=0

γ′
ij =

n∑
i=0

γij, ∀i ∀j : γij ≤ γ′
ij, and ∃j∗ : γi∗j∗ < γ′

i∗j∗ .

Now consider the class j∗ where γi∗j∗ < γ′
i∗j∗ . For this j∗, clearly (d1) does not hold: otherwise,∑n

i=0 γ′
ij∗ exceeds bij∗j∗ , which means that γ′

ij∗ ≥ γij∗ > 0 would not contribute to the utility

of M ′, contradicting equation (5.5).
Clearly, (d2) does not hold either: otherwise,

∑
i6=0 γ′

ij∗ > bi∗j∗ , which means that γ′
i∗j∗(> γi∗j∗ ≥

0) would not contribute to the utility of M ′, again contradicting equation (5.5).
Finally, (d3) does not hold: otherwise, since (by the fact that (d2) does not hold)

∑
i6=0 γ′

ij∗ ≤
bi∗j∗ , it would follow that for some class j′,

∑n
i=0 γ′

ij′ > bij′j′ . But this would result in γ′
ij∗ > 0

not contributing to the utility of M ′, again contradicting equation (5.5). ¥

5.3 Proofs of Section 3.3

Proof of Theorem 3.13. It is sufficient to show that every Nash equilibrium Λ is system
optimal with utility Ū(Λ) =

∑
i

λi. The equivalence of Nash, Pareto, and system optima follows

immediately.
Due to the inequality in (3.14), for an assignment Λ, each player can always unilaterally reassign
its λij’s and strictly increase its own utility unless the following holds:

∀i∀j : λij 6= 0 =⇒ qj ≤ bij. (5.6)

Thus Λ is a Nash equilibrium (i.e., such a reassignment is impossible) only if (5.6) holds. But
(5.6) is equivalent to

∀i∀j : qj > bij =⇒ λij = 0,

which, in turn, implies that Λ is system optimal.
Note that if (5.6) holds for Λ, then clearly no player contributes to any service class where the
contribution would be unutilized—i.e., every player has complete utility and thus Ū(Λ) =

∑
i

λi.

Hence Nash, Pareto, and system optima are all equivalent. ¥
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Proof of Theorem 3.15. To show that the process P converges to a Nash equilibrium
starting from any initial configuration, notice that
(1) When it is player i’s turn to move, if Ūi < λi—the player has less than full utility—then

it can always unilaterally reassign its λij’s and achieve full utility. In other words, it can
achieve the status described in (5.6). Otherwise, if player i has full utility, it does not
move at all, i.e., it keeps its current assignment.

(2) Once player i has moved, the subsequent moves of players with indices k < i will not
affect i’s (full) utility. This is due to the inequality in Proposition 3.1, and because of the
observation in (1): the move of such a player k does not newly cause the traffic volume
qj of any service class to cross the threshold bkj ≤ bij.

Thus, once player n has moved, it achieves full utility, and subsequent moves of the other
players does not affect its utility; hence player n never moves again. In general, once players
n, n − 1, . . . , n − k have moved, in that order, the subsequent moves of the lower players
1, . . . , n − k − 1 do not affect the (full) utility of the higher players n, n − 1, . . . , n − k, and
hence they never move again. It follows that a Nash equilibrium Λ is attained by the process P,
starting from any initial assignment, as soon as the sequence of players (i.e., moves) includes
the subsequence n, n − 1, . . . , 1. ¥

5.4 Proofs of Section 3.4

Proof of Proposition 3.19. We will consider both uniformity assumptions on the multi-
dimensional QoS vectors and thresholds simultaneously.
First, we consider the uniformity assumption (3.16) which states that the thresholds θi

r can
be ordered such that the ordering is uniform over r ∈ [1, s]. Using this ordering and the
monotonicity of xj

r for each j ∈ [1,m] and r ∈ [1, s], by the definition of the br
ij, we can

conclude that

∀r ∈ [1, s],∀j ∈ [1,m],∀i ∈ [1, n − 1], br
ij ≤ br

i+1j.

Now for any fixed i, j, let r′ satisfy minr∈[1,s] b
r
ij and let r′′ satisfy minr∈[1,s] b

r
i+1j. Clearly,

br′′
ij ≤ br′′

i+1j, Furthermore, br′
ij ≤ br′′

ij , since br
ij is minimized at r = r′. It therefore follows that

the same ordering on i also satisfies

min
r∈[1,s]

br
ij ≤ min

r∈[1,s]
br
i+1j

from which the proposition follows immediately.
Next, we consider the uniformity assumption (3.17) which states that the functional forms xj

r

in the QoS vector xj are uniform over r ∈ [1, s] for each j ∈ [1,m]. In this case, we can define
a natural ordering on i induced by

min
r∈[1,s]

θi
r ≤ min

r∈[1,s]
θi+1

r .

Since the xj
∗’s are all monotone, and as observed previously, bij = (xj

∗)
−1(minr∈[1,s] θ

i
r), this
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ordering yields the required

bij ≤ bi+1j

which holds for all j ∈ [1,m] and i ∈ [1, n − 1]. ¥

34



Non-reserved

Traffic

Reserved

Traffic
µλR

λNR

Fig. 5.1. Dual traffic classification at output-buffered switch with shared priority queue implementing
weighted fair queueing.
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Fig. 5.2. Utility functions. E-mail application (left) and video application (right).
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