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1 Introduction

The Internet, defined as the world-wide collection of IP (Internet Protocol) speaking networks, is
a multifaceted system with many components and diverse features. In recent years, it has become
an integral part of the socio-economic fabric. Although the Internet is still an evolving system
and therefore a moving target, understanding its properties is relevant for both engineering and
potentially more fundamental purposes. The Internet is a complex system in the sense of a com-
plicated system exhibiting simple behavior, as opposed to a simple system exhibiting complex
behavior. The latter aspect forms the corner stone of studies of complex systems whose rigorous
underpinning is provided by dynamical systems theory. A canonical example is the logistic equa-
tion from population dynamics which possesses a rich structure including chaotic orbits and fractal
non-divergent domains [41]. A somewhat different example of simple systems capable of generating
complicated behavior are many-body systems, in particular, interacting particle systems [82]. We
would classify such systems, despite the large number of components they admit, as “simple” due
to the homogeneity and limited capability of each component—in Ising spin systems each compo-
nent has two states—and the local interaction allowed of the components. Statistical mechanics
studies macroscopic and emergent properties of such systems, with ergodic theory and percolation
theory providing part of the mathematical foundation. Cellular automata, discrete-time interacting
particle systems, are capable of universal computation which gives rise to undecidability problems
and computation theoretic considerations of dynamical systems.

We view the Internet as an instance of a complicated system exhibiting simple behavior due to
a compendium of innate architectural features that span a range of scientific disciplines. They in-
clude the characteristics of network traffic when viewed as a time series, closed-loop and open-loop
control governing the flow of traffic which involves control theory, the connectivity structure of in-
formation networks which engages graph theory, the behavior of users and protocols—protocols are
formal rules and conventions underlying information exchange—in resource-bounded, competitive
environments which involves game theory, and the organizational behavior of ISPs (Internet Service
Providers) which influences the network infrastructure, including peering relationships among ISPs,
a domain of social sciences. A discussion of these features is the subject matter of this article.

There are few established examples of complex systems exhibiting simple behavior, excluding
tautological cases such as the natural phenomena and systems studied in physics and biology.
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The Internet is comparatively more transparent and tractable, perhaps requiring on the order of
decades—as opposed to centuries for physics and biology—to uncover and understand its workings.
At its physical basis, the Internet is a flow network whose information transmission is governed
by communication theory pioneered by Shannon [125]. Quantum communication [14, 15], which
uses entanglement in quantum mechanics for efficient communication, is in its early stages, too
early to be included in the present discussion of the Internet. As a complex system exhibiting
simple behavior, what makes the Internet unique are its two distinguishing characteristics: one, it
is a melting pot where the key ingredients represent a confluence of several disciplines, and two,
the Internet is perhaps the largest man-made many-body system. Jointly, the interdisciplinary
nature of the architectural features and the engineered nature of the many-body system give rise
to novel phenomena, modeling challenges, and synergistic opportunities, which have a chance of
being scientifically grounded and form another corner stone of complex systems.

An example of the synergistic opportunitity is the enhanced effectiveness of game theory when
played out in the context of the Internet. Von Neumann and Morgenstern advanced game the-
ory [138], in part, to establish a mathematical foundation for economics—referred to, then, by
many as the dismal science. In some respects, economics, notwithstanding the wealth of beautiful
mathematics and modeling work carried out since then, has remained a dismal science for the sim-
ple reason that it continues to lack sufficient predictability. Econometric models cannot adequately
account for the effect of political upheaval—never mind predicting their occurrence—a consequence
of the Achilles’ heel of social sciences: limited ability to factor the dynamics of human behavior,
collective or singular. Game theory can provide important qualitative insights but ultimately suf-
fers under the same predicament. A competitive game involving several human participants may
be modeled by a corresponding noncooperative game involving rational self-optimizing decision
processes, however, the outcomes may agree or may not agree—it all depends on what the human
players actually decide to do.

The situation is less bleak when game theory is fused with the Internet. The Internet injects
a measure of predictability—through behavior codification—effected by protocols that sit between
a human user and the communication medium handling the transfer of information. The bulk of
Internet traffic is comprised of file transfers that arise from HTTP (Hypertext Transfer Protocol)
based Web traffic which, in turn, is governed by TCP (Transmission Control Protocol). TCP is a
cooperative protocol that tries to achieve speedy, reliable communication. Cooperative means that
TCP behaves gentlemanly upon detecting possible congestion by throttling the traffic submitted to
the network. TCP is a protocol whose behavior is standardized by the IETF (Internet Engineering
Task Force), the standards body of Internet protocols. Protocols, acting as automated assistants
embodying codified behavior, induce a well-behaved environment without constant subjection to the
inner workings and whims of human decision making. Questions involving stability and efficiency
can be addressed, and quantitative predictions advanced with scientific certainty. That is not to say
that humans play no part. The selection and timing of information transfer requests is under the
control of human users which puts us in the driver’s seat. However, the time scale of information
transmission and control in broadband networks is at the millisecond level and below, a regime
where most humans would be out-of-place. Thus the total picture is that of a 2-layered playing
field separated by time scale where the influence of human decision making is partly delimited and
isolated. Whether this crack provides a sufficient opening for reigning in the unwieldy influence of
human decision making remains to be seen. The potential is there, making the Internet a fertile
playing ground for a more effective game theory.

The preceding example is but one of several that will be discussed in this article. In the
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next section, we give a birds-eye-view of five key architectural features of the Internet—self-similar
traffic, scalable traffic control, power-law connectivity, game theory and quality of service (QoS),
and organizational behavior—which are related to the Internet as a complex system theme. This
is followed by sections discussing the known aspects, consequences, and challenges. The selected
features meet two criteria: networking relevance and technical novelty. Networking relevance means
that the complex system trait has direct bearing on Internet traffic engineering and is not a mere
curiosity. Technical novelty means that understanding the complex system trait involves more than
straightforward application of known ideas and techniques.

2 Interdisciplinary Features of the Internet

2.1 A packet’s journey

We motivate the selection of the interdisciplinary architectural features by describing a typical—
and on the surface mundane—sequence of events that transpire on the Internet. We will use this
example as a skeleton to attach the five features which will, then, be given concrete meaning. The
description, although oversimplified, may help give the general reader a logical glimpse of network
mechanisms and their intricacies, in addition to introducing needed terminology.

Suppose a user runs a Web browser at an end system—PC, laptop, or handheld device—and
clicks on a link containing the location information of an object such as a HTML (Hypertext
Markup Language) document or some other file (e.g., executable binary, audio or video data) that
is to be accessed using HTTP. This triggers a HTTP request message that is passed down to TCP
in the protocol stack—protocols in the operating sytem (OS) of an end system are organized in a
partial order represented as a protocol graph—which encapsulates the HTTP request by treating
it as payload. This is akin to an already sealed letter going into a FedEx envelop. TCP memorizes
the packet information in the event it needs to resend it: the Internet is “leaky.” TCP’s packet is
handed down to IP, a protocol responsible for routing. IP determines where to forward the packet
to so that it can come closer to reaching its final destination. IP performs its own encapsulation
and hands the resultant packet to the link layer. A popular link layer is Ethernet—standardized
by IEEE (Institute of Electrical and Electronics Engineers) under IEEE 802.3 for wired and IEEE
802.11 for wireless media. The link layer has access to the physical address of the next hop’s IP
address—every network device has a unique physical address—encapsulates the IP packet with an
envelop containing physical addresses, and hands it down to the physical layer. The physical layer
oversees the transmission of information containing the link layer packet over its communication
medium.

The physical layer at the receiving end decodes the transmission and does a hand-off to the
appropriate link layer protocol above. Assuming the receiver is an IP speaking device, the link
layer protocol decapsulates and hands off to the IP layer which determines whether additional
forwarding is required to reach the final destination. If so, the packet is encapsulated and passed
down the protocol stack. This process is repeated at every IP-enabled device—called router—on
the forwarding path until the destination IP device is reached. At that point, the IP layer passes its
payload up to TCP which, in turn, hands off its payload to HTTP, and HTTP to its application.
In this example, a Web server that processes the HTTP request. This prompts a HTTP response,
which is passed down the protocol stack at the destination IP device and returned to the original
sender, the client. Several things can go wrong on an IP packet’s journey. The packet, during
physical transmission, may get corrupted due to noise or interference—especially severe in wireless
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segments of the Internet—which results in dropping of the corrupted packet when so detected. The
packet, upon arriving at a router, may find the router busy processing other waiting packets, and
even worse, find no room or buffer space which causes the packet to be discarded. Less frequently,
a router may fail, erasing the transiting packet residing in its memory. IP has no provision for
dealing with packet loss, which means that TCP running at the sender with the assistance of its
counterpart running at the receiver is the earliest point at which recovery can be attempted. A
dumb network core-intelligent network edge is characteristic of the Internet’s design, referred to as
the end-to-end paradigm [33].

2.2 Complex systems features

We revisit the packet journey example and point out several innate, interdisciplinary features that
reside with the skeleton of packet forwarding and information transmission mechanics.

Self-similar traffic. An important engineering consideration is the load or traffic—measured in
bits per unit time—impinging on a bottleneck router as excessive traffic can result in congestion
and information loss. The same is true of end systems, in particular, servers. If traffic, viewed as a
time series, is undulating with severe peaks and valleys, the capacity allocated to handle demand
must be correspondingly bursty to match the time-varying demand. This is to avoid losses—
translated to delay when sufficient buffer space is available to hold excess traffic—and reduce
resource wastage stemming from overprovisioning which carries an economic cost. Flat traffic is
desirable because it is predictable and obviates the need to frequently reshuffle resources which,
in many instances, is difficult to do. Whatever our wishes, Internet traffic may follow its own
set course, and understanding its properties is fundamental to effective traffic engineering. Two
obvious factors that influence traffic demand are the arrival pattern, in time, of user requests—
e.g., clicking on a Web link in the packet journey example—and the size of the file or information
object requested. Other things being equal, the more frequent the user requests and the larger the
requested files, the higher the average load experienced by a network system. Our interest concerns
the shape of the resultant traffic.

From a server’s perspective or a router’s perspective that lies on frequented paths to popular
servers, request arrivals from different users may be construed to be independent, at least at
time scales on the order of minutes and below. If indeed so, the law of large numbers (LLN),
assuming users are many, induces statistical regularity conducive to flatness on two fronts: one,
the number of user requests occurring during a time window will concentrate around a mean,
and two, the number of user requests across two disjoint time windows will become uncorrelated.
To a first approximation, the arrival interval between successive requests has been observed to
be independent, with an exponential distribution and resultant total load that is Poisson. The
action of LLN across space and time has been the central property targeted and harnessed by
traffic engineering tools in telephony and data communication. To the surprise of many, traffic
measurement collected in the late 1980s at Bellcore on Ethernet showed that traffic was bursty at
large time scales [81], inconsistent with the flatness predicted by independent or weakly correlated
arrivals. In fact, Bellcore’s Ethernet data exhibited self-similarity in the sense of variability, as
captured by correlation, remaining invariant across a wide range of time scales: from milliseconds
to seconds to tens of minutes. This phenomenon has been confirmed in other contexts since then
and shown to be the norm rather than the exception. One factor in the packet journey example
we ignored is the size of requested files. It turns out that size does matter, and the peculiar
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distribution of file sizes—most files are small but a few are very large1, also referred to as “mice
and elephants”—effects the fractal characteristic of Internet traffic. Traffic self-similarity is an
emergent, macroscopic trait of the Internet whose seed can be found in microscopic properties of
its components. The fractal dynamics of Internet traffic makes it a representative example of the
Internet as a Complex System metaphor.

Scalable traffic control . The self-similar nature of Internet traffic has served to draw attention
to the importance of empirical measurement, almost to the extent of treating the Internet as a “nat-
ural” phenomenon in its own right, whose properties, even to the designers, may remain initially
hidden. The Internet, notwithstanding its phenomenological richness, is an artificial, engineered
system, a key distinguishing feature compared to complex systems arising in nature. The Inter-
net is a controlled system where the bulk of daily traffic is regulated by TCP, a feedback control
designed to affect speedy, reliable data transfer while avoiding congestion. TCP implements non-
linear control, is subject to the effect of feedback latency, and is instantiated in an environment
containing thousands of other TCP flows competing for shared network resources—bandwidth and
buffer space—at bottleneck routers. For example, the HTTP session in the packet journey ex-
ample is but one of many traversing a bottleneck link. Coupled TCP flows, when conditions are
ripe, may synchronize [145]—a phenomenon abundant in nature such as the synchronized flashing
of fireflies [112]—leading to periodic underutilization and overutilization. Even without oscilla-
tory synchronization, TCP is subject to stability problems due to feedback latency and congestion
avoidance. Fairness—in the sense of equal share—may be violated when one TCP flow sharing
a bottleneck link with another has to traverse many more hops, which puts the longer flow at a
comparative disadvantage: due to increased feedback latency news arrives more slowly and conse-
quently is less useful in control actions. TCP, in some instances, can contribute to self-similarity
of network traffic as its nonlinear control, when reducing the sending rate during persistent packet
loss, injects exponentially increasing wait periods that can translate to prolonged idleness, a form
of correlation. However, it is a secondary factor compared to the dominant role played by file
size distribution. Congestion control, of which TCP is an instance, has the potential to induce
complicated dynamics, representing another aspect of complex systems.

Related observations hold for routing, the second of the two major Internet traffic controls.
Synchronization of routing updates can affect cyclic busy periods during which part of a router’s
capacity is turned away from packet forwarding [54]. Routing tables may take a long time to
stabilize, creating time windows during which packets are misrouted [80]. Quality of service (QoS)
is another important pillar of traffic control. Its present impact, however, is limited compared to
congestion control and routing due to almost non-existent deployment. That is not to say that
routers on the Internet do not possess QoS capabilities. They, in fact, are endowed with a slew of
IETF standardized mechanisms, but these features are not activated outside of isolated testbeds.
Several of these are candidate building blocks in a future QoS-enabled Internet, still a technical as
well as socio-economic challenge.

Power-law connectivity . In the late 1990s, two separate, but intimately related, phenomenolog-
ical features of the Internet were discovered [4, 50]. The first concerns the connectivity structure of
the World Wide Web (WWW), where two Web pages, viewed as nodes in a graph, are defined to
be joined by an edge if there is a link from one to the other. The second concerns the business-to-
business relationship between domains or autonomous systems that represent organizational units.
Autonomous system (AS) is a technical term and part of the Internet standard. The Internet AS

1The technical definition—heavy-tailedness—will be discussed in Section 3.
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topology is defined as a graph where the nodes are ASes, and an edge exists between two nodes
if the ASes—more precisely, border routers belonging to the ASes that affect the transfer of pack-
ets between domains—are connected by one or more physical links representing customer-provider
relationships. What these measurement graphs showed is that their connectivity structure is far
from random, exhibiting power-law decay—as opposed to exponential decay—in the size of the
neighborhood of a node. Random means that a node is connected to any other node with some
fixed, independent probability. In the case when the probability is 1/2, this is tantamount to saying
the set of all graphs with a given number of nodes, when viewed as a discrete sample space, has
uniform probability. The measurements showed that not all nodes are created equal, and not all
graphs are created equally likely.

A characteristic trait of random graphs is that most nodes look alike, possessing about the same
number of links that are strewn all over the place. The probability that a node has a neighborhood
size deviating from the mean is exponentially small, a consequence of LLN. In WWW and Internet
domain graphs, the decay was observed to be polynomially small—a power-law, and thus the name
power-law graph—admitting nodes with very many neighbors. With 20/20 hindsight, it is perhaps
not unusual that WWW and Internet domain graphs should exhibit power-law connectivity. During
long flights one may have browsed through an airline magazine finding the carrier’s route map in
the back pages. Power-law graphs, visually, resemble airline route maps where nodes corresponding
to major hubs have many links that connect smaller regional airports. Some regional nodes connect
to more than one hub, and hubs are connected to each other through a backbone. Two important
aspects of power-law graphs are captured by the expressions: “the rich get richer and the poor get
poorer,” and “a few are connected to many, many are connected to a few.” The first represents
a dynamic viewpoint, whereas the second conveys a static structural aspect. A number of studies
in the 1950s [146, 126, 87] showed power-law (also called Zipf law in special cases) skews in social
phenomena which were attributed to the intuition that already popular entities were likely to
become even more popular—in part, through a bandwagon effect—whereas unpopular entities
faced the opposite predicament. In Internet domain graphs, a major service provider acting as a
conduit for other providers and stub customers—a stub AS is a domain that does not provide transit
service to other domains—is likely to attract more customers compared to smaller providers. New
customers may perceive an advantage in connecting to an established provider with an existing,
large customer base that is accessible by a single hop. This is in addition to the perceived reliability
associated with established organizations and brand names. An extreme form of a few nodes being
connected to many and many being connected to a few is the star topology: there is a single central
node from which all other nodes emanate. When there are multiple high degree nodes—the degree
of a node is the number of links incident on the node—they resemble locally star-like subgraphs
that are connected to each other through a backbone network. There are a number of consequences
of power-law connectivity for network security and performance, some relating to percolation and
phase transition. They will be discussed in Section 4.

Game theory and QoS . As indicated in the Introduction, game theoretic considerations arise
naturally in congestion control where multiple sessions share a common bottleneck link through
which traffic must be scheduled. In the packet journey example, two servers transmitting infor-
mation to clients across a common bottleneck may distinguish themselves by employing clever
congestion controls that outperform the competition—inclusive throughput gains obtained at the
expense of others—that translate to faster response times and commercial advantage. Supposing
throughput is the performance metric that selfish users and their protocols aim to maximize, the
noncooperative congestion control game that pits selfish congestion control protocols against each
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other is an instance of Tucker’s Prisoner’s Dilemma game. In the 2-player setting, at the onset
of congestion, the protocols can act cooperatively and throttle their sending rate, alleviating con-
gestion and attaining an equitable share of the total achievable throughput. This corresponds to
neither prisoner, when interrogated in separate rooms, ratting out the other. Each prisoner receives
a two-year sentence with possibility of parole. If one protocol acts cooperatively but the other does
not—the cooperative protocol backs off when congestion arises while the noncooperative one fills
the slack—the game leads to a state where bandwidth is monopolized by the noncooperative pro-
tocol. This corresponds to the cooperative prisoner receiving a 20-year sentence for staying mum,
while the selfish prisoner who betrayed his colleague gets off scott free. When both protocols behave
selfishly, congestion persists with each achieving a small throughput.

The Prisoner’s Dilemma illustrates that noncooperative games, in general, lead to equilibria—if
they exist—that are less desirable than those reachable by corresponding games where players are
cooperative. Indeed, only under special circumstances does Adam Smith’s invisible hand lead to an
efficient orchestration of shared resources. A somewhat different example of the adverse influence of
selfishness is Braess’ paradox [20]. It describes a situation where adding resources to a network can
lead to a deterioration of performance when selfish, shortest-path routing is employed by individual
user flows. This paradox—“how can things be worse when resources are more plentiful?”—cannot
arise when routing actions are cooperative. Although the causes underlying Braess’ paradox are
well-understood, the extent to which the paradox manifests itself in Internet routing is unknown.
Selfish routing can also affect instability in the form of a ping-pong effect. Users routing traffic
over a congested link, upon discovering a newly uncongested link, may switch over in tandem
in an attempt to improve individual performance causing the uncongested link to be swamped.
This results in a state where the previously congested link becomes uncongested, prompting a
reverse migration and consequent oscillatory behavior. In Section 5 we will discuss noncooperative
network games where players share multiple classes of bounded resources—the congestion control
game being a special case where there is a single shared resource—and consider the game structure
of noncooperative multi-class QoS provisioning.

Organizational behavior . An important variable of Internet traffic engineering is the organi-
zational behavior of autonomous systems which intimately impacts routing, QoS, topology, and
deployment of new traffic management solutions. Consider the packet forwarding process at IP
routers in the packet journey example. When a user downloads a file from a Web server, pack-
ets carrying the content of the file are routed by two separate subsystems: inter-domain routing
and intra-domain routing. Supposing the client and server machines reside on different domains—
generally the case although caching tries to place frequently accessed content close to where the
demand is—the path undertaken by packets at the granularity of domains is determined by BGP
(Border Gateway Protocol), an inter-domain routing protocol that governs packet forwarding across
ASes. The path chosen by a packet as it traverses IP routers within a domain is determined by
intra-domain routing protocols. Two examples are OSPF (Open Shortest Path First) and RIP
(Routing Information Protocol). OSPF implements Dijkstra’s algorithm [42] for computing short-
est paths—a centralized method—and RIP implements Bellman-Ford’s algorithm [13, 55] which
is decentralized. Whereas intra-domain routing follows the shortest-path principle, inter-domain
routing is policy based, meaning that an organization can inject economic, political, and other
criteria it deems relevant, including shortest-path, when making routing decisions. This can lead
to scenarios where a company, when sending an e-mail to another company across the street, has its
message routed to a different continent before eventually reaching the destination just a holler away.
Policy influences peering relations between ASes—who is connected to whom—the substrate upon
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which inter-domain routing operates. Organizational behavior implicitly gives rise to power-law
connectivity of Internet AS topology.

Organizational behavior affects the viability of new Internet technology deployment, especially
as they pertain to quality of service. The service quality experienced by a user is end-to-end,
encompassing end systems and their resources—e.g., CPU (Central Processing Unit) speed and
access bandwidth—and the state of intermediate hops that packets must traverse to reach their
destination. End-to-end QoS is only as good as the weakest link in the resource chain whose com-
ponents may span multiple autonomous systems under the governance of different organizations.
To achieve guaranteed QoS, say, in the form of a dedicated 128 Kbps (kilo-bit-per-second) commu-
nication channel for CD quality real-time audio, all ASes on an end-to-end path must participate
and reserve the required resources. Although the technology for performing the necessary coor-
dination and signalling is there, such services presently do not exist on the Internet outside of
limited settings such as leasing of lines from a single service provider and bandwidth commodity
markets that trade raw bandwidth without the nuts-and-bolts needed to achieve on-demand QoS
across domains. In telephony, an international call will traverse multiple carriers, but agreements
exist that allow a dedicated end-to-end channel to be set up on the fly. In the airline industry,
codesharing allows multiple carriers to route passengers across their collective routes, reserving a
seat on each leg of an end-to-end journey. Of course, we are ignoring overbooking, flight delays,
and other factors that contribute to the end-to-end flying experience. On the Internet, policy bar-
riers between administrative domains prevent QoS solutions to be realized, prompting a revival
of application layer methods that package services relying only on IP’s reachability functionality.
Giving up on the ability to exercise direct resource control facilitates deployability, however, at the
cost of performance.

3 Self-Similar Traffic

3.1 What is self-similar traffic?

Suppose we instrument a router so that we can monitor and record the number of bytes (or packets),
per unit time, that exit a link. The time unit, for example, may be 10 milliseconds which implies
that every logged measurement represents the total number of bytes that have left through the link
during a 10 msec interval. This results in a time series X(t) with t discrete. Let X(10)(t) denote
the time series arising from the same measurement process with the difference that the time unit
is 100 msec, i.e., 10-fold coarser. Similarly, X(100)(t) denotes measurement at the granularity of
1 sec and, in general, we define the aggregated time series at aggregation level m as X(m)(i) =∑mi

t=m(i−1)+1X(t)/m which is composed of averaged, non-overlapping m-blocks.
Figure 1(a) shows TCP/IP traffic where the top plot shows measurements at the 100 sec granu-

larity over a 10,000 second measurement period. Hence the plot contains 100 data points or samples.
The second plot from the top shows traffic logs at the 10 second granularity where the measurement
data are taken from the first 1,000-second interval as indicated by the rectangular time window. In
a similar vein, the third and fourth plots are obtained from their preceding time series by zooming
in on the first 10 data points and magnifying the detail 10-fold. Figure 1(b) shows corresponding
multi-scale plots for Poisson traffic that is more representative of telephone traffic. We observe a
stark difference between Figure 1(a) and Figure 1(b): for network traffic variability or burstiness
is preserved across four orders of time scale whereas for telephony-like traffic the aggregated plots
become rapidly flat with increasing time scale.
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Figure 1: Self-similar burstiness. (a) Long-range dependent network traffic. (b) Short-range de-
pendent Poisson traffic.

If X(t) were independent, in particular, i.i.d. (independent identically distributed) with finite
variance σ2, X(m) can be viewed as a sample mean and its variance is given by Var(X(m)(i)) =
σ2/m. Thus, as a function of the sample size, i.e., aggregation level m, the rate of decay is polyno-
mial inm with exponent −1. We estimate the shape of Var(X(m)) for the traffic series in Figure 1(b)
and find that Var(X(m)) ∝ m−β with β close to 1. If we do the same for Figure 1(a), however, we
find that Var(X(m)) ∝ m−β where β is closer to 0. Thus for network traffic exhibiting self-similar
burstiness, the variance at larger time scales diminishes, albeit with a rate that is slower than that
of independent traffic. This implies that the traffic series in Figure 1(a) is correlated—the closer
β is to zero the stronger the correlation—indicative of long-range dependence. By convention, the
exponent β is denoted as β = 2 − 2H where H is called the Hurst parameter after the hydrologist
Hurst who studied reservoir capacity planning using Nile River data [66]. H close to 1/2 is asso-
ciated with short-range correlation, and H close to 1 is indicative of long-range correlation. If we
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estimate the autocorrelation function r(m)(k) for the time series in Figure 1(a) where k is the time
lag, we find that

r(m)(k) ≈ r(k) ∝ k2H−2 (1)

withH close to 1. It is in the sense of (1)—the correlation structure across time scales is preserved—
that long-range dependent traffic is self-similar. In mathematical modeling of self-similar traffic,
we may consider second-order stationary X(t) whose autocovariance satisfies

γ(m)(k) =
σ2

2
(
(k + 1)2H − 2k2H + (k − 1)2H

)
(2)

for all k and m. X(t) is called exactly second-order self-similar with Hurst parameter 1/2 <
H < 1. (2) implies (1) where the autocorrelation structure is exactly preserved. When (2) holds
asymptotically in m, X(t) is called asymptotically second-order self-similar. Property (1) also holds
only asymptotically, i.e., r(m)(k) ∼ r(k). We refer the reader to [17, 108] for a more comprehensive
discussion.

3.2 What causes traffic self-similarity?

3.2.1 Structural traffic models

If we compare the 10 second aggregation plots of Figure 1(a) and Figure 1(b), we find that their
average is about the same. However, the left plot possesses significant undulations whereas the right
plot is fairly even. In the left plot there are 10 second intervals where traffic demand significantly
exceeds the average and time intervals where demand significantly falls below. Matching supply,
i.e., resources, to demand requires correspondingly variable resources that can be adjusted to the
time-varying demand if loss or waiting during peak periods is to be avoided. Frequent reshuffling of
resources can be difficult and, in some cases, such as installing physical lines and routing equipment,
outright infeasible. If resources are allocated at the peak rate then customer satisfaction is assured,
but at the cost of wasted or underutilized resources during lull periods which may translate to
increased resource/service prices. Utilization can be improved by lowering the allocated bandwidth,
albeit at the expense of quality of service. Bandwidth and buffer space—the two principal network
resources—are not storable commodities. That is, when a 100 Mbps link is utilized 50% during an
hour, 50 Mbps of unused bandwidth is not saved and available for consumption during the next
hour for a total bandwidth budget of 150 Mbps. The use-it-or-lose-it nature of network resources—
similarities exist with perishable goods—complicates resource provisioning when traffic demand is
bursty across a wide range of time scales. In the case of flat traffic, it is possible to “have the cake
and eat it too”: both high QoS and high utilization are attainable.

Traffic self-similarity is not a mere curiosity but has potentially serious ramifications for network
engineering. Thus understanding its causes is important. Let us consider an abstraction of a user’s
traffic flow, called the on-off model, where a user alternates between on (i.e., active) and off (i.e.,
inactive) states. During an on-period, data transmission is assumed underway—by default, at
constant rate—also referred to as a packet train [70]. During an off-period, the session is assumed
to be idle with no traffic emitted. When viewed as a stochastic process, the on-off model can
be described by a set of random variables τon(1), τoff(1), τon(2), τoff(2), . . . denoting the lengths
of the first on-period, the first off-period, the second on-period, and so forth. The on-period
random variables are assumed to be i.i.d. and independent of the off-period random variables, and
similarly for off-period random variables. An instance of an on-off traffic process is defined by the
distributions of τon and τoff. The collective traffic impinging at a router’s bottleneck link, which
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is comprised of several user flows, may be modeled as a superposition of multiple on-off processes.
This is depicted in Figure 2.

X (t)

time

ON ON ONOFF OFF OFFX (t)

3

1

X (t)2

X (t)

Figure 2: Superposition of three on-off processes.

Traffic measurements have shown that on-periods tend to be heavy-tailed while off-periods are
light-tailed [142]. A probability distribution is heavy-tailed with index 0 < α < 2 if the tail of the
distribution follows a power-law

Pr{Z > x} ∼ c x−α (3)

for large x. The precise mathematical counterpart of heavy-tailed random variables are regularly
varying random variables [90] whose definition involves the use of slowly varying functions, a tech-
nical detail we will ignore here. A canonical heavy-tailed distribution is the Pareto distribution
whose distribution function is given by Pr{Z ≤ x} = 1 − (b/x)α, b ≤ x, where 0 < α < 2 is the
shape parameter (or tail index) and b is called the location parameter. The Pareto distribution
has a power-law tail for all x ≥ b. Heavy-tailed random variables possess infinite variance, and if
0 < α ≤ 1, they also have an unbounded mean. For traffic modeling purposes, we are interested in
the regime 1 < α < 2. Practically, an on-off process with heavy-tailed on-periods and light-tailed—
by default, exponential—off-periods gives rise to many short traffic bursts mixed in with a few very
long transmissions. This captures the empirical fact that most TCP sessions are short-lived whereas
a few are long-lived. Superposition of independent on-off processes with heavy-tailed on periods
leads to asymptotic second-order self-similarity [131], in particular, fractional Gaussian noise [86],
a generalization of Gaussian noise (H = 1/2). An equivalence relationship holds where the super-
position of on-off processes is long-range dependent (H > 1/2) if and only if the on-periods—or
the off-periods—are heavy-tailed (1 < α < 2). For this reason, in the second-order self-similarity
context, long-range dependence—technically defined as having a non-summable autocorrelation
function—and self-similarity are used interchangeably.

An intimately related, perhaps even more succinct traffic model leading to second-order self-
similarity is the M/G/∞ traffic model. We think of traffic as being generated by Poisson arrivals—
the inter-arrival time between successive sessions is exponentially distributed—where the lifetime
of sessions is heavy-tailed. A session is viewed as a single on-period. This is illustrated in Figure 3.
Customers arrive randomly, and most customers are smallish (“mice”) whereas a few are very
big (“elephants”). M/G/∞ denotes a queueing system, so its interpretation as a traffic model
needs some explanation [35, 110]. M/G/∞ describes a queueing system where customers arrive
randomly—i.e., their inter-arrival time is exponentially distributed (the “M” in Kendall’s notation
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Figure 3: M/G/∞ traffic model.

which standards for Markovian)—there are an infinite number of servers (the “∞”), and a newly
arriving customer is assigned to one of the idle servers. At any given time only a finite number
of servers are busy. The time to service a customer can follow any distribution (the “G” which
stands for general). We are specifically interested in heavy-tailed service times. The performance
variable of interest in M/G/∞ is the counting process X(t) which at time t tallies how many
servers are busy. It is readily checked that the busy server process X(t) of an M/G/∞ queue with
heavy-tailed service times corresponds to the traffic model where session arrivals are Poisson and
session lifetimes are heavy-tailed. Again, the essential ingredient that renders the M/G/∞ traffic
model long-range dependent is the heavy-tailedness in the service time.

3.2.2 Causality: Heavy-tailed file sizes

Since empirical measurement data pointed to heavy-tailed session lifetimes [110, 142], a question
remained as to why this is the case. This was addressed in [102] where UNIX file systems research
carried out in the 1980s was examined and shown to indicate skews in file sizes consistent with
heavy-tailedness. In [39] file access by Web clients at Boston University during Nov. 1994–Feb. 1995
were shown to be heavy-tailed. The role of UNIX file systems for explicating the causality of self-
similar network traffic is relevant for two reasons. First, the original Bellcore data, the basis for
Leland et al.’s seminal study [81], was collected during 1989–1992 when the World Wide Web
did not exist yet: the Web could be a facilitator but not the root cause of traffic self-similarity.
Second, empirical evidence from the 1980s in the file system research community predating the
self-similar traffic discovery provided independent support that heavy-tailedness of file sizes may
be a phenomenon that is not necessarily specific to the Internet. Figure 4(a) shows the log-log
tail distribution of file sizes from a 1993 survey of UNIX file systems [68]. For large file sizes—
the detailed structure of small files has negligible influence on long-range dependence—we find a
straight-line fit consistent with heavy-tailedness. Figure 4(b) shows the cumulative distribution of
the percentage of files of a certain size and the corresponding cumulative disk space consumed. File
size is shown in log-scale with base 10. We observe that close to 90% of files are of size less than
10,000 bytes. Collectively they consume less than 10% of the disk space. The minority of files that
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Figure 4: Heavy-tailed UNIX file size distribution. (a) Log-log plot of file size tail. (b) Cumulative
distribution of file size count and disk space.

are bigger than 10,000 bytes—some are very large—consume the bulk of the disk space. Together
they invoke the metaphore “many mice and a few elephants.” We will encounter power-law skews
again when discussing Internet connectivity in Section 4. The relevance of Cunha et al.’s Web
access measurements [39] (and their further analysis in [36]) derives from the fact that file access
is not synonymous with file size distribution: a file server may be heavy-tailed but if users only
access small files, then the file access distribution—not file size distribution—becomes the variable
of interest. The results in [39] showed that user access behavior resembled random sampling from
heavy-tailed file size distribution.

3.2.3 Influence of traffic control

To complete the reductionist reasoning and causal chain—(i) traffic is self-similar because mul-
tiplexing of sessions with heavy-tailed lifetimes leads to self-similarity, (ii) session lifetimes are
heavy-tailed because most traffic is TCP file transfer traffic and file sizes are heavy-tailed, ergo
(iii) traffic is self-similar because file sizes are heavy-tailed—required showing that TCP does not
significantly interfere with the transfer process of heavy-tailedness of file size distribution into
heavy-tailedness of session lifetime. In [102] it was shown that TCP approximately preserved this
transfer relationship, and coupling of TCP sessions at shared bottleneck links did not break the
chain. On the other hand, UDP (User Datagram Protocol) traffic that is not feedback controlled—
UDP is a protocol operating at the same layer as TCP whose essential function is to identify the
application layer process that a packet is destined to—resulted in reduced self-similarity during
contention periods. This can be understood by noting that TCP conserves information due to
its retransmission based reliability mechanism whereas UDP—unless application layer protocols
running above it implement their own reliability mechanism—suffers information loss which dimin-
ishes the impact of the file size tail. During high contention accompanied by persistent packet loss,
TCP stretches its transmission into an on-average thin stream where the reduced signal strength
stemming from thinning is compensated by the lengthened file transfer completion time. Presence
of duplicate retransmissions may amplify the total number of bytes transmitted by TCP. In the
case of plain UDP, this “conservation law” need not hold.
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An on-average flatish TCP session contains internal structure at the time scale of the round-
trip time (RTT), i.e., network latency, at which feedback control actions are undertaken. The
output behavior of a typical long-lived TCP session follows the shape of a saw-tooth interspersed
with varying lull periods. Linear ascend in the saw-tooth is affected by TCP’s feedback control
which additively increases traffic submitted to the network when unused bandwidth is deemed
available. Sharp descend in the saw-tooth pattern stems from TCP’s multiplicative back-off which is
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Figure 5: Hurst parameter of on/off TCP sessions: Pareto file size/exponential idle period, Pareto
file size/Pareto idle period, and exponential file size/Pareto idle period.

instituted at times of perceived packet loss. The lull periods are introduced by TCP’s retransmission
mechanism which injects exponentially increasing pause periods during successive retransmission
attempts. Small time scale TCP dynamics can lead to chaotic trajectories and contribute to longer
time scale correlation [136, 137]. In particular, both exponentially increasing idle periods—extended
inactivity is a form of correlation—and linear growth of throughput that elongates transmission
duration contribute to long-range correlation. The magnitude of this contribution, however, is small
when compared to the impact of heavy-tailedness in inducing long-range dependence of network
traffic. This can be seen in Figure 5 (based on results from [102]) where the Hurst parameter of
aggregate traffic stemming from 32 concurrent TCP connections that share a bottleneck link is
shown for three different cases: (i) file sizes are drawn from a Pareto distribution with the specified
tail index and idle periods between successive file transfer sessions within a connection are set
exponential; (ii) both file size distribution and session inter-arrival times are set to be Pareto; (iii)
file sizes are set to be exponential but idle times are set to be Pareto. Case (i) corresponds to
the canonical configuration of practical interest reflecting Internet workload measurements. In case
(ii), Pareto inter-session arrival times within a TCP connection inject an additional measure of
long-range dependence that for lighter tails (e.g., α = 1.65 and 1.95) exact a noticeable effect.
For heavier tails (e.g., α = 1.05 and 1.35), however, the effect is negligible. The most relevant
scenario is case (iii) where exponential file sizes remove the heavy-tailed file size factor of long-range
dependence, while Pareto idle times inject long-range correlation stronger than those induced by
TCP’s exponential backoff. As the tail index approaches 1, we observe an increase in the Hurst
parameter. However, its magnitude (around 0.65) is significantly smaller than that of case (i)
(around 0.85) representative of Internet traffic. It is for this reason that heavy-tailed file size
distribution constitutes the dominant cause of long-range dependence in Internet traffic, with TCP
dynamics playing a tertiary role.
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3.3 Performance implications of self-similar burstiness

3.3.1 Queueing: How long must one wait

A key concern of network performance evaluation is how long packets arriving at routers have to
wait before they are processed and sent on their way. The same is true of client requests at servers.
From everyday experience at toll booths, restaurants, and fast food pick-ups, we know that the
waiting time is influenced by the bursty nature of arrivals—sometimes attributed to “luck” or the
lack thereof—in addition to time-of-day and overall traffic intensity. Such phenomena are studied in
queueing theory [76] where the biggest challenge lies in understanding the sometimes complicated
structure of bursty arrivals and their impact on waiting. To understand the influence of heavy-
tailedness in the input on queueing, we will consider a simplified queueing system with traffic input
X(t), storage occupancy Q(t), service rate µ, and storage capacity S, where packets are treated as
fluid and S = ∞. The motion of the system is governed by

Q(t+ ∆t) = max{Q(t) +X(t, t+ ∆t) − µ∆t, 0} (4)

where X(t, t + ∆t) denotes the input during the specified time interval and the queue drains
at constant rate µ. Thus storage occupancy at ∆t in the future is determined by adding the
net influx, X(t, t + ∆t) − µ∆t, to the current occupancy level. Equation (4) defines a random
walk with a reflecting barrier at zero. To prevent the queue from growing out of bound, we
require that there be a negative drift, λ < µ, where λ is the average traffic rate of input X(t).
Assuming the system is well-behaved, we seek to find the equilibrium distribution of Q(t), Q(∞),
the main performance variable. When the distribution of Q(∞) has an exponential tail, i.e.,
Pr{Q(∞) > x} ∝ e−ax, buffer dimensioning becomes cost-effective since an additional unit of
buffer capacity multiplicatively decreases the probability of overcrowding. The bulk of Markovian
or short-range dependent traffic lead to Q(∞) with light tails. For long-range dependent (LRD)
traffic, the picture is starkly different: heavy-tailedness in the input is preserved and translated to
heavy-tailedness in the queue length distribution. Thus the probability of overcrowding for large
x is significantly amplified rendering buffer dimensioning a less cost-effective resource provisioning
strategy for accommodating crowds. We will illustrate this transfer relation using a single on-off
process with heavy-tailed on-periods and light-tailed off-periods.

2 3 4 n
time

. . .. . . . . .

1

on

off

n−block

long on−period

. . .

xO(  )

xαO(    )

Figure 6: Block of n alternating on- and off-periods at time scale n = O(xα).

Let the on-period be Pareto with tail index α and location parameter b, and let the off-period
be exponential with parameter λoff. Let λon denote the traffic rate during an on-period. Then
λ = λonE{τon}/(E{τon} + E{τoff}), and λ < µ < λon is the regime where queueing behavior is
nondegenerate: neither unbounded nor empty. Suppose we want to lower bound the tail probability
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Pr{Q(∞) > x} for large x. Let τon(1), τoff(1), τon(2), τoff(2), . . ., τon(n), τoff(n) denote a block of n
alternating on- and off-periods where n = yα/bα and y = x/(λon−µ). Since Pr{τon > y} = (y/b)−α,
the expected number of on-periods in the n-block that exceed y is one. Figure 6 depicts the n-block
configuration. Let L denote the length of the “long” on-period. Its expectation is given by

E{L} = E{τon | τon > y} =
∫ ∞

0
(s+ y)

αyα

(s+ y)α+1
ds =

α

α− 1
y

where αyα/(s + y)α+1 is the conditional probability. y is set to x/(λon − µ) so that the queue is
assured to build up to x. Since λon > µ the queue remains above x for at least E{L}−x/(λon −µ)
during the long on-period. Let B denote the length of the n-block. We have

E{B} = n

(
1
λoff

+
kα

α− 1

)
= Θ(xα)

where E{τon} = kα/(α− 1). For large x, we estimate a lower bound using

Pr{Q(∞) > x} & E{L} − y

E{B} = Θ(x1−α)

The queue tail decays polynomially and heavy-tailedness is preserved. The preceding is not a
proof but an intuitive illustration using elementary arguments to show why the queue would find
itself overcrowded for Θ(x1−α) fraction during a Θ(xα)-length period. Queueing with long-range
dependent input is discussed in [19, 83, 85].

An upper bound of Pr{Q(∞) > x} may be gleamed from the following closure property satisfied
by heavy-tailed random variables: for large x,

Pr{τon(1) + · · · + τon(n) > x} ∼ nPr{τon > x}. (5)

The most likely time scale at which n heavy-tailed on-periods in a n-block would collude to cause
the queue to fill beyond x is n ∼ cxα. Moreover, (5) implies Pr{τon(1) + · · · + τon(n) > x} ∼
Pr{max{τon(1), . . . , τon(n)} > x} which indicates that overcrowding occurs “suddenly”: at time
scale O(xα) the typical picture is that of a single, long on-period dominating the queue dynamics
with respect to storage level x. Hence, Pr{Q(∞) > x} is upper bounded by a function that is
O(x1−α) for large x. In the case of exponential on-period Pr{τon ≤ x} = 1 − eκx, an analogous
lower bound argument with n = eκx yields a Θ(e−κx) bound since the conditional expectation of
the exponential distribution is constant. For the upper bound, Pr{τon(1) + · · · + τon(n) > x} is
exponentially small with a corresponding exponential upper bound on the queue tail.

3.3.2 Finite time scale effects

The arguments used for bounding Pr{Q(∞) > x} required that x be large, i.e., x → ∞. Queue-
ing analyses with LRD input that provide rigorous estimates on equilibrium tail probability are
asymptotic in nature, a handicap when it comes to resource dimensioning and computing buffer
overflow for practical systems with small x. Imposing finite storage capacity, S < ∞, complicates
matters—the resulting queue process has two reflecting barriers—and drawing definitive conclu-
sions on queueing delay and packet loss rate in finitary systems is difficult. Long-range dependent
traffic, when compared with short-range dependent traffic, may or may not affect a higher packet
loss rate: it depends on the specifics of the finitary storage system. That a heavy-tailed queue
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Figure 7: Packet loss rate of finite buffer queue with Poisson, LRD, and MMPP input.

tail is not synonymous with higher packet loss can be seen from Figure 7, which shows packet loss
rate as a function of buffer size for a simulated queueing system with three types of traffic input:
Poisson, LRD, and MMPP. A 2-state MMPP (Markov Modulated Poisson Process) is a stochastic
process generated by a 2-state Markov chain—when the system finds itself in the first state, it
behaves as a Poisson process with rate λ1; when the system is in the second state, it produces
Poisson traffic with rate λ2. By appropriately tuning the transition probabilities along with λ1

and λ2, varying degrees of short-range dependent burstiness can be introduced. MMPP(2) denotes
MMPP traffic whose parameters have been set to make it significantly burstier than MMPP(1).
LRD denotes an aggregated on-off process (cf. Section 3.2.1, Figure 2) composed of 32 independent
on-off sources each with tail index α = 1.1. All four traffic processes—Poisson, LRD, MMPP(1),
and MMPP(2)—possess the same traffic rate. Figure 7 shows that when buffer capacity is 1, LRD
traffic achieves the lowest packet loss rate, followed by Poisson, MMPP(1), and MMPP(2). When
buffer size is increased to 10, Poisson traffic has the lowest loss rate with LRD second, followed by
MMPP(1) and MMPP(2). As buffer capacity increases to 100, another inversion takes place where
LRD overtakes both MMPP(1) and MMPP(2) resulting in the highest packet loss rate. At buffer
size 1,000, only LRD traffic suffers nonnegligible loss. Thus we observe a transition in the packet
loss order

LRD 4 Poisson 4 MMPP 7−→ Poisson 4 MMPP 4 LRD

as buffer size is increased from small to large. The reason for this is: when buffer capacity is
small, variability and correlation nascent in short-range dependent traffic is sufficient to dominate
queue dynamics with respect to buffer overflow; only when buffer capacity is large does long-
range dependence have an advantage at overflowing the queue and exerting a deciding influence
on packet loss rate via-à-vis short-range dependence. In the latter, the required collusion to cause
overcrowding is exponentially rare and all-too-brief when it happens.

3.3.3 Self-similar burstiness and jitter

The queueing discussion showed that long-range dependence in self-similar traffic does not nec-
essarily lead to amplified packet loss rate. Although packet loss rate, a first-order performance
measure, is a primary yardstick in Internet performance evaluation, another important criterion is
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“jitter”—a generic term for second-order performance statistics—that captures variability in the
packet loss or packet delay process. In multimedia communication, it is not only needed that the
average packet loss be small but that the loss pattern be dispersed so that their effect may be
masked by the human perceptual system or through traffic control. Masking by traffic control can
be affected through forward error correction (FEC), i.e., channel coding, where redundant informa-
tion is transmitted to offset damage that may occur during travel. At the granularity of documents
or video frames where a single object is split into several packets, encoder and decoder functions
exist [113, 115] that satisfy the k-out-of-N property: k information packets are transformed into
N = k + h encoded packets—h represents the degree of redundancy—and a receiver is able to
reconstruct the original content as long as no more than h packets, whichever they may be, are
lost in the network. FEC is especially relevant in real-time applications over long distances where
retransmission based error correction may not be an option. For a FEC-protected traffic stream,
successful recovery is impeded by jitter in the form of bursty or clustered packet loss as this can
lead to too many losses within a block.
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Figure 8: Second-order performance: Block loss probability comparison between LRD and MMPP
traffic. (a) Block size N = 100. (b) N = 1, 000. (c) N = 10, 000.

Given traffic X(t) and block size N , the block loss process induced by feeding X(t) into a finite
buffer queue is a sequence of random variables LN (i), i ∈ Z+, where LN (i) ∈ {0, 1, . . . , N} denotes
the number of packet losses suffered in the i’th block. LN (∞)/N ∈ [0, 1] denotes normalized block
loss LN (i) in steady-state as i → ∞. Figure 8 shows normalized block loss distribution when
LRD and MMPP traffic are fed into a queue of buffer size 10. The packet loss rate experienced
by MMPP is higher than that of LRD, and we interprete buffer overflow with respect to three
different block sizes N = 100, 1, 000, 10, 000. Figure 8(b) shows normalized block loss distribution
for N = 1, 000. Even though MMPP’s loss rate is higher, LRD’s block loss distribution has a
wider spread and variance, incurring up to 40% packet loss within some blocks. MMPP’s block
loss, on the other hand, is bounded by 23%. Assuming the input is already FEC-encoded with
redundancy h, Pr{LN (∞)/N > h/N} is the probability that the k-out-of-N property is violated
and resultant decoding unsuccessful. Thus, LRD’s heavier block loss tail, Pr{LN (∞)/N > x},
x ∈ [0, 1], implies that FEC performance significantly degrades for LRD traffic when compared
to MMPP traffic despite the former’s smaller loss rate. The impact of self-similar burstiness on
second-order performance is distinct from that of first-order performance. It is affected by block
size N which exerts a similar influence as buffer capacity on block loss performance. Figures 8(a)
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and 8(c) show that the relative difference in block loss variance between LRD and MMPP becomes
pronounced for N = 10, 000, whereas for N = 100 the difference becomes dampened. For smaller
N , the block loss distributions of LRD and MMPP grow close with their tails eventually stretching
to 100%. For N = 1, Pr{L1(∞) = 1} = 1 − Pr{L1(∞) = 0} is the loss rate. At the opposite
extreme, for large N the distribution of LN (∞)/N becomes concentrated around the loss rate.

3.3.4 Sampling and slow convergence

Given the instrumental role played by heavy-tailedness in self-similar network traffic, sampling from
heavy-tailed distributions is relevant for network simulation including artificial workload generation.
A canonical example is the comparison of queueing performance between short-range dependent
and long-range dependent traffic where the latter may involve on-off or M/G/∞ traffic. A key
requirement, for comparability, is that the average traffic intensity of the input be the same so
that observed differences in loss performance can be attributed to the correlation structure of the
input, not sampling induced discrepancy and bias in the actual traffic rate. Figure 9(a) shows
the running sample mean for 60 × 106 samples drawn from an exponential distribution with rate
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Figure 9: Sampling and convergence. (a) Running sample mean for exponential distribution with
rate 1/60. (b) Running sample mean for Pareto distribution with α = 1.2 and b = 10.

1/60 for three different random seeds. Figure 9(b) shows corresponding sample means for a Pareto
distribution with parameters α = 1.2 and b = 10. Both distributions have the same population
mean 60, but their convergence properties are markedly different. Whereas the sample mean of
the exponential distribution converges rapidly and hugs the population mean after 6,000 samples,
the sample mean of the Pareto distribution requires at least 30 million samples to approximate the
population mean with 5% accuracy. The polynomial tail amplifies the contribution of large values
to the expectation, and its realization requires polynomially many observations with respect to the
inverse of the accuracy parameter but greater than exponentially many as a function of the tail
index.

To see this, let Z be Pareto with tail index α and location parameter b. The probability density
function of Z is given by f(x) = αbαx−(1+α). Recall that Z has finite mean but infinite variance
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for 1 < α < 2. We split the expectation, E{Z} = bα/(α − 1), into two parts separated by y,
E{Z} =

∫ y
b xf(x)dx +

∫ ∞
y xf(x)dx, and consider the relative contribution of the tail in achieving

an accuracy level ε, ∫ ∞
y xf(x)dx

E{Z} =
α− 1
bα

∫ y

b
xαbαx−(1+α)dx =

(
b

y

)α−1

< ε.

We have y0 = b(1/ε)1/(α−1) < y, and since Pr{Z > y0} =
(

b
y0

)α = ε
α

α−1 , we require N0 = ε−
α

α−1

samples to expect a value greater than y0. The number of samples is polynomial in the inverse
of the accuracy parameter, 1/ε, but grows faster than exponentially in α as it approaches 1. For
α = 1.2 and ε = 0.05, N0 yields 64 million samples. In the case of the exponential distribution, the
contribution of the tail in the expectation is exponentially small in y, which implies that y need
only be logarithmically large in 1/ε. However, due to the exponential smallness of the underlying
probability distribution, the number of samples required remains a polynomial function of 1/ε,
albeit with a small exponent that does not depend on the rate parameter.

Returning to Figure 9(b), we observe sudden jumps in the sample mean at 8 million, 17 mil-
lion, and 26 million samples which illustrates that the sum of heavy-tailed random variables is
dominated by the maximum “outlier,” a consequence of property (5) (cf. Section 3.3.1). The slow
convergence associated with heavy-tailed random variables exacts a heavy toll on sampling, and
speed-up methods that admit shortcuts—the subject of rare event simulation [63]—are needed.
For example, importance sampling, a technique that modifies an underlying probability measure
to pump up the likelihood of rare events, is aimed at achieving both small variance and relative
error. Importance sampling with an exponential change of measure has been applied, with some
success, to light-tailed distributions, but encounters difficulties when extending to heavy-tailed dis-
tributions. On the other hand, a change of measure that selects distributions with heavier tails
shows initial promise [6]. Additional discussion on sampling and fast simulation with heavy-tailed
and long-range dependent input can be found in [38, 57].

3.4 Traffic control: What can be done about it?

3.4.1 Large time scale predictability

Given that long-range dependence in self-similar traffic is caused by heavy-tailed session dura-
tions which, in turn, arise from heavy-tailed file sizes, the predictability inherent in heavy-tailed
distributions—manifested as long-term correlation in network traffic—may be harnessed for traffic
control purposes. To see why heavy-tailedness implies predictability, consider a heavy-tailed ran-
dom variable Z with index α. We are interested in the conditional probability Pr{Z > x+y |Z > y}
which captures the likelihood of predicting the “future” value of Z given its “past” value y.
For example, if Z were the session duration of an IP flow that is being tracked at a router,
Pr{Z > x + y |Z > y} would give the probability that a session that has lasted for y seconds
will continue for at least another x seconds. We have

Pr{Z > x+ y |Z > y} =
Pr{Z > x+ y}

Pr{Z > y} ∼
( y

y + x

)α
. (6)

Pr{Z > x+ y |Z > y} → 1 as y → ∞, which implies that conditioning the future on an ever longer
past brings about certitude. In contrast, for the memoryless exponential distribution, conditioning
on the past has no bearing on the future. The expected future duration is given by the conditional
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expectation E{Z |Z > y} = yα/(α − 1) (cf. Section 3.3.1). Thus persistence into the future is
proportional to persistence in the past, with α close to 1 amplifying the predictable time horizon.
The conditional variance, Var{Z |Z > y}, is unbounded for 0 < α < 2. In the case of aggregate
traffic, for example M/G/∞ input, aggregate traffic at time scale O(tα) is dominated by a single
long session of duration O(t). Relative signal strength, t1−α, decays slowly which renders long-
term positive correlation generated by heavy-tailedness detectable in the presence of short-term
fluctuations.
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Figure 10: Long-range correlation and predictability. (a) Conditional probability for α = 1.05
traffic. (b) Conditional probability for α = 1.95 traffic.

Figure 10 shows predictability in aggregate network traffic generated by multiple TCP connec-
tions that share a common bottleneck link. We consider two scenarios: one, files transported by
TCP is Pareto with α = 1.05, and two, file size distribution is Pareto with α = 1.95. A time series
representing traffic measurement is partitioned into 2-second time windows. The traffic volume
within a time window is quantized into 8 levels where 1 is low and 8 is high. Let SL and SR

denote random variables representing the quantized traffic volume at two consecutive time win-
dows. Figure 10(a) shows the estimated conditional probability Pr{SR |SL = h} as a function of
traffic level h ∈ {1, 2, . . . , 8} for TCP traffic with α = 1.05. At each traffic level, we observe a
skewed distribution: when SL is high (low), it is likely that SR is high (low). Positive correlation
between SL and SR leads to a diagonally shifting distribution peak in the 3-dimensional plot. Fig-
ure 10(b) shows the corresponding results for α = 1.95. We observe a stark difference: the shape
of Pr{SR |SL = h} does not depend on SL, i.e., Pr{SR |SL = h} ≈ Pr{SR} for all h. Short-range
dependent traffic possess a conditional probability profile similar to Figure 10(b) at the 2-second
time scale. At time scales 1–2 orders of magnitude smaller, however, short-range dependent traffic
exhibit conditional probability plots similar to that of Figure 10(a). That is, at sufficiently small
time scales, short-range dependent traffic is predictable.
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3.4.2 Delay-bandwidth product and reactive penalty

In multiple time scale traffic control [105, 132], information present at multiple time scales is en-
gaged to affect traffic control. Feedback traffic control, of which TCP is an instance, acts at the
time scale of feedback latency, also called round-trip time (RTT). Network state information from
RTT time units in the past is used in the present to enact control actions aimed at achieving im-
proved performance. In dynamic network environments, the larger the RTT the more outdated the
information, and the less effective the control action (“the train has left the station”). The reactive
cost is especially pronounced in high-speed wide-area networks (WANs) where many packets are si-
multaneously in transit, and damage ensuing from delayed reaction can be significant. For example,
in coast-to-coast transmissions, RTT is in the tens of milliseconds and individual broadband access
speed can exceed 1 Mbps (million-bits-per-second). In satellite networks, bandwidth is relatively
small but two-way latency reaches 500 msec.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

T
h
ro

u
g
h
p
u
t 

(K
b
p
s)

RTT (msec)

TCP

Figure 11: TCP performance as a function of RTT.

Figure 11 shows the diminishing throughput of TCP as RTT increases. Exposure of feedback
traffic control to the performance limitation imposed by large delay-bandwidth product networks
is an inherent problem. In open-loop traffic control, resources are reserved in advance to protect
a traffic flow from uncertainties of future network state in a FCFS (first-come-first-served) shared
network environment. When performance guarantees are required, open-loop control is unavoidable.
However, it carries its own cost of having to know the characteristics of the traffic flow—not always
easy to do—and potential resource underutilization stemming from per-flow reservation near the
peak, as opposed to average, data rate. In multiple time scale traffic control, the goal is to exploit
long-range predictability in closed-loop traffic control to mitigate the outdatedness of feedback
information at the time scale of RTT.

3.4.3 Workload-sensitive traffic control

Two issues need to be addressed when engaging long-range correlation for traffic control: prediction
of future traffic and utilization of this information for traffic control. At time t, the average future
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traffic level at time horizon t∗ > t, given by

X̄(t, t∗) =
1

t∗ − t

t∗∑
s=t

X(s),

may be predicted using past observations X(t− 1), X(t− 2), . . . , X(t− t∗) extending t∗ time units
into the past. The prediction error E{(X̄(t, t∗)−X̂(t, t∗))2 |X(t−1), . . . , X(t−t∗)} of the best linear
unbiased estimator (BLUE) is known in the asymptotic case (i.e., as t∗ → ∞) [16]; the finitary
case, however, is more difficult [17]. A simpler, but suboptimal, prediction method uses average
past traffic level X̄(t∗, t − 1) to predict the future: E{X̄(t, t∗) | X̄(t∗, t − 1)}. A quantized variant
of the conditional expectation predictor has been employed in [105, 132, 133]. Since the aggregate
traffic level at a bottleneck router is not directly observable by the sender, active or passive probing
must be used—unless routers are enabled to convey their state information directly, which has its
own problems—to estimate contention level. In active probing, probe packets are transmitted to
ascertain network state from the packets’ delay and loss characteristics observed at the receiver. In
passive probing, the characteristics of transmitted application traffic is used to infer network state.
This eliminates additional messaging overhead, albeit at the cost of reduced accuracy. The passive
probing method used in [105, 132] utilizes the output behavior of TCP, observable at the sender,
to infer the contention level on a bottleneck path. This method relies on the tracking ability of
feedback congestion control, inclusive TCP, whose output behavior can be shown to be negatively
correlated to the contention level.

Assuming the average future traffic level is known, how should this information be utilized to
effect improved traffic control? Long-term state information, by definition, is slowly varying—
short-term fluctuations may be missed—and the predicted information is probabilistic: with some
likelihood predictions are wrong. Hence, at a minimum, a large time scale control action should
not do more harm than good. In proactive congestion control, long-term prediction is used to
modulate bandwidth consumption behavior at the time scale of RTT: aggressive when the outlook
is good and conservative if the outlook is bad. The net effect is improved throughput, achieved by
desensitizing control actions against short-term fluctuations while increasing awareness of persistent
state changes. By reducing futile reactions to transient events that, by definition, are fleeting and
outdated by the time control actions take effect, throughput degradation may be alleviated.

In the context of TCP congestion control [69], long-term prediction may be utilized in two
complementary ways. When network conditions are favourable—i.e., available bandwidth is high—
TCP should aggressively soak up unused bandwidth as the opportunity cost for not doing so is
commensurately high. This may be accomplished by increasing the linear rate at which TCP opens
up its throttle. Eventually TCP reaches its maximum throttle or the increased sending rate causes
losses at bottleneck routers. In the latter, upon detecting potential packet loss—the TCP sender
uses lack of timely acknowledgement from the TCP receiver as an indicator of loss—TCP clamps
down on the throttle by a multiplicative factor of 1/2. Consecutive multiplicative clamp-down leads
to exponential back-off which, in general, is needed to achieve stability. During periods when avail-
able bandwidth is plentiful, however, back-off need not be as drastic. Conversely, when the overall
contention level is high, a more conservative bandwidth consumption behavior may be undertaken.
A specific form that modulates the slope during linear increase in illustrated in Figure 12. Stability
of multiple time scale TCP holds as long as TCP’s feedback congestion control is stable and the
time scale at which long-term control parameter modulation is undertaken significantly exceeds
the time scale of RTT. If both conditions are satisfied, time scale separation assures that TCP
feedback control reaches equilibrium during a successive pseudo-stationary time window at which
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Figure 12: Selective slope control: TCP’s linear increase slope is modulated as a function of long-
term network state.

control parameters are held constant. In the long run, TCP moves from equilibrium to equilibrium
across successive pseudo-stationary time windows.

Figure 13 shows the performance gain achieved by TCP when it is augmented to utilize long-term
predicted contention to modulate its linear increase-exponential decrease behavior. We observe that
the multiple time scale version of TCP, TCP-MT [105], improves on the throughput of TCP, where
throughput gain (%) amplifies with RTT. The quantitative gain depends on the underlying TCP
flavor—e.g., TCP Reno, NewReno, Vegas—and specific network conditions. Performance gains up
to 60% have been observed in prototype systems. Similar results hold for rate-based congestion
control which are employed in UDP based traffic streaming [132]. Feedback congestion control
modulation using long-term information applies to long-lived flows. For short-lived flows, feedback
is relevant for error and packet loss recovery. Predictability from heavy-tailedness admits on-line
classification of short-lived and long-lived flows so that long-term control actions can be affected to
long-lived sessions where they matter. The same holds for traffic shaping and admission control:
the few elephants that consume much of the Internet bandwidth must be reigned in to make a
difference. The mice, collectively, exert only a small impact on system performance.
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Figure 13: Performance gain of multiple time scale TCP: TCP-MT.

Workload-sensitive traffic control has been applied for real-time video/audio transport using
adaptive forward error correction (AFEC), where redundancy is adaptively injected to protect
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against packet loss without necessitating retransmission [106, 107]. Multiple time scale AFEC,
AFEC-MT, shields AFEC against transient fluctuations, thereby increasing the recovery rate—i.e.,
correct decoding of video/audio frames—at the receiver [133]. In [100] router-aided rate control
for self-similar traffic is explored. Sampling based prediction and scheduling is studied in [144].
Heavy-tailedness has been exploited for dynamic load balancing of UNIX processes where process
lifetimes are observed to be heavy-tailed [61], enhancing routing stability through long-lived and
short-lived IP flow separation where routing updates are desensitized against short-lived flows [124],
and process scheduling where preference is given to short-lived processes [37].

3.5 Discussion

The global Internet operates primarily as a distributed client/server system, where the bulk of
events entail fetching files of various types—Web page, image, video, and software—from remote
sites. Heavy-tailedness of file size distribution is a structural property of distributed systems, an
empirical “law” on par with Poisson session arrival and locality of reference. Memoryless inter-
session arrival has enabled Markovian analysis of real-world systems, including capacity planning
in telephony whose principles date back to Erlang’s pioneering work [49]. Locality of reference
is at the heart of caching, a resource management technique without which economic information
processing would be severely impeded. Collectively, the three laws form the cornerstones of effective
system design and engineering, with heavy-tailed file size being the junior member.

Heavy-tailed files are responsible for generating self-similar network traffic, an emergent trait
of the Internet that transcends its phenomenological curiosity. That is, self-similar burstiness
has repercussions to network performance, planning, and control. Heavy-tailedness is a robust
property in the sense of being a conserved property: it manifests itself as long-range dependence
when channeled across a network, surfaces as heavy-tailed queueing delay when fed into a router’s
buffer, and translates into long-term predictability when harnessed for traffic control. Heavy-tailed
file size is like an invariant that morphs into other heavy-tailed network phenomena but is not
readily suppressed.

Fractal properties of network traffic in the form of 1/f noise and chaotic dynamics of TCP’s
nonlinear feedback control are not unrelated (cf. Section 3.2.3), but of secondary import to Inter-
net engineering. The latter provides grounding in real-world considerations that curb chaos-centric
interpretations of the Internet when viewed as a complex system. Self-similar traffic is a represen-
tative example where a “physics of network traffic” is established spanning measurement, network
mechanics, and mathematical modeling. A strength of the Internet is that it comes with concrete
application driven issues where complex systems notions exert a tangible, pragmatic influence.
These range from structural causes of correlation at-a-distance, to slow convergence and equilibria,
to prediction and control. As an engineered physical system, the Internet affords precise quanti-
tative measurement allowing testing of theories with respect to cause and effect that may involve
complex what-if scenarios whose scope goes beyond those feasible in biological, social, and natural
physical systems.

The origin of self-similar traffic traces back to heavy-tailedness of file sizes. Venturing a step
further, one may ask: why are files heavy-tailed? This is not an uninteresting question, but one that
may not have a satisfactory scientific answer. Why are customer inter-arrival times approximately
memoryless? Why is locality of reference so prevalent? It is not difficult to advance philosophical
ruminations, but perhaps few that lead to scientific rigor or productive consequence. We leave the
empirical laws as axioms.
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4 Power-Law Network Topology

4.1 What is power-law network topology?

In the late 1990s, empirical measurements showed that a number of real-world graphs including
World Wide Web graphs [12, 22, 79], Internet domain networks [50], call graphs [1, 3], and certain
biological and social networks [71, 97, 114] exhibited an unexpected connectivity pattern: the
neighborhood size of nodes was quite variable, following a power-law distribution. As with heavy-
tailed file sizes in self-similar traffic, this implied that most nodes are small, i.e., have few neighbors,
but a few are very large. The reason these findings were surprising is that they did not fit existing
models—perhaps even conceptions—of how networks are connected, examplified by random graphs
whose size distribution has an exponentially decreasing tail. This does not mean that random graphs
were regarded as good models of engineered and natural networks. In the field of combinatorial
optimization there has been a perennial search for realistic benchmark graphs on which the average
performance, as opposed to worst-case performance, of optimization algorithms could be evaluated.
In spite of this recognized deficiency and need, pinning down the essential features of real-world
networks proved elusive.

Figure 14(a) shows a 300-node Internet domain graph where nodes are administrative domains
and edges denote peering relations between domains. Administrative domains, also called au-
tonomous systems (ASes), are identified by 16-bit numbers (e.g., Purdue University has AS number
17). A typical peering relation is one where one domain is a customer of another, the provider.
An AS is a logical entity that need not be geographically localized: for example, a major transit
domain that provides connectivity service to other domains may have points-of-presence (POPs)
across multiple continents where access routers are deployed. Access routers are connected by
backbone networks internal to an AS. A link between two ASes means that there is at least one
pair of border routers belonging to the respective domains that are directly connected, sometimes
through a multi-party connection called an exchange. In an Internet domain graph, these and
other details are ignored. Figure 14(b) shows a 300-node random graph with the same edge density

(a) (b)

Figure 14: Power-law vs. random network topology. (a) 300-node Internet AS graph. (b) 300-node
random graph with the same edge density.
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as the 300-node Internet domain graph. In Gn,p random graphs—n is the number nodes and p a
probability—an instance of a random graph is generated by selecting each edge independently with
probability p. Thus Gn,p assigns a probability distribution over the finite sample space of all n-node
graphs. If p = 1/2, all n-node graphs are equally likely. A graph is sparse if the number of edges is
sub-quadratic, i.e., significantly less than the total number of edges

(
n
2

)
. Power-law graphs turn out

to be sparse. The connectivity structure of the two graphs shown in Figure 14 is markedly different.
Whereas the random graph is homogeneous and looks locally about the same, the power-law graph
possesses “hubs” of varying sizes—some very large—that are connected through a “backbone.” In a
random graph, the neighborhood size of a node, called its degree, is concentrated around the mean
np, a consequence of LLN. A random graph is an approximately regular graph, where a graph is
k-regular if all its nodes have the same degree k. The graph in Figure 14(a) is, in this sense, highly
irregular and not a typical instance of Gn,p.

4.2 Power-law random graphs

4.2.1 Power-law degree distribution

Random graphs, pioneered by Erdös and Rényi [47], possess a binomial degree distribution, thus
making nodes with many neighbors exponentially rare. In a power-law graph, a polynomial degree
distribution is postulated,

Pr{deg(u) = k} ∝ k−β ,

where β > 0 is an exponent that depends on the application area whence a graph comes from. For
example, in a number of empirical measurement graphs, including Internet AS graphs, 2 < β < 3.
Figure 15(a) shows the degree distribution, on log-log scale, for Internet AS topologies from Oregon
Route-Views measurement data that are based on route table dumps [96, 135]. For a wide range
of degree values—99% of nodes have degrees less than 50 and 95% have degrees less than 10—
we observe a linear relationship with β slightly exceeding 2. For large-degree nodes whose small
relative frequency is drowned out in a degree distribution plot, a rank distribution plot can be
used where nodes are sorted in nonincreasing order of degree and the resultant rank is related to
degree [50]. For example, in a 2002 Internet AS graph, rank 1 is occupied by AS 701—UUNET,
a tier-1 transit provider—which has degree 2,538. By plotting rank versus degree, focus is shifted
to high degree nodes at the expense of low degree nodes where an overwhelming majority have
degree 1 or 2. Figure 15(b) shows the log-log rank distribution for the same data set. We observe
a linear fit, consistent with a power-law relation, with slope a little less than 1. For a number of
technical reasons, Internet AS topologies inferred from measurement data provide a partial and
inexact view of domain-level connectivity. Although power-law degree distribution is a robust
phenomenon observed across AS topologies obtained from different measurement sources, when
drawing conclusions on the implications of power-law connectivity, it is imperative to consider
the limitations of the measurement data and inferred topologies as well as application-specific
idiosyncracies.

4.2.2 Power-law molecular stew

From a structural perspective, we may interpret a degree sequence that specifies the degree of nodes
in a graph in nondecreasing order as a set of n “molecules” where molecule i has wi bonds. Fig-
ure 16 illustrates the ingredients of a power-law “molecular stew” which may be stirred to generate
higher order structures. It is reminiscent of simulated annealing, albeit in multi-dimensional space
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Figure 15: Power-law degree distribution of Internet AS graph. (a) Log-log degree distribution.
(b) Log-log rank distribution.

as 3-D is too restrictive for effective stirring. High-degree nodes, by virtue of their abundant links,
are likely to form connections with each other—not always directly—yielding a dense connected
component comprising a skeleton backbone. Since high-degree nodes are few, many unfilled bonds
will dangle from the backbone. The bulk of dangling bonds must link up with low-degree nodes,
the most common building blocks in the power-law ingredient pool. This yields locally star-like
shapes—reminiscent of Asian fans—a characteristic feature of power-law graph drawings (see, e.g.,
Figure 14(a)). The bondings, thus far, were of a “large-large” and “large-small” kind. The remain-
ing molecules—a minority of small and intermediate nodes—may contribute to the final structure
two-fold: “small-small” pairings lead to elongated branches sticking out from the backbone, and
others further the connectivity of the skeleton backbone. With respect to the power-law exponent
β, the larger the exponent the fewer the presence of high-degree nodes in the molecular stew, which
diminishes the effect of large-large and large-small bondings. This may lead to fewer and smaller
fans, and a less intertwined backbone.

n Pr{deg(u)=4}

. . .. . .. . .. . .

Figure 16: Molecular stew with ingredients determined by power-law degree sequence.

4.2.3 Power-law random graph model

Fan and Lu [32, 84] studied a random graph model based on expected degree sequences that may
be viewed as a generalization of Gn,p. Given an expected degree sequence w = (w1, w2, . . . , wn)
where wi denotes the expected degree of node i, an edge between nodes i and j is independently
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selected with probability pij proportional to the product of the weights, pij = wiwj/
∑n

`=1w`. It
is easily verified that the expected degree of node i is wi. Gn,p may be viewed as the special case
where w = (np, np, . . . , np). The condition maxiw

2
i <

∑
j wj is placed which assures that pij is

less than 1 and the degree sequence w is graphical, i.e., there exists a graph with the given degree
sequence. A related approach based on exact degree sequences, called configuration model [92], has
been investigated by Aiello et al. [3]. A key advantage of the expected degree sequence random
graph model is its built-in independence. It comes, however, at the cost of defining a graph
family whose members satisfy a prescribed degree sequence only on average. Erdös and Gallai [46]
provide necessary and sufficient conditions for a degree sequence to be graphical, which also admits
an iterative procedure for constructing a graph instance. We may generate other instances of
graphs with a given degree sequence by constructing a Markov chain that performs a pair-wise
edge switching operation: given two disjoint edges, the disconnected end points are joined and
the original edges deleted. Clearly the local graph perturbation preserves degree sequence. In the
configuration model, we may produce power-law multi-graphs—in a multi-graph two or more edges
are allowed between a pair of nodes—by making wi copies of each node i (each copy is void of
edges), then forming a random matching on the resultant

∑
`w` nodes where nodes are randomly

paired. When the wi copies of node i are collapsed back into a single node, node i may share two
or more links with another node j. Rigorous results can be shown for the configuration model with
power-law degree sequence under random matching, such as the existence of a giant component
and logarithmic bound on the size of smaller components [3]. Little is known about the Markov
chain model.

In [31, 32, 84] the basic properties of random graphs with a given expected degree sequence
are established. Chung likens random graphs that obey a power-law expected degree sequence
with 2 < β < 3 to an octopus. The body of the octopus is a dense core of diameter O(log logn)
that contains nc/ log log n nodes. The nodes in the core are large in the sense that their degrees
are at least n1/ log log n. The average distance of smaller nodes to the core is O(log logn). The
octopus has arms that extend to O(logn) from the core. When β > 3, the power-law random
graph is more expansive with average distance O(logn). At β = 3, the average distance is of order
logn/ log logn. Some important features do not depend on the higher-order properties of a degree
sequence. For example, the distribution of connected components, including the giant component,
depends on the average (expected) degree

∑n
`=1w`/n but not on the individual make-up of the

weights. The small diameter—and even smaller average distance—is indicative of Milgram’s small
world phenomenon [91]. In social networks where links are defined by acquaintance relationships,
six hops suffice to reach presidents and hollywood actors, a phenomenon referred to as “six degrees
of separation.” Since classical random graphs also possess a logarithmic diameter, the small world
phenomenon—highlighted in the influential work of Watts and Strogats [140]—is an important but
perhaps not determining feature of empirical networks modeled by power-law graphs. In Section 4.4
we consider more subtle properties with implications to shielding the Internet from network security
attacks.

4.2.4 Growth model: preferential attachment

A random graph evolution is a stochastic process that “grows” a graph instance by sequentially
adding edges or nodes. It is a tool introduced by Erdös and Rényi [48] to study emergent structural
properties of random graphs, including phase transitions at critical edge densities. In [12] a graph
evolution for power-law graphs is proposed where a new node is preferentially attached to existing
nodes based on their degree: a node is chosen for attachment with probability proportional to its
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degree. Thus a node with many connections is likely to get even larger as its chances of winning
in the connect-to-the-new-node competition is self-reinforcing. This growth dynamics captures one
form of the saying “the rich get richer and the poor get poorer,” and may be a causal factor
underlying the skewed connectivity of power-law graphs. In [18] it is shown that a formalization of
this process leads to a random graph with a power-law degree distribution with exponent β = 3.
In [84] a generalized graph evolution is studied that is able to generate power-law graphs with a
tunable exponent.

As a causal explanation of power-law graphs, preferential growth models are intuitively appeal-
ing since they embody biases in social dynamics where popularity, reputation, or notoriety have a
tendency to become concentrated, at least up to a point. In the context of inter-domain peering, or-
ganizational behavior—other things being equal—may sway a new domain to subscribe bandwidth
from a large, well-known transit AS due to: a tacit perception of reliability, simply because smaller
providers are unknown, a bandwagon effect (“many of our business associates are connecting to
UUNET, so should we”), and one-hop reachability to a large customer base. However, these are
but a subset of relevant factors and other things are not always equal. For example, a medium size
provider, due to political connections, may have POPs at international sites that a larger provider
does not. In some instances, a smaller provider may have beaten a larger transit AS to the finish
line with respect to new technology upgrade. Time scale is another important factor. Inter-domain
peering agreements occur at the time scale of weeks, months and years, during which changes
in economic climate, political upheaval, and technology innovation enter into the fray. Nonsta-
tionarity has been an issue when modeling self-similar traffic via stationary processes [44]: traffic
at noon is different from traffic in the morning. Time-of-day periodicity, however, exists at time
scales larger than those relevant for self-similar traffic engineering. For power-law topologies aris-
ing in application areas such as inter-domain connectivity, router-level topology, call graphs, and
Web graphs, nonstationarity due to exogenous variables may be more problematic when advancing
causal explanations of power-law connectivity.

4.3 Performance implications and control

4.3.1 Network flow and load imbalance

In this article, we focus on the implications of power-law connectivity when the underlying graph
represents a flow network, as is the case for Internet AS and router graphs. Web graphs, in
contrast, are first and foremost information networks where relational structure as captured by
various criteria of semantic closeness, including the presence of clusters, admit analysis of massive
data sets for effective information retrieval [10, 67]. For example, Google’s Web page ranking
algorithm [101] uses a popularity index—how many pages refer to a Web page—to determine the
importance of search results. Flow and relational structure are intimately related, and some of
the points advanced for flow networks have meaningful interpretations in the information retrieval
context.

Let us consider a network G = (V,E) where a routing algorithm has determined a path u Ã v
between every pair of nodes u, v ∈ V in the network. Assuming uniform traffic demand, i.e., all
source-destination pairs are equally likely, we define the load of a node u, L(u), as the number
of paths that traverse through u. Thus node load captures an innate “stress” that is placed on
nodes in the flow network—a function of topology and routing—which can translate to hot spots or
congestion if the load of a node is large compared to its capacity. An analogous definition holds for
edge load L(e), e ∈ E. Figure 17(a) shows the log-log plot of node load as a function of load rank—
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nodes are ordered with respect to their load where rank 1 is occupied by a maximal load node—for
a 2002 Internet AS graph and a random graph of the same size and edge density. Figure 17(b)
shows the corresponding log-log plot of edge load. For both Internet AS and random graphs, we
observe an approximately linear regime followed by a sharp fall. The flat region in Figure 17(b)
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Figure 17: Comparison of load imbalance between Internet AS and random topology. (a) Node
load. (b) Edge load.

toward the tail is due to ties in the rank. A smaller flat region is discernible in Figure 17(a). The
main difference between Internet AS and random graphs is that the slope of the log-log plot in the
former is steeper than that in the latter. This implies that the load imbalance in the Internet AS
topology is more pronounced. In random graphs, routes are dissipated and the resulting load more
balanced. Power-law connectivity has a propensity to induce hot spots, skewing the responsibility
placed on some nodes and edges over others.

This structural difference between Internet AS graphs and random graphs is insensitive to details
in the underlying routing. Figure 18(a) shows the log-log node load distribution of the 2002 Internet
AS topology under three different routing: shortest-path, semi-random, and random. In shortest-
path routing, a shortest path is computed between source and destination using a destination based
version of Dijkstra’s algorithm which iteratively constructs a routing tree rooted at the destination.
Destination based route construction follows the procedure employed by BGP, Internet’s global
routing protocol. In semi-random routing, the shortest-path preference is modified such that when
a new node is added to the routing tree—the purview of policy in inter-domain routing—instead of
choosing a minimal distance node, a random node is selected. The randomly selected node, however,
is then attached to a node in the tree that it is closest to, preserving a tendency for inducing short
paths. In random routing, both the next node selection and its attachment to the routing tree are
done randomly. The average path lengths of shortest-path, semi-random and random routing are
3.64, 3.83 and 6.57, respectively. The corresponding maximum path lengths are 11, 16 and 22. In
Figure 18(a) we observe that non-shortest-path routing has little influence on the shape of the node
load curve. In power-law networks, imbalances in node load cannot be evened out by routing. The
skewed node load distribution is an invariant of the power-law topology. Figure 18(b) shows that
fully random route construction—an extreme form of policy diversity—does improve the balance
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Figure 18: Impact of routing on Internet AS load imbalance: shortest-path, semi-random, and
random routing. (a) Node load. (b) Edge load.

in edge load. Semi-random routing has little effect on edge load. By forgoing route efficiency, it is
possible balance the edge load but not the node load (“all roads still lead to Rome”).

The consequences of severe load imbalance on network engineering are: one, a structural propen-
sity for congestion if capacity is not accordingly matched, two, congestion at a few nodes—node
or edge failure being a special case where nothing passes through—impacts a significant fraction of
the overall traffic demand, and three, load imbalance is an innate property of power-law networks
where network engineering exacts only limited influence. A caveat to the above is the assumption
of uniform traffic demand which is not reflective of actual Internet demand. The Internet is prin-
cipally a client/server network where demand is closer to “many-to-few” than “many-to-many.”
Voice-over-IP (VoIP) and peer-to-peer file sharing applications such as KaZaA promote a flat de-
mand structure that may amplify in the future, but at the present they comprise a minority. When
traffic demand is many-to-few, caching becomes an effective network engineering strategy that can
keep a significant portion of the traffic demand local. One method for selecting cache proxies is
to pick high-degree nodes where replicated files and services are hosted. High-degree nodes will
continue to carry a high processing burden, however, their transit burden will be significantly re-
duced. Topology-aware caching has been considered in [73]. Multicasting is another application
that can benefit from topology-aware placement. In multicasting, a spanning tree is constructed
that allows broadcasting among a group of users. Multicasting on power-law topologies leads to
graph embedding problems that aim to minimize various cost functions including the size of the
multicast tree. Of related interest is the structure of multicast trees when the 2-level hierarchy of
Internet routing—inter-domain at the AS level and intra-domain at the router level—is incorpo-
rated. Assuming members of a multicast group are chosen randomly from the nodes in an Internet
AS topology, the scale-free nature of power-law topology—random subgraphs remain power-law
with the same exponent—allows a scale-free characterization of the structure of AS level multicast
trees once the multicast algorithm (e.g., minimum spanning tree) is specified. Considering that
transit domains are made up of router level backbone networks, if an AS level multicast tree is
further expanded to include details at the router granularity, we arrive at a fine granular picture
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of multicast trees that incorporates the connectivity structure of router networks. Similar to path
length inflation when routes are computed in a hierarchical fashion [130]—shortest-AS-path at the
inter-domain level followed by shortest-router-path within each domain—multicast trees computed
in a 2-level fashion are expected to be less efficient than those constructed from the global router
level topology. Perhaps most intriguing is a succinct characterization of multicast trees obtained
from 2-level hierachical routing, which may exhibit scaling properties such as those observed in [30].
Szpankowski et al. [128] have proposed a somewhat curious-looking tree structure, called self-similar
tree, that possess distinctive unary segments in an attempt to explicate the power-law scaling be-
havior of multicast trees studied in [30, 111]. We conjecture that power-law connectivity, under
2-level hierarchical routing and existence of strong correlation between AS size and AS degree [129],
induces multicast trees that resemble self-similar trees. Lastly, we note that for performance con-
siderations in AS level graphs, “capacity,” “congestion,” “failure,” and other performance measures
must be carefully applied to yield meaningful interpretations. For example, a tier-1 transit AS is
geographically dispersed with POPs across the continental United States and select international
sites. A node failure in an Internet AS topology corresponding to such a transit AS would not be
meaningful, even under massive power outages and other large-scale disturbances. This also holds
for edge failures since a single AS level link between two transit domains may correspond to two
or more physical peering points located in different parts of the country, say, one in New York,
another in LA, and a third in Indianapolis. Unless all three physical connections go down, the two
transit domains remain connected and their AS level link up.

4.3.2 Vertex cover: Distributed control and optimization

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that every edge e =
(u, v) ∈ E is incident on S, i.e., either u or v (or both) belong to S. A vertex cover (VC)
achieves a covering of edges in a flow network which allows distributed detection and control of
communication events involving the generation and forwarding of packets. In the next section we
will discuss its application—in the form of distributed packet filtering—to denial of service and
worm attack prevention. In this section, we are interested in finding small VCs in Internet AS
graphs. Since nodes in a VC are engaged in detection and control, having a small node set that
covers all edges, i.e., is a VC, is important for economy and ease-of-deployment. For example, in
the global Internet, getting one domain to adopt a new technology is a complicated matter. To get
multiple domains to agree on a common technology base, such as the deployment of distributed
filters, is an even tougher challenge due to administrative autonomy, policy barriers and conflicts
of interest. Thus our primary cost measure with respect to implementing distributed detection and
control is the size of a node set—VC or otherwise—where actions are undertaken.

Finding a minimal VC in an arbitrary graph is an NP-complete optimization problem [58]. A
problem is in NP if checking whether a candidate solution is indeed a solution is easy, i.e., can be
done in polynomially many steps in the size of the input. Finding a solution may be easy—then
the problem belongs to the class P ⊆ NP—or it may be not. Intuitively, we would think that
appreciating good music is easier than composing it. Artists and scientists would not be able to
make a living without this maxim. Critics are professional solution checkers. The “P vs. NP”
problem in computer science captures this popular and, on the surface, obvious truth but, to date,
no one has been able to prove that P ( NP. That is, existence of a problem whose solutions
are easy to check but difficult to find. A problem is NP-complete if it is in NP and dominant:
the ability to solve it would make every other problem in NP solvable. Finding a minimal VC
is such a problem. Although a fast algorithm for minimal VC is not known—likely because none
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exists—there is a fast algorithm that always gives a VC that is at most twice as large as a minimal
one. The algorithm starts from an empty cover, iteratively picks an edge, inserts the two incident
nodes into the cover, removes the two nodes and any edges incident on them from the graph, and
repeats the process on the smaller graph until no more edges remain. It is easily checked that the
algorithm—more accurately procedure since we haven’t specified how to pick the edges—achieves
a factor-2 performance guarantee. A drawback of this algorithm under random edge selection is
that it does not do well in practice: it is outperformed by a greedy algorithm that grows a VC by
first inserting a node with the highest degree, removes the node and its incident edges from the
graph, and repeats the process until no more nodes remain. An issue with the greedy algorithm is
that no rigorous performance traits are known except that there are graphs on which the greedy
heuristic fares poorly: the size of the VC found is at least a factor of logn bigger than a minimal
VC. In the following, we show the size of small vertex covers found by running both the greedy
heuristic and factor-2 approximation algorithm. The latter chooses edges randomly in the iterative
growth process, and for each graph instance is run 100 times with different random seeds. For
the graphs benchmarked below, the greedy algorithm always found smaller VCs compared to the
factor-2 approximation algorithm. The factor-2 approximation algorithm, however, is useful for
lower-bounding the minimum VC size. From 100 runs, pick the worst VC size found, divide it by
2, and it gives a lower bound on the minimal VC size.
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Figure 19: Internet AS topology. (a) Growth during 1998–2002. (b) Vertex cover size.

Figure 19(a) shows the size of Internet AS topologies inferred from NLANR/Oregon Route-
Views measurement data for the period 1998–2002. We observe a slight super-linear trend. Fig-
ure 19(b) shows the smallest VC size found for the Internet AS topologies and corresponding
random topologies of the same size and edge density. The VC size for Internet AS graphs falls
below 15% in 2002, whereas for random graphs it increases above 55%. A practical implication
of the VC gap is that if Internet AS connectivity were random, significantly more nodes would be
needed to cover all edges in the network. Power-law connectivity affords economy of deployment
through strategic placement. To ascertain the accuracy of the estimated minimal VC sizes, we plot
both the upper bound (obtained by the greedy algorithm) and lower bound (obtained with the
help of the factor-2 approximation algorithm) in Figure 20(a). We observe that for Internet AS
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Figure 20: Accuracy of estimated minimal VC size. (a) Upper and lower bound of minimal VC
size for Internet AS and random graphs. (b) Accuracy of estimated minimal VC size.

topologies the two bounds are very close, achieving an accuracy level greater than 90% as shown
in Figure 20(b). In the case of random topologies, the upper and lower bounds are significantly
further apart leading to an accuracy level below 75% in 2002. Asymptotic estimates for the size of
a minimal VC are known for Gn,p random graphs under the condition that the average degree be
large (i.e., np→ ∞) [56]. Since power-law graphs possess constant average degree, the correspond-
ing random graphs must have constant average degree to achieve the same edge density. One of the
technical challenges in power-law graphs is to understand what implications power-law connectiv-
ity has on combinatorial optimization. Presence of large degree nodes that induce locally star-like
subgraphs makes optimization, to a first approximation, easier. However, additional increase in
accuracy requires an improved understanding of the “backbone” structure of power-law topologies
where intermediate-sized nodes play an important role. VC is a good starting point to study these
questions as finding a minimum VC is intimately related to finding a maximum independent set
and clique. An independent set of a graph G = (V,E) is a subset of vertices where the nodes are
mutually disconnected. A subset of nodes is a clique if everyone is connected to everyone else. It
can be easily checked that if S ⊆ V is a VC, then V \ S is an independent set of G and a clique of
Gc = (V,Ec) where Ec is the complement set of E. Another interesting avenue for optimization in
power-law graphs is a deterministic definition of power-law graphs on which optimization questions
are studied. For example, given a (graphical) degree sequence w = (w1, w2, . . . , wn), the set of
all graphs that satisfy the degree sequence is well-defined. One would like to define a sequence of
graph families G(n, β, r) where β is the power-law exponent and r a fudge factor—G is allowed to
be a member of G(n, β, r) if its degree sequence is r-close to the power-law degree sequence—where
optimization can be addressed in a deterministic setting. Does minimum vertex cover remain NP-
complete for G(n, β, r)? One suspects that this is still the case due to the combinatorial messiness
that the “backbone” of power-law topologies seem to harbor wherein smaller—but polynomially
sized—hard problems may be embedded. Finding a robust formulation of deterministic power-law
graphs that can be related to the average degree sequence framework and is amenable to analysis
is the first challenge.
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We conclude this section with a note on artificial power-law topology generation that emulate
real-world graphs, in particular, Internet AS topologies. Figure 21 shows the VC sizes for artificial
topologies produced by Inet [72, 143], a topology generator that aims to mimick empirical Internet
AS connectivity. There is a significant discrepancy in VC sizes between Internet AS topologies
and corresponding artificial topologies generated by Inet-2.2 [72], which was first pointed out in
[103]. This has, in part, prompted modifications to Inet-2.2 leading to Inet-3.0 [143], which yields
topologies with VC sizes close to that of Internet AS topologies. One of the key changes in Inet-
3.0 is the incorporation of “higher order” connectivity structure, meaning that in addition to how
many neighbors a node possesses, its neighborhood composition with respect to degree distribu-
tion is injected into the graph construction process. The performance of Inet-3.0 has significantly
improved over that of Inet-2.2, however, there remains room for improvement especially with re-
spect to clustering [143]. A topology generation approach that captures higher order connectivity
structure—A,A2, A3, . . . where A = (aij) is the adjacency matrix of a graph, i.e., aij = 1 if i and
j are connected, 0, otherwise—may harness additional structure that is presently missed. As with
second-order stationary processes for modeling self-similar traffic, higher order structure beyond a
certain point may not matter.

4.4 Application: Denial of service and worm attack prevention

4.4.1 What are denial of service and worm attacks?

A denial of service (DoS) attack aims to disrupt services by depleting network resources such as
bandwidth and CPU required to deliver the services. This is done by sending bogus work in the
form of junk traffic and service requests that tie up resources preventing a network system from
operating in its normal mode. Attacks may be targeted at servers, hosts, and increasingly the
network infrastructure itself [93]—such as routers and name servers—with far-reaching impact.
Distributed denial of service (DDoS) attacks that forge their source IP address, called spoofing,
are especially severe, due to their concentrated force and difficulty in affecting timely recovery.
Locating an attack source can take on the order of hours, sometimes days, by which time the
damage has already been done. Vulnerability to denial of service is not unique to the Internet.
An old form of DoS attack is “ring the door bell and run” practiced by select kids in days gone
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past. Although innocuous, the occupant’s time and energy are wasted, drawing attention away
from other matters. On the Internet, repercussions from DoS attack are amplified due to the
high attack volume enabled by broadband networks, ease of anonymity afforded by spoofing, and
finger tip attack coordination from a computer anywhere in the world. Classical DoS attacks are
many-to-one in the sense that an attacker recruits multiple attack hosts to overwhelm a target.
Denial of service from spam mail, on the other hand, is one-to-many which is made possible by the
slow processing speed of the target—human leafing through e-mail—and the financial incentives
underlying the denial of service activity. One of the few effective defenses against DDoS attacks is
assigning a cost to the attacker, either in the form of economic cost (e.g., usage pricing) or attacker
identification followed by attribution with legal ramifications. Both achieve a deterrent effect, a
principal reason why a DoS attacker wouldn’t buy up all the baguette at the local bakery, or run
off without paying.

A worm is a computer virus that travels from system to system on the Internet through net-
work protocols invoked by distributed applications. A computer virus is parasite code—a block of
instructions and data embedded in application or system code, its host environment—that upon
execution can impart harm on a computing system involving information erasure, system hijacking
(e.g., for the purpose of DoS attack), infection and self-replication, among an array of possibilities.
In the 1980s a preferred mode for viruses to infect other systems was through floppy disks that
contained infected applications or had infected boot sectors. Today’s mobile viruses—i.e., worms—
exist as parasitic attachments to messages that are transmitted, interpreted, and processed by
network protocols as part of networked client/server applications. Worms face a tougher challenge
than their brethren when aiming to take over a system. They need to remain clandestine—network
protocols, which are structured programs expecting well-formed messages, must not see through
the disguise—until they reach a specific point in the protocol code that contains a fatal vulnera-
bility. The message containing the worm is structured so that it triggers the vulnerability leading
to a coup d’état. The most prevalent vulnerability targeted by past worms, including the Morris
worm (also called the Internet worm [127]) and Code Red [26], is the buffer overflow vulnerability.
When a message is parsed, arguments are copied into the program’s memory space holding data.
If an argument is overly long, it may spill over into the program’s instruction space, overwriting
the program’s instructions with parasite code hidden in the argument. To pull this off requires
expertise on the part of an attacker, but the vulnerability would have been prevented had the code
been more carefully written to check the length of arguments.

4.4.2 Fixing a hole in the security roof

Before we discuss the role played by power-law connectivity in “fixing a hole where the rain gets in”
(to paraphrase Lennon & McCartney), let us examine some pertinent features of DDoS and worm
attacks that constrain the type of defenses that may be mounted against them. An unspoofed
DDoS attack is inherently difficult to shield against. Stemming an unusually large traffic flow—if
deemed a DDoS attack—is an application of flow control and not difficult to do. The crux of the
problem, however, is: how does one distinguish friend from foe? There are no known methods for
keeping false positives in check ensuring that “the baby is not thrown out with the bath water.”
The Achilles’ heel of intrusion detection systems is that anomalies, statistical or otherwise, are
not sufficiently reliable to warrant automated responses that may, in the end, do more harm than
good. They are useful to detect increased “chatter,” but determining what the chatter means is, at
the present, more art than science. If DDoS attacks are unspoofed, then their IP source addresses
reveal the identity of the traffic source—attacker and legitimate—which then becomes the purview
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of policy actions. Economic factors such as usage pricing—in the U.S. most Internet access is
based on flat pricing—have only a small bearing on the problem as attackers, who compromise
others’ machines, do not bear the economic burden. A meticulous attacker who recruits hundreds
of attack hosts by planting viruses well in advance of a timed DDoS attack is difficult to catch. A
less meticulous attacker who has not sufficiently hidden his/her tracks—for example, by supervising
an unspoofed DDoS attack in real-time—is much easier to apprehend. An effective solution, and
perhaps the only long-term solution, for protecting against DDoS attacks is deterrence through
attribution whose first step involves timely source identification.

Worm propagation shares many similarities with virus propagation in biological systems, the
subject matter of epidemiology [11, 64]. Both are contact processes that spread through specific
interaction, and in the absence of counter-acting forces rapidly infect the bulk of a susceptible
population. The mathematical foundations of epidemiology are two-fold: a macroscopic theory
of population dynamics based on dynamical systems theory and a microscopic theory of disease
propagation based on percolation theory. The classic SIR epidemic model [64], which has its origins
in the seminal work of Kermack and McKendrick [75], relates susceptibles (S), infectives (I), and
removed (R)—i.e., the dead or otherwise inert—in a population N (= S+I+R) through a system of
nonlinear differential equations. It is assumed that dI/dt increases proportional to SI but decreases
proportional to I, dS/dt ∝ −SI, and dR/dt ∝ I. The product form SI captures the uniformity
assumption that each susceptible is potentially exposed to a fixed fraction of infectives (and vice
versa). Ignoring the dead—worms utilize infected systems for further propagation—the transient
behavior of the population dynamics exhibits a characteristic “S-curve” where all susceptibles
eventually get infected. With R in the picture, the steady state population may contain survivors,
i.e., non-zero susceptibles, when the death rate exceeds the infection rate which drives I to zero.
In an endemic model, death is accompanied by birth which in the worm propagation context may
be interpreted as infectives being healed by reinstalling or cleaning up of infected systems. An
S-curve characterizes the spread of worms on the Internet, examplified by Code Red whose spread
was monitored by CAIDA [23] and shown at a DARPA meeting in July 2001 amidst a sequence of
attacks.

4.4.3 Distributed packet filtering

Cooperative protection and partial deployment Distributed packet filtering (DPF) is a new approach
to protecting the Internet against DDoS and worm attacks. DPF embodies a “cooperative protec-
tion under partial deployment” paradigm that breaks with tradition in two important respects:

• Local vs. global protection. Firewalls epitomize local protection whose aim is to shield an
entity from adverse outside effects. Amazon.com may succeed in shielding itself against a
worm attack, however, if a significant fraction of its customer base is disabled by the same
attack, the impact is ultimately shared. Selfish protection—manifested as local protection—
only goes so far.

• Partial vs. full deployment . A network security solution, to be effective, must consider par-
tial deployment a fundamental maxim of Internet vulnerability. Epidemiology teaches us
why software patches, when partially deployed, are unable to contain the spread of worms.
Insisting on increased user diligence assumes the problem away, is unrealistic, and not the
domain of science and engineering.
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The limitation of local protection under partial deployment exposes a locally protected service
provider to DDoS attack: when others are unprotected, this allows them to be recruited for DDoS
attack which turns others’ vulnerability into one’s own. A firewall suffers under lack of efficient
friend from foe discrimination capability which impedes selective admittance of non-attack traffic.
For DDoS and worm attacks, the fates of the protected and unprotected are intertwined. To
overcome the limitation of local protection under partial deployment, a new dictum is required:
(i) Protective action must be centered at transit points, not end systems, to exploit checkpoint
screening and containment afforded by transportation networks. (ii) Transit points must cooperate
to affect global protection; a locally protected network system is inherently vulnerable to DDoS
and worm attack. (iii) The collective action of a few, under partial deployment, must yield an
overwhelming synergistic effect that protects the whole. In general, realizing a solution that satisfies
all three conditions is a tall order. The first two properties are architectural features and, as such,
part of the “cooperative protection under partial deployment” design space. Their viability critically
depends on (iii)—a performance feature—and the most difficult part of the new approach. It is
here where power-law connectivity plays a crucial role.

Casting a net over Lake Wobegon To illustrate the notion of distributed packet filtering, suppose
Lake Wobegon is being polluted by hostile elements carrying out water contamination attacks.
Contaminated water affects fish and wildlife, and eventually threatens water supplies. Local filtering
can cordon off a shore segment and purify the water therein for human consumption. However,
Inter-city commerce—mediated by ships and boats on water routes—dwindles for fear of admitting
contaminated water particles. The fishing and sea food industry is shot. Cities that did not heed
precaution turn into ghost towns. Under distributed filtering, a number of cities band together and
install water filters across the whole lake. Individual filters are not aimed at protecting a specific
town or city but the system as a whole. Any one community has little incentive to install a filter
outside its immediate living space: a filter or two in the middle of the lake would not do much good
anyway. It is only when a sufficient number is deployed that contamination introduced anywhere
on the lake gets trapped by the filter net and further spread is contained. The state-of-affairs in
Lake Wobegon before and after distributed filtering is illustrated in Figure 22(a).

(a) (b)

Figure 22: (a) Pollution in Lake Wobegon before, and after, distributed filtering. (b) Filter net for
DPF in power-law network.
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Distributed packet filtering only satisfies properties (i) and (ii): cooperative protective action
carried out at transit points for the good of the whole. Supposing Lake Wobegon is “super-
sized” to Internet scale, without property (iii) that mandates a small filter deployment with a
big bite, distributed filtering would not be feasible. Only when an economic filter placement
achieves decisive protection can relevant transit parties be brought together—some screaming and
hollering—and induced to form a coalition for the greater good. The larger the required coalition,
the less chance this has of succeeding. Thus minimizing deployment becomes a key objective.
In a transportation network, the paths that an entity can take are constrained by the underlying
connectivity structure. In communication networks, routing further restricts the route that a packet
can take. In road systems, checkpoints at border crossings and intersections have been used to shield
countries and cities from unauthorized access. These gateways, when engaged as distributed filters,
have been less effective at apprehending fugitives of justice: under partial deployment, there are
simply too many ways for a person to travel from one point to another undetected. In power-
law networks, the tables are turned. Even though checkpoints are few, it is next to impossible
to go anywhere without encountering a sentinel. Figure 22(b) shows a power-law network with
strategically placed distributed filters. In the next two sections, we will outline two forms of
distributed packet filtering—route-based and content-based filtering—and summarize how global
protection is effected by power-law connectivity under partial deployment.

4.4.4 DDoS attack: Route-based packet filtering

What is route-based filtering? The primary task of a router, upon seeing a newly arriving packet,
is to ask where it is headed (“quo vadis”) and send the packet on its way based on the answer
provided in the IP destination address. We advance that a router ask a second question—“where
do you hail from?”—and discard the packet if it can be unequivocally determined that it is lying.
That is, the IP source address is spoofed. For example, if a packet arrives at an interface claiming
to originate from A destined for B when, based on routing, it is impossible for such a packet
to enter through the said interface, the packet is spoofing and dropped. When this verification
is done without utilizing the destination address—in the above scenario there may not exist any
destination address for which a packet from A would enter through the given interface—we call it
semi-maximal route-based filtering, in contrast to maximal filtering where both addresses are used.
If, by exploiting route constraints, we discard spoofed packets before they can reach their target and
impart harm—e.g., as part of a spoofed DDoS attack—we endow the system with authentication
capability without engaging cryptography. There are legitimate instances where spoofing is useful,
such as in Mobile IP where an intermediary forwards packets on behalf of a mobile user. These
protocols are not widely used, however, and can be modified to work without resorting to source
address spoofing.

Proactive and reactive protection Route-based distributed packet filtering was introduced in [103].
Its goal is to achieve proactive protection by discarding spoofed packets before they can reach
their target, which stops spoofed DDoS attacks in their tracks. We quantify proactive protection
by defining a performance measure Φ, called containment, where 0 ≤ Φ ≤ 1 denotes the fraction
of innocuous nodes: a node is innocuous if any spoofed packet emanating from it, destined to
anywhere, is discarded by a filter in the filter net. For example, if Φ = 0.95, this means that 95% of
all nodes are not suitable as staging grounds for a spoofed DDoS attack. An optimization version
of the problem is: given a desired containment Φ, find a minimum filter net such that proactive
protection with Φ is achieved. It is not difficult to prove that optimal spoofed DDoS containment
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is NP-complete. The need to minimize filter deployment may necessitate imperfect containment
which, in turn, brings out the problem of identifying the source of an attack. In January 2002,
the Internet had more than 12,000 domains, which leaves open the possibility that with Φ = 0.95,
hosts from 600 domains could collude in a spoofed DDoS attack. Locating the physical source of
a spoofed IP packet, also called traceback, becomes an issue. We quantify traceback by defining
k-traceability where a node is k-traceable if, upon receiving an IP packet, the physical source of
the packet can be localized to within k sites. The performance measure 0 ≤ Ψ(k) ≤ 1 defines the
fraction of k-traceable nodes. For example, if Ψ(6) = 1, this would mean that all nodes are able to
localize the origin of received IP packets—spoofed or otherwise—to within 6 sites. Compared to
the uncertainty of 600 potential sites under Φ = 0.95, this represents a factor-100 improvement.
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Figure 23: Spoofed DDoS attack protection. (a) Containment. (b) Traceback.

Figure 23 summarizes proactive and reactive protective performance for NLANR/Oregon Route-
Views Internet AS topologies under VC based filter placement: 19%, 16%, and 15% for 1998, 2000,
and 2002, respectively. The graph size during the same period increased from 3,015 to 12,517.
Figure 23(a) shows containment Φ for the three years which increased from 98% in 1998 to 99% in
2002. Thus with 15% filter deployment, we are able to achieve 99% proactive protection restricting
the attacker to just 1% of the domains for staging spoofed DDoS attacks. Figure 23(b) shows the
fraction of k-traceable nodes, Ψ(k), as a function of k for the same benchmark topologies. We
observe that for all three years Ψ(4) = 1. That is, all nodes, upon receiving an IP packet, can
locate the origin of the packet to within 4 sites. In the 2002 topology, 85% of the nodes can narrow
the range down to 2 sites. Constant containment and traceback performance in the presence of a
4-fold increase in the size of the topology makes route-based DPF a scalable DDoS solution.

Robustness As noted earlier, Internet AS topology data represent an approximate picture of AS
level connectivity, which are imbued with inaccuracies introduced by the measurement data as well
as inferences drawn from them. To ascertain whether route-based DPF performance is sensitive
to the details of the underlying measurement data, we evaluate VC size, proactive and reactive
protection for a range of measurement topologies that draw on different measurement methods,
data sources, and inference procedures. Figure 24 shows proactive and reactive performance of
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route-based DPF on Internet AS topologies from CAIDA [24], RIPE [120], USC/ISI [89], and the
University of Michigan [134]. Figure 24(a) depicts VC sizes found by the greedy algorithm which
fall in the 12–17% range for the four data sets. The VC sizes are, overall, consistent with those
found for NLANR/Route-Views topologies. Figure 24(b) shows that containment lies in the 98–
99% range, and Figure 24(c) shows the minimum value of k for which Ψ(k) = 1, which yields k = 3
or 4. That is, all nodes are able to localize the physical source of received packets to within 3 or 4
sites.
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Figure 24: Protective performance on CAIDA, RIPE, USC/ISI, and UMich topologies. (a) VC
size. (b) Containment. (c) Traceback.

Random vs. power-law connectivity Figure 25 shows the performance of route-based DPF on random
graphs of the same size and edge density as the NLANR/Route-Views AS topologies. Figure 25(a)
shows the much larger VC sizes found in random graphs (cf. also Figure 20(a)). For example, in
2002 the size of the VC filter net exceeds 55%. Figure 25(b) shows that despite the nearly 4-times
larger filter net, proactive protection in random graphs is significantly reduced from 99% to 65%.
Figure 25(c) shows that traceback performance has degraded as well, with the smallest k such that
Ψ(k) = 1 reaching 27 in the 2002 graph. The results indicate that route-based DPF in randomly
connected networks would not be a viable solution. Power-law connectivity is essential to scalable
protective performance effected by strategic, economic filter placement.

VC filter placement and power-law connectivity The vertex cover heuristic for selecting filter sites
induces two properties relevant for facilitating proactive and reactive protection in power-law net-
works:

• Preference of high degree nodes . The greedy VC heuristic assigns preference to high degree
nodes which leads to economy in filter deployment due to the prevalence of stub ASes that
are connected to large transit ASes. For example, in the 2002 Internet AS topology, more
than 1/3 of the nodes are stub domains of degree 1.

• Uniform filter density along routes . A more subtle property—critical for reactive protection—
is uniform filter density along any end-to-end path. This is a consequence of the VC property:
to cover all edges along a route, at least every other node must belong to the filter net. Uniform
filter density severely limits “holes” through which spoofed packets can sneak in.
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Figure 25: Protective performance of route-based DPF on random graphs. (a) VC size. (b)
Containment. (c) Traceback.

Containment is primarily effected by the first property. Traceback is effected by the second prop-
erty. A filter placement method that chooses the top 15% of high-degree nodes—a purified form
that implements the first property—achieves traceback resolution 263, i.e., Ψ(263) = 1, which is
significantly worse than Ψ(4) = 1 achieved by 15% VC based placement. Moreover, Ψ(261) = 0.
That is, no node achieves 261-traceability and there is a sharp transition at k = 263 (Ψ(k) = 0.02
at k = 262). The influence of the second property is illustrated in Figure 26 which depicts a routing
tree rooted at node J , the target of a spoofed DDoS attack. Assuming H is a non-filter transit
node, by the VC property, A, D, G, and I must be filter nodes. They form a perimeter around
H isolating it from the rest of the network. Let ψX denote the size of the maximum spoofable
address space that a node in the subtree rooted at X can engage to attack node J . That is, X can
craft a spoofed packet that reaches J—i.e., not discarded by the filter net—and J cannot resolve
the origin of the packet beyond ψX candidate sites. We assume filter nodes do not allow spoofed
packets to emanate from within. We use ψJ to denote the traceback resolution of J . If Y is the
parent of X, then ψX ≤ ψY . Thus ψJ = arg mink[Ψ(k) = 1] = maxX ψX where Ψ(k) is restricted
to target J and the maximum ranges over all X in the routing tree of J .

In the example shown in Figure 26, B is a stub node, a degenerate singleton subtree. Its parent
D is a filter node, hence ψB = 1. The same holds for C. For transit node D which is a filter node,
ψD = 1. ψE = ψF = 2 and ψG = 2. The configuration in Figure 26 relaxes the VC property by
allowing both E and F to be non-filter nodes, leaving edge (E,F ) uncovered. E and F belong to
the same pocket: two nodes are defined to belong to a pocket if one can reach the other without
traversing a filter node. Nodes in the same pocket possess the same spoofable address space: F
can claim to be E, and E can claim to be F , with impunity. In general, given a routing tree and
filter net, the following recursion holds for ψX if X is a filter node:

ψX = max{ψc(X) : c(X) is a child node of X}.

The max operator assures that traceback uncertainty does not additively build up at filter node
junctions in the routing tree. A similar relation holds for a non-filter node Y as long as its
neighbors—children and parent in the routing tree—are filter nodes, which is assured by VC:

ψY = max{ψc(Y ) : c(Y ) is a child node of Y } + 1.
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In the example, ψH = max{ψA, ψD, ψG} + 1 = max{ψA, 2} + 1. Using the recursions, we can
establish an upper bound on the traceback resolution when filter placement is VC: halve the di-
ameter of the given network. The exact bound is given by the maximum number of non-filter
nodes on any path from stub to destination in the routing tree. Since power-law graphs have small
diameter—e.g., the 2002 Internet AS topology has diameter 11 (random power-law graphs have
diameter O(log n))—this yields an analytical bound on traceback resolution in power-law graphs
under VC filter placement that utilizes the small world property. The preceding development also
shows how to relax the VC property to further reduce filter deployment: find a filter placement
that yields small pockets so that the coarsified routing tree—nodes in the same pocket are grouped
into a single (weighted) super-node—has accurate traceback resolution.

A

B

G
D

C

J

E

F

I

H

Non−VC node surrounded by filter nodes

Figure 26: Routing tree rooted at node J . A, D, G, I are VC filter nodes, and H is a non-filter
node.

4.4.5 Worm attack: Content-based packet filtering

What is content-based distributed packet filtering? In content-based distributed packet filtering,
content-based filters are installed at strategic locations in a network such that packets carrying
worm parasites are detected and discarded before they can reach their target. Content-based DPF
is both a generalization and specialization of content-based filtering carried out in firewalls. It
is a generalization in the sense that filter deployment at transit points is guided by the principle
of protecting the system as a whole, in contrast to local protection affected by firewalls. It is a
specialization in the sense that content-based filters are primed to detect packets carrying worms,
an undertaking whose scope is narrower and more focused than devising content-based filters in
general. For example, in the Code Red worm, a cleverly formatted GET request—a type of HTTP
message—along with a disallowed body ends up triggering a buffer overflow that ultimately transfers
control to the worm code [88]. One simple filter rule is to discard any IP packet that transports a
TCP packet carrying a HTTP GET message with a body: the HTTP standard stipulates that a
GET message cannot have a body. The length of the body—3,569 bytes—prompts the malformed
HTTP GET message to be split across multiple IP packets which can complicate the worm detection
process at routers. In other content-based filters, the GET request may be inspected to ascertain
if it is a Code Red worm—the request part contains a characteristic signature—without having to
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check for the presence of a body. Both filter rules are resistant to mutations where parts of the
request or body are perturbed to defeat detection. This resilience is availed to worm filtering by the
structured nature of network protocols: worms must abide by protocol rules until such time when
a target vulnerability—e.g., buffer overflow—can be triggered. This makes parasitic variants stick
out, rendering them efficiently detectable (“it’s difficult to conceal a gun, samurai sword, or other
weaponry when doing a triple somersault”). A caveat is that recognition of a specific vulnerability—
e.g., buffer overflow in Windows indexing service IIS which Code Red exploits—must precede its
prevention through content-based DPF. Anticipating and protecting against future instances of
buffer overflow vulnerabilities is an impossible task: the vulnerabilities can be very subtle, as is
the case in Code Red, instigated by an unbounded “steadfastness” exhibited by programmers at
writing potentially buggy code. The championship belt in mediocre craftsmanship is held by a
company in Redmond that produces equivalents of Trabants in the days of the iron curtain, but
the responsibility is shared by many including computer science departments at universities where
many of the engineers have been educated. The good news is that new worms such as Code
Red were unleashed after public announcement of new vulnerabilities and patches. Deployment of
updated content-based filters at distributed filter sites before public release can achieve preventative
protection.

Worm propagation dynamics Epidemiology teaches us that patching, due to partial deployment and
local protection, cannot protect the segment of the Internet where patch updates have not been
installed. Persistence of partial deployment is also the root cause why repeat attacks—many worm
attacks are reincarnations—continue to wreck havoc weeks and months after first impact. Figure 27
shows worm propagation dynamics under two extreme contact—i.e., victim selection—rules: local
where nearest neighbors are selected, and random (or global) where targets are chosen randomly
from a global address space. A lightweight preprocessing step, called scanning, precedes the actual
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Figure 27: Worm propagation dynamics in 12,512-node Internet AS graph under local vs. random
scanning.

worm transfer, aimed at discerning whether a target is potentially vulnerable. In actual attacks,
both selection strategies, their mixture, and custom selection rules are used. At a scan rate of a few
scans per second, it takes but a minute to infect a large chunk of the Internet. Containing worm
attacks under partial deployment is only feasible by deploying filters at strategic transit nodes—part
of a carefully managed infrastructure defense—through which IP traffic must pass through. When
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the underlying network topology is power-law, the contact rule implemented by the application
layer worm propagation has little effect. For example, in the Melissa worm [25]—called a macro
virus because it is propagated as a Word attachment in Outlook e-mail that executes embedded
code, i.e., macros, when opened—the contact rule consults the user’s address book to determine
subsequent targets. Whatever the connectivity structure induced by users’ address books—perhaps
a small world social network not unlike Milgram’s [91]—power-law AS topology constrains the paths
that a packet can take from source to destination, making it difficult for worms to travel undetected.
A defense architecture that deploys filters in mail server networks would not be viable due to its
mesh connectivity: a mail message sent from a host in domain A to a host in domain B is, at its
core, a transaction between mail servers at A and B. Mail servers at other domains do not get
involved. Partial filter deployment in mesh networks only yields local protection, with the same
performance limitation as firewalls.

Worm containment: power-law vs. random connectivity Given a network G = (V,E), routing, and
filter net S ⊆ V , v is reachable from u if the path from u to v does not contain a filter node. Thus a
packet from u to v can travel undetected and is infectable by u, denoted u ³ v. The relation “³”
is transitive and partitions V into equivalence classes where u and v are in the same equivalence
class if both u ³ v and v ³ u. “³” also induces a partial order—more precisely, a forest of disjoint
trees—on the resulting equivalence classes. We are interested in finding a small filter net S such
that all trees are small. Since a single infected node at the root of a tree can infect all other nodes
in the tree—the most economic way for a worm attacker to wreck maximum havoc—the smaller
the trees the more effort is required on the part of the attacker to contaminate a network system.
If T is a largest tree, then at least |V |/|T | nodes must be separately compromised to infect the
whole network G. Conversely, a local outbreak in T is contained within T , the goal of isolation in
disease control.

Figure 28(a) shows the size of a largest tree—we also call trees “pockets”—for the 2002 Internet
AS topology under a pruned VC filter placement: x% filter density means that after computing a
VC it is pruned to the smaller target size x by discarding low-degree nodes first. We observe that
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Figure 28: (a) Critical filter density for 12,514-node Internet AS graph vs. corresponding random
graph. (b) Pocket size distribution under varying filter density ranked by size.
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there is a critical filter density around 3–4% at which there is a sharp change in the size of a maximal
pocket. The threshold phenomenon is also present in a corresponding random graph of the same size
and edge density, albeit with the threshold located near 28%. The engineering implications are two-
fold: one, worm containment under economic deployment is facilitated by power-law connectivity,
and two, deploying filters below the critical threshold is of little use while deploying filters above
the critical threshold is wasteful—knowledge of the critical filter density is crucial to achieving
effective protection. Figure 28(b) shows the size of a second largest, third largest, fourth largest,
and fifth largest pocket under different filter densities. We observe that containment is dominated
by the largest pocket which is unique. Figure 29(a) depicts the distribution of pockets in a 300-node
subgraph of the 2002 Internet AS topology where filter deployment is above the critical density.
We observe isolated pockets of size 1–4. Figure 29(b) shows pocket size distribution under a filter
deployment below the critical filter density. We observe long distance linkages producing a large
pocket. The critical filter density holds for CAIDA, RIPE, USC/ISI, and UMich topologies, and
under different routing algorithms including semi-random and random routing.

(a) (b)

Figure 29: Worm propagation in Internet AS topology. (a) Containment of infection. (b) Large-
scale contamination.

Finite time dynamics Figure 30(a) shows worm propagation dynamics under random scanning for
different filter densities. We observe that 2% filter deployment, even though ineffective asymptot-
ically (cf. Figure 27), is able to slow the speed at which worms spread over finite time horizons.
Figure 30(b) shows that the critical filter density is accordingly shifted to the left, whose magni-
tude depends on the finite time horizon. This may give a stripped down defense mechanism a little
breathing room before it is fully activated, with the caveat that the deployed filters must already be
able to detect the propagating worm. Thus the benefit of deploying fewer filters than mandated by
the asymptotic critical filter density is largely restricted to repeat attacks of known worms where,
for efficiency reasons, not all filter sites are primed against all known worms. Randomization over
the set of known worm signatures coupled with on-demand filter loading may be needed depending
on the overhead associated with mutation-resistant filtering and the size of the worm set.

Load based filter placement It turns out that a load-driven filter placement strategy is able to

47



0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r 

of
 I

nf
ec

ti
on

s

Time (sec)

Worm Propagation Dynamics Under Random Scanning

No Filter
Filter Density 1%
Filter Density 2%
Filter Density 3%
Filter Density 4%

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r 

of
 I

nf
ec

ti
on

s

Time (sec)

Worm Propagation Dynamics Under Random Scanning

No Filter
Filter Density 1%
Filter Density 2%
Filter Density 3%
Filter Density 4%

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

N
um

be
r 

of
 I

nf
ec

ti
on

s

Filter Density (%)

Finite Time Critical Filter Density: Random Scanning

Infection after 5 (min)
Infection after 10 (min)
Infection after 30 (min)
Infection after 1 (hour)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

N
um

be
r 

of
 I

nf
ec

ti
on

s

Filter Density (%)

Finite Time Critical Filter Density: Random Scanning

Infection after 5 (min)
Infection after 10 (min)
Infection after 30 (min)
Infection after 1 (hour)

(b)

Figure 30: (a) Spread of infection as a function of time for different filter densities. (b) Critical
filter density at finite time horizon.

achieve a 50% smaller asymptotic critical filter density than VC oriented filter placement. In one
load based filter placement algorithm, vertices are ordered by node load—actually a normalized
variant that discounts overlaps—and the highest ranked r nodes selected for inclusion in the filter
net. The r nodes are then removed from the graph to yield one or more connected components.
Node load is computed for the largest connected component, and the selection and partitioning
procedure recursively repeated until all connected components are below a target size. Figure 31
shows the critical filter density when r = 5. For very high degree nodes, the order dictated by node
load is nearly the same as that determined by degree, therefore their performance effect similar. It
is for intermediate load rank where filter selection significantly deviates between the two strategies,
with node load more robustly identifying key junctions whose removal splits a connected component
into many smaller connected components.
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4.5 Discussion

The recently discovered power-law connectivity of various real-world networks, including Internet
related graphs, helps address a long-standing question: how do real-world networks look like? Do
they possess shared properties that may be used for performance evaluation? Although the area
of power-law networks is still in its infancy, initial studies provide strong indication that power-
law connectivity is a wide-spread phenomenon with repercussions to understanding, designing, and
controlling networked systems. It is interesting that both network traffic and network topology owe
much of their structure to heavy-tailed object sizes—files for self-similar traffic and neighborhood
size in the case of power-law topology—that lead to self-similarity across multiple scales where a
part resembles the whole. In the network connectivity context, this is also referred to as scale-
freeness [12]: a random subgraph of a power-law graph inherits the parent’s power-law degree
distribution, a consequence of random sampling. For the same reason that self-similarity alone does
not adequately characterize network traffic—e.g., Brownian motion, when interpreted as network
traffic, is self-similar but not long-range dependent—so does scale-invariance only hit part of the nail
for network topology. A more essential property is power-law degree distribution, a trait distinct
from self-similarity, that is responsible for generating a wide range of variability.

A modeling difference between self-similar traffic and power-law network topology lies in the
explication of their causality. In self-similar network traffic, we can empirically ascertain that file
sizes tend to be heavy-tailed which provides the causal kernel upon which a reductionist explanation
of the traffic phenomenon can rest. One may speculate why file sizes are heavy-tailed, but it is
unclear that this leads to scientifically verifiable conclusions. For network topology, power-law
connectivity appears to embody the dynamics principle “the rich get richer and the poor get poorer.”
Although appealing as a qualitative observation, as a quantitative explanation of why power-law
connectivity arises in specific contexts it misses several important ingredients. They include static
design—airline and telecommunication networks, when initially laid out, are organized around hubs
and POPs that are linked through a backbone, a design approach with a heavy dose of bootstrapped
centralized management—and economic, social, and technological factors that can affect the growth
and demise of individual components. A scientifically rigorous description of the origin of power-
law connectivity seems to necessitate a better understanding of human behavior—collective and
singular—a challenge transcending the confines of power-law connectivity.

Power-law networks open the door to fresh questions in optimization: are NP-hard graph prob-
lems in combinatorial optimization easier with respect to approximability, or even poly-time solv-
ability, when graphs are restricted to be power-law? For example, the upper and lower bounds on
VC sizes for Internet AS graphs show that VC approximation using the greedy algorithm yields
significantly improved results vis-à-vis random graphs. Random walk, percolation, imperfect infor-
mation games, and a host of other dynamic and static problems on graphs present new twists to
established areas. There is, as yet, no good definition of deterministic power-law graphs, which is
one of the starting points in this endeavor. The application of optimization problems to network
security and resource provisioning indicates that a better understanding of power-law networks has
the potential of approaching practical problems in novel ways.

Lastly, we remark that families of random graphs obeying a power-law degree distribution may,
or may not, be sufficiently adequate to capture pertinent properties observed in real-world networks.
Based on vertex cover size observations in real and artificial Internet AS graphs [103, 143], it appears
that accurate capturing of vertex cover properties requires second-order connectivity structure, in
addition to first-order structure in the form of power-law degree sequence. Refinements and their
justification remain tasks for the future.
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5 Game Theory

5.1 What are noncooperative network games?

A canonical example of a noncooperative network resource game that arises in the Internet context is
congestion control. In a 2-party congestion control game, Alice and Bob—two characters familiar
in crytography—share a common network resource that may get congested if too much traffic
is submitted to the network. Congestion, technically, means that the total, i.e., system-wide,
throughput declines if offered traffic exceeds a certain level. This is represented by a unimodal,
dome-shaped load-throughput function [59, 109] (cf. Figure 32(a)) whose exact shape is dictated by
the specific network context. One example, both old and new—old because the protocol in question
has its roots in Abramson’s ALOHA packet radio network [2] used in the early 1970s to connect
the University of Hawaii’s island campuses—is the throughput of wireless hot spots. In a wireless
local area network (WLAN), resource sharing is governed by a competition-oriented protocol called
carrier sense multiple access with collision avoidance (CSMA/CA). A wireless station such as a
laptop or handheld device listens to the radio channel (“carrier sense”), and if the channel is
deemed idle data transmission is attempted. If more than one station sends packets at about the
same time (“multiple access”), the physical signals “collide” leading to corruption. Collision is
detected at the sender by the absence of an acknowledgment packet—in Ethernet, which uses a
variant of the CSMA/CA protocol, collision can be detected at the physical layer without recourse
to explicit acknowledgment (ACK) packets—at which time a form of exponential backoff in the
retry time interval is instituted. That is, consecutive collisions lead to increasing pauses between
retry attempts. All else being equal, the more stations and/or the higher the traffic demand
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Figure 32: (a) Unimodal load-throughput curve and onset of congestion. (b) IEEE 802.11b WLAN
throughput as a function of offered load for varying number of wireless stations.

at stations, the higher the probability of collision, which eventually leads to a decline in system
throughput due to wasted bandwidth. Figure 32(b) shows the simulated load-throughput curve of
IEEE 802.11b’s CSMA/CA for 10, 30, 100, and 300 stations as a function of offered load. The
sharp drop at a critical offered load stems from a correspondingly sharp increase in the collision
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rate. In real WLANs, throughput decline tends to be less pronounced due to biases resulting from
uneven channel quality that skews the competition. In either case, there is a significant jump in the
throughput variability within a session (over time) as well as across sessions at different wireless
stations as the saturation point is crossed.

Returning to the congestion control game, it may be viewed as an instance of Prisoner’s Dilemma
mentioned in the Introduction, where Alice and Bob have recourse to two strategies upon encoun-
tering congestion: cooperation which would mean backing off to help reduce total offered load, or
selfishness which may entail performing a congestion control action that does not reduce one’s own
traffic submitted to the network. Figure 33 shows a throughput matrix of Alice and Bob under all
four combinations of congestion control strategies. When both parties cooperate (C), each achieves
a throughput of 5 Mbps for a system throughput of 10 Mbps. When one is selfish but the other is

C

N

C N

A
lic

e
Bob

5, 5 1, 9

9, 1 3, 3

Figure 33: Alice and Bob’s throughput matrix for the congestion control game. C: cooperate, N:
not cooperate. Throughput is measured in Mbps.

not, the selfish party achieves a disproportionate share of 9 Mbps. When both are noncooperative,
the system becomes congested with each receiving only 3 Mbps for a total throughput of 6 Mbps.
In the throughput matrix example, Alice, if selfish and “rational,” will choose the noncooperative
strategy since her payoff—irrespective of Bob’s action—always exceeds the corresponding through-
put achievable by choosing the cooperative strategy: 9 Mbps vs. 5 Mbps when Bob chooses C, and
3 Mbps vs. 1 Mbps when Bob chooses N. Strategy N dominates strategy C. By symmetry, the game
played by Alice and Bob results in the strategy profile (N,N) with payoff (3,3), which is strictly
less than the “welfare” (5,5) attainable through cooperation.

Another example, in the context of TCP, is the throughput sharing behavior of multiple TCP
sessions. Figure 34(a) shows the throughput achieved by five TCP sessions traversing a common
bottleneck link. TCP, being cooperative, backs off when it thinks that a packet loss has occurred.
This prevents congestion and promotes equitable sharing of resources when other extraneous factors
such as distance—a long-haul TCP session is in a disadvantaged position vis-à-vis a short-haul
session—are ignored. Figure 34(b) shows the corresponding time dynamics of the bandwidth sharing
behavior. Figure 35(a) shows the throughput attained by five TCP flows when one of them, Flow 5,
implements a variant of TCP that incorporates a measure of selfishness. Upon detecting potential
packet loss, “TCP-greedy” does not initially back off. Expecting other cooperative flows sharing the
bottleneck to act gentlemanly, TCP-greedy persists at a larger time scale soaking up the bandwidth
abandoned by cooperative TCP flows. When throughput eventually degrades, TCP-greedy backs
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Figure 34: TCP dynamics: cooperative bandwidth sharing behavior. (a) Throughput share. (b)
Time dynamics.

off assuming that the losses are due to self-congestion. Figure 35(b) shows the time dynamics of a
simple instance of TCP-greedy where until time 100 second the protocol operates cooperatively; at
time 100 second, it toggles into greedy mode, which illustrates the contrast in bandwidth sharing
behavior. We note that selfishness amidst cooperation can be employed as a means of denial of
service attack.

Congestion control games are single service class games where a shared resource is accessed
through a single service class (i.e., as is) representing the resource. The decision variable is: how
much traffic to submit to the service class or resource. In multiple service class games, a shared
resource is accessed through a multiple service class abstraction, either because the underlying
resource is actually a collection of distinct resources or a single resource is virtually divided into
multiple resources through scheduling. The decision variables entail selecting service classes in
addition to determining the traffic volume submitted. Multi-class network games are versatile—
many network resource sharing problems can be cast as multi-class games—and possess a rich
structure. They are discussed in Section 5.3.

5.2 Single class noncooperative network game: congestion control

5.2.1 Equilibria and optima

Consider a binary congestion control game where Alice can send “excessive” offered load LN or an
“appropriate” traffic load LC. With LN and LC replacing N and C, assume that the throughput
matrix in Figure 33 applies. In its continuous form—discussed in Section 5.3—LC and LN are but
two values of a traffic control variable λ ∈ R+. One of the first considerations, when analyzing
dynamical systems—even the one-shot congestion control game—is the issue of stability. The
configuration (N,N) with payoff (3,3) is an equilibrium in the sense that from (N,N) neither Alice nor
Bob, acting selfishly and unilaterally, have an incentive to deviate since the payoff of the changing
party would decrease to 1. Configurations conditioned on which unilateral strategy changes do not
improve the changing party’s individual utility are called Nash equilibria. In the 2-party binary
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Figure 35: TCP dynamics: noncooperative bandwidth sharing behavior. (a) Throughput share.
(b) Throughput dynamics—at time 100 second greedy action is instituted.

congestion control game—equivalent to Prisoner’s Dilemma—strategy profile (N,N) is the unique
Nash equilibrium. In general network resource games, including multi-class network games, a
Nash equilibrium need not exist, much less be unique. Defining the system utility to be the sum of
individual utilities, configurations (C,C), (C,N), and (N,C) are system optimal with total utility 10,
whereas (N,N) with system utility 6 is not. A more refined, welfare oriented notion of efficiency is
Pareto optimality, where a configuration is Pareto optimal if the system utility cannot be improved
without sacrificing the utility of one or more players. Thus (N,N) is not Pareto optimal since the
configuration (C,C) improves both players’ payoff; (C,C), (C,N), and (N,C) are Pareto optimal. It
is easily checked that system optimality implies Pareto optimality; other implications, in general,
do not hold. From a system and Pareto optimality perspective, configurations (C,C), (C,N), and
(N,C) are equally good. Additional fairness criteria such as equal share may be imposed to further
distinguish between desirable and undesirable system states.

5.2.2 Pricing

The binary congestion control game, being an instance of Prisoner’s Dilemma, does not bring forth
fundamental new issues when considered in the Internet context. However, it admits networking
driven variations on the game with potential practical relevance. One case in point is pricing.
By introducing usage pricing—the larger the bandwidth or data rate consumed, the higher the
economic cost assigned by an ISP to the user—the dominance of noncooperative strategy N over
cooperative strategy C may be removed. Supposing transferring a file at 1, 3, 5, and 9 Mbps costs
a, b, c, and d dollars (a < b < c < d), respectively, if Alice derives ordinal satisfaction

〈9 Mbps, d〉 ≺ 〈5 Mbps, c〉 ≺ 〈3 Mbps, b〉 ≺ 〈1 Mbps, a〉

then strategy C becomes dominant over N. If Bob is equally cost-conscious and in no particular
hurry, the solution to the pricing enhanced game with utility matrix shown in Figure 36 becomes
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(C,C). In the case when Bob is a wealthy speed-junky with utility preference

〈1 Mbps, a〉 ≺ 〈3 Mbps, b〉 ≺ 〈5 Mbps, c〉 ≺ 〈9 Mbps, d〉

the solution of the game becomes (C,N) with throughput allocation (1,9). Bob is happy because
he gets the fastest service, whereas Alice is happy because she gets the most economic service. The
ISP is content because it only performs metering and leaves the headache of resource contention
resolution to users. The ISP would be happy if a + d > 2c. Pricing, when treated as an engi-
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Figure 36: Alice and Bob’s throughput-price matrix for the congestion control game with pricing
a < b < c < d. C: cooperate, N: not cooperate.

neering tool, has the potential of steering away an otherwise self-defeating system from the peril
of the tragedy of the commons [62]. Pricing, however, is not a magical wand and has limitations
that can curtail its effectiveness. For example, pricing schemes that depend on accurate knowl-
edge of users’ utilities may be construed as unrealistic given the not so well-understood nature of
human preference. In some cases, pricing need not influence the outcome of a game. In the conges-
tion control game, if both Alice and Bob are speed-junkies with unlimited spending power—e.g.,
〈1 Mbps, a〉 ≺ 〈3 Mbps, b〉 and 〈5 Mbps, c〉 ≺ 〈9 Mbps, d〉 for all a < b < c < d—pricing does not
prevent the congestion outcome (N,N).

5.2.3 Repeated games

Another direction in which the congestion control game can be looked at is as an iterated variant
that injects a notion of time. Instead of playing the game in a single-shot fashion, a multiple
round game is played where the players’ future strategy is allowed to be influenced by the past.
The Iterated Prisoner’s Dilemma, highlighted in the influential work of Axelrod [8, 9], captures the
problem of what time-dependent strategies are effective and, in an evolutionary twist, competitively
fit when subject to evolutionary pressures. In tournaments where strategies were pitted against
each other [8, 7], it was observed that one particular strategy, called tit-for-tat, outperformed the
competition. In tit-for-tat, the strategy starts out cooperative and remains so as long as the other
party reciprocates. If the other party switches to a noncooperative mode, tit-for-tat does the same.
If the other party ever switches back to a cooperative mode, tit-for-tat is forgiving and reverts
back as well. An unforgiving variant, called grim trigger, does not. In finitely repeated Prisoner’s
Dilemma where the total payoff is the sum of the payoffs in each round, self-optimizing players will
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play the noncooperative strategy N in every round. If r is the final round, then no matter what has
transpired in previous rounds, N is dominant over C in the final round by its finality—there are no
future consequences for noncooperation. Applying the argument recursively to round r − 1 yields
the all-N strategy. In an infinitely repeated Prisoner’s Dilemma where the boundary condition of
finite r is removed and future payoffs discounted by a multiplicative factor 0 < δ < 1, both tit-
for-tat and grim trigger are self-optimizing strategies when δ is not too small. The two strategies
induce an incentive for cooperation even when players are selfish. An excellent overview of repeated
games can be found in [99]. An introduction to evolutionary games is provided in [141].

In the Internet context, a single TCP-greedy session can exploit the cooperative nature of other
TCP flows and grab a lion’s share of network bandwidth. When many users employ greedy variants
of TCP, the network may get trapped in a congested state. A survival of the fittest, “Wild Wild
West” environment is not inconceivable. Technologically, deploying new transport protocols is not
difficult since it only entails changes at the sender and receiver sides. The network core, due to
Internet’s end-to-end design paradigm, is not affected. The outlook, however, is not singularly
bleak. As indicated in the discussion on self-similar traffic, most TCP sessions are short-lived
due to the heavy-tailed nature of file sizes. Short-lived sessions tend to operate in an aggressive
mode called slow start—a misnomer given the fast nature of the start-up process—and rarely reach
steady-state at which cooperativeness is most readily exposed. Also, a 100 msec small file transfer,
even if 10-fold delayed due to greedy actions of others, completes in 1 second which, on a human
time scale, is not overly significant. A large file transfer with a 1 minute duration, if delayed
10-fold, however, is a different matter. On the architectural front, users with broadband Internet
connectivity are limited by an access speed of 1–6 Mbps which bounds the damage that a single user
can exact on aggregate backbone traffic. For cellular data services, price based controls, including
usage pricing, are instituted to shield the low bandwidth cellular network from overutilization.
Last, but not least, most TCP transfers are HTTP requests by clients to Web servers. As such,
data flows downstream from server to client, and unless the server side TCP is modified, it is not
easy to transform a TCP session into greedy mode with client side TCP modifications alone. An
elegant treatment of congestion control from a distributed control and optimization perspective is
provided in [74].

5.3 Multi-class noncooperative network games

5.3.1 Multi-class QoS provisioning game

Consider a multiple service class resource provisioning system much like a multi-lane highway with
m toll booths that process arriving cars. The service quality—in the toll booth example, delay—
received by an automobile depends on several factors including which toll lane the driver has joined
and the line of cars waiting in front. All else being equal, the longer of line the longer the wait.
In the Internet context, service may also be affected by a scheduler that apportions resources to
the m classes according to a service policy. In the toll booth example, suppose a single person is
manning all booths, running from booth to booth collecting tolls. If toll lanes are differentiated
by the number of passengers in a car inclusive the driver—e.g., lane 4 for cars with four or more
passengers, lane 3 for three passengers, and so forth—and the toll booth attendant implements a
priority scheduling policy where cars in lane 3 are serviced only if lane 4 is empty, cars in lane 2
are serviced only if lanes 3 and 4 are empty, and so forth, then the quality of service received by a
lone commuter may be less than that received by commuters in a car pool. In queueing theory, the
equilibrium waiting time experienced by n customers in the m classes is studied as a function of
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the stochastic property of the customer arrival process and the scheduling policy implemented by
the server [21]. In the network game context, we allow the n users to pick the service class to which
their packets are submitted and focus on the outcome of the resultant n-player game. The impact
of stochastic arrivals—a challenging problem for non-Markovian input in its own right—and time
varying decision making by players is not explicitly considered except “in equilibrium” through
static analysis.

Formally, a m-class n-player noncooperative network game comprises of m service classes man-
aged by a scheduler S and n players with traffic demand λ1, λ2, . . . , λn who choose one or more
service classes via decision variables λij ≥ 0, λi =

∑m
j=1 λij . A performance function ϕ—depending

on S and the input—determines the quality of service ϕ1, ϕ2, . . . , ϕm rendered in the m service
classes as a function of aggregate traffic q = (q1, q2, . . . , qm) where qj =

∑n
i=1 λij . The QoS re-

ceived by the ith player is determined by his traffic allocation vector λi = (λi1, λi2, . . . , λim) and
the choices made by other players. We assume ∂ϕj/∂qj ≥ 0, i.e., all else being equal, the more
stress on a service class the worse the QoS—e.g., delay or packet loss rate—rendered in that class.
Assuming ϕj denotes packet loss rate, the throughput of service class j is given by qj(1 − ϕj).
Pricing, if present, assigns a per unit flow cost pj to each class.

∑
j pjλij is the total cost incurred

by user i and
∑

j pjqj an ISP’s total revenue. User i is endowed with a utility function Ui that
depends on the traffic transmitted, QoS received, and cost. As a noncooperative game, user i’s
strategy set is given by the values of λi, the system’s strategy profile is λ = (λ1, . . . ,λn), and
user i aims to optimize his utility. A profit maximizing service provider who sets the price vector
p = (p1, p2, . . . , pm) may explicitly enter into play as player n+ 1.

5.3.2 Applications

A number of problems in networking can be mapped to the multi-class QoS provisioning game. A
network access provider may furnish prioritized service classes—e.g., platinum, gold, silver, bronze,
and best-effort—that users can select depending on their application needs. For example, Alice,
as an investment analyst, may use the gold class to browse the web and carry out e-commerce
transactions at work, while using the bronze and best-effort classes at home for casual use. Bob,
a financially strapped graduate student, may predominantly use best-effort service for Internet
access except when videophoning Alice, at which time he uses platinum service. The INDEX
project [5, 122] provides an interesting study of demand elasticity with respect to bandwidth pricing
in an experimental multi-class access network. A network content provider or web service provider
may use a multi-class service abstraction to schedule CPU cycles for exporting prioritized services
to client requests. An enterprise network or transit provider may use multi-class packet forwarding
to provide differentiated services to its customer base. Provisioning end-to-end QoS over a network
of multi-class routers using game theoretic mechanisms is discussed in [27, 28]. In multi-path
routing, a set of routes—preferably disjoint—from source to destination is used to transmit traffic.
In [98], game theoretic aspects of “parallel” routing are studied. By mapping each path in the
parallel routing game to a service class, we arrive at an equivalent multi-class network game where
the scheduling components ϕ1, . . . , ϕm are mutually decoupled. Technically, the scheduler is a
non-work conserving weighted fair queue (WFQ) with service weights α1, . . . , αm,

∑
j αj = 1, that

determine the bandwidth of each route/service class.
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5.3.3 Key issues and analysis tools

Key issues, when studying a multi-class QoS game, include: Do multi-class QoS games possess Nash
equilibria (NE)? If they do, are they efficient? Can pricing help drive the system to a desirable
network state such as a system optimal NE? How are stability and optima affected by the shape
of user utilities? How does scheduling impact the game? These are but a subset of questions with
practical relevance.

Before we proceed with a discussion of game theoretic properties of multi-class QoS provisioning,
we give a brief overview of some facts and analysis tools. First, in the following we consider only
games with pure strategies, the default case implicitly assumed thus far. For example, in the
binary congestion control game—a 2-player finite game where finite refers to the cardinality of
the strategy set {C,N}—mixed strategies would admit a probability distribution over {C,N} with
the interpretation that a player probabilistically chooses C or N. In the Internet QoS provisioning
context, we do not believe that mixed strategies are practically meaningful. In so doing, however, we
forgo one of the few niceties available in noncooperative games—the existence of a Nash equilibrium
in finite noncooperative games with mixed strategies—a result established by Nash [94, 95]. Indeed,
as we shall see, multi-class QoS games need not have a Nash equilibrium. This is not unusual since
it is known that large finite games with random payoff functions, more often than not, do not
possess a NE in pure strategies [43]. Mixed strategies are represented by simplices whose faces
are spanned by corner points that correspond to pure strategies. As such, optimization tends to
be easier under mixed strategies. For noncooperative games in pure strategies, a powerful result
exists that assures the existence of a Nash equilibrium as long as the game is sufficiently nice in
two respects: one, the strategy set of each player is nonempty, compact, and convex, and two, the
utility function of every player i is continuous and quasi-concave in the ith decision variable λi.
Recall that a function f(x) is quasi-concave if for all a the upper level set {x : f(x) ≥ a} is convex.
Satisfying the two conditions allows Kakutani’s fixed point theorem—a generalization of Brouwer’s
fixed point theorem to point-set maps, i.e., correspondences—to be applied yielding a fixed point
to every user’s self-optimizing action, called the best-reply correspondence. Recalling the definition
of NE (cf. Section 5.2), configuration λ = (λ1, . . . ,λi, . . . ,λn) is a Nash equilibrium if for all λ′

i

Ui(λ) ≥ Ui(λ′)

where λ′ = (λ1, . . . ,λ
′
i, . . . ,λn). The maximizer λ′

i, given a strategy profile λ—i.e., best-reply
correspondence—need not be unique leading to a point-set correspondence where Kakutani’s fixed
point theorem can come into play. In [121] it is shown that concave games with an additional
requirement—diagonal strict concavity—possess a unique Nash equilibrium. The general sufficiency
result for NE existence in concave games goes back to [40, 51, 60].

5.3.4 Stability and efficiency

We will first consider a multi-class analogue of Orda et al.’s parallel routing game [98] focusing on
the role of utility functions, followed by the effect of pricing and scheduling in subsequent sections.
As indicated earlier, the parallel routing game with m disjoint routes maps to an equivalent m-
class QoS game where the scheduler S is trivial in the sense that the service classes are mutually
decoupled. Let α = (α1, . . . , αm),

∑
j αj = 1, denote the relative bandwidth of them service classes.

A unit flow in class j receives resource share ωj = αj/qj . We assume that QoS is determined by
the per unit flow resource a traffic flow receives. That is, given λ and α, ϕj ≤ ϕj′ if ωj ≥ ωj′ . A
small value of ϕ means superior QoS. We consider utility functions motivated by certain multimedia
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applications. A VoIP application cannot tolerate delays more than 200 msec if it is to achieve a
perceptually acceptable level of service. A real-time streaming video application cannot tolerate
packet loss rates above a certain level, due to the negative repercussions on video quality stemming
from undecodable video frames. A scenario that does not involve multimedia: a user running a
supercomputing application needs to transfer a 125 GB file in less than 3 hours. This requires
a bandwidth of at least 90 Mbps to achieve the QoS target. In all three cases, there is a sharp
transition near a threshold such that QoS worse than the threshold is of little use and QoS better
than the threshold brings marginal additional benefit: VoIP conversations sound clear whether
packets are delayed 5 or 50 msec. Incorporating this property of QoS-sensitive applications, we
consider step utility functions where the utility of user i has the shape

Ui(c) =

{
1, if c ≤ θi;
0, otherwise.

θi ≥ 0 is a QoS threshold capturing i’s preference and c ≥ 0 is the QoS experienced. Assuming player
i is allowed to split her total traffic λi among one or more classes—we also consider unsplittable
games where all traffic belonging to user i must be sent to one class—we define user i’s combined
utility as Ūi(λ) =

∑m
j=1 λijUi(ϕj(λ)).

One more technical set-up before we proceed to Nash equilibria. Since the service classes are
decoupled and ϕj(qj) nondecreasing in qj , assuming ϕj is continuous we can express Ui(c) directly
in terms of a critical traffic threshold bij by the invertibility of ϕj :

Ui(ϕj(qj)) =

{
1, if qj ≤ bij ;
0, otherwise.

Figure 37 shows an example utility function for a 2-class system where player i’s QoS threshold
θi maps to traffic thresholds bi1 and bi2 in classes 1 and 2, and total traffic demand is given by
λi = 3bi1 = 3bi2. Figure 37(a) shows utility function Ui for class j ∈ {1, 2}, Figure 37(b) shows the
corresponding weighted utility λijUi, and Figure 37(c) shows the combined utility Ūi. Figure 37(c)
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Figure 37: Utility function. (a) Single utility. (b) Weighted utility. (c) Combined utility.

shows that player i’s utility is not quasi-concave in its decision variable λi—the upper level set for
small a has a hole in the middle—violating the sufficiency condition needed to apply Kakutani’s
fixed point theorem. Not meeting the sufficiency condition for concave games does not imply that
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Nash equilibria do not exist. In [104] it is shown that even in 2-player 2-service class systems, Nash
equilibria fail to exist under “mild” conditions. Thus in these systems, every configuration has at
least one player who thinks he can do better, preventing the system from reaching a quiescent state.
The NE existence problem in the multi-class QoS game stems from two factors: multiple service
classes—a distinguishing feature from the single-class congestion control game—and splitting of
user traffic. It can be shown that if traffic splitting is disallowed, the multi-class QoS game always
has a Nash equilibrium.

The next question concerns the relationship between Nash equilibria, Pareto optima, and system
optima. In particular, assuming NE exist, are they also efficient? The simple answer is no. The
three configuration classes—NE, Pareto optima, and system optima—for multi-class QoS games are
well-separated, except for the trivial inclusion of system optima in Pareto optima. That is, there
are NE that are not system optimal, a NE that is Pareto optimal need not be system optimal, a
system optimum need not be a Nash equilibrium, and there are Pareto optima that are not system
optimal. The structural relationship between the three classes is depicted in Figure 38. In [104] an
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Figure 38: The structural relationship between three configuration classes—Nash equilibria, Pareto
optima, and system optima—in multi-class QoS games.

exact characterization is given as to when Nash equilibria are Pareto or system optimal. A useful
tool is the normal form of a configuration which establishes an equivalence relation between system
optimality and Pareto optimality: a configuration λ is system optimal if and only if its normal form
λ′ is Pareto optimal. Through this linkage, system optimality of a configuration can be checked by
verifying Pareto optimality of its normal form. Lastly, there are subclasses multi-class QoS games,
called resource-plentiful games, in which NE, Pareto optima, and system optima collapse into a
single class.

5.3.5 A “darker side” of pricing

We illustrate that pricing in multi-class QoS games need not lead to desirable outcomes, in par-
ticular, we show that pricing can disrupt stability. In the parallel routing multi-class QoS game,
consider pricing policies such that a traffic flow that receives better QoS—hence more resources
per unit flow—pays a higher price than another that does not. Since service classes are decoupled,
the family of pricing functions that satisfy this property are monotone functions

ωj > ωj′ ⇔ pj > pj′ , j 6= j′. (7)
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Such pricing functions are transparent, accurate, and fair—you pay for what you get. Now, consider
a 2-class 2-player unsplittable QoS game where b1j < b2j for j ∈ {1, 2} (player 1 has a stricter QoS
requirement than player 2), max{λ1, λ2} < min{b11, b12} (both can be happy if one to each class),
and b1j < λ1 + λ2 < b2j for j ∈ {1, 2} (if both are in the same class then player 1 will be unhappy
while player 2 remains happy). Figure 39 shows an instance of the 2-class 2-player game. The
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Figure 39: Detrimental effect of pricing in 2-class 2-player QoS game. (a) Nash equilibrium without
pricing but unstable with pricing. (b) Configuration after player 2’s selfish move; player 1 becomes
unhappy.

configuration in Figure 39(a) corresponds to a Nash equilibrium of the 2-class 2-player QoS game
without pricing. Both players are happy and there is no incentive to move. When monotone pricing
is introduced, however, the configuration ceases to be a Nash equilibrium since player 2 can move
to service class 1 and still be happy QoS-wise while paying less money-wise: p1 < p2 since ω1 < ω2.
This is shown in Figure 39(b). Player 1’s QoS, however, is violated which prompts player 1 to move
to class 2. From here on the cycle repeats. This example illustrates that any usage-oriented—in
the sense of (7)—engineering application of pricing turns the QoS game with system optimal NE
into one that is not even stable. Assuming utilities that dictate a user minimize cost subject to
achieving QoS happiness, instability resulting from the “chasing a bargain and crowding” effect is
inherent and can only be eliminated by violating (7). The step function assumption on utilities can
be relaxed without affecting the outcome of the game. The next section shows the beneficial effect
of scheduling.

5.3.6 Influence of scheduling

In the example shown in Figure 39, it is the excess capacity—hence cost—apportioned to player
2’s flow when residing in class 2 that drives it to seek a more economic solution by migrating to
class 1. As long as capacity in the service classes is fixed, the problem is unavoidable. Such is the
case in the parallel routing game over disjoint paths: bandwidth across paths is not transferable.
This is not the case in bandwidth scheduling at routers and CPU scheduling at servers where a
single physical resource—bandwidth or CPU—is shared among multiple flows under the auspices
of a scheduler. In the 2-class 2-player QoS game with pricing, by removing the excess bandwidth
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from class 2 when player 2 is present, the gap b22−λ2 > 0 can be narrowed so that no other service
class offers a more economic solution. In multi-class QoS games where service classes are ordered
according to their QoS, the game structure becomes much nicer [116]. Nash equilibria are assured,
and under “mild” conditions on utility, Nash equilibria become system optimal. The sufficiency
condition on QoS ordering, called (A1), (A2), and (B) [116], is satisfied by the priority scheduler
mentioned in the toll booth example. Both QoS and usage-based price ordering (7) across service
classes is assured, and the resultant monotonicity helps break cyclic chain reactions that harm
stability and efficiency.

A problem with priority scheduling is that lower priority classes may get starved when high
priority traffic is abundant. WFQ, which assigns a fraction of the shared resource to classes in ac-
cordance with service weights, prevents starvation but does not satisfy properties (A1)–(B) needed
for stable and efficient resource provisioning. It turns out that there is an optimal multi-class
scheduler that satisfies the ordering properties and is maximally efficient in the mean-squared error
(MSE) sense [116]. Intuitively, the optimal aggregate-flow scheduler is like a WFQ whose weights
are dynamically set, i.e., the weights are a function of the input. In [119] an implementation of the
optimal scheduler in IOS—Cisco’s router operating system—and its benchmarking on a network
of Cisco 7200 series routers is discussed. A corresponding simulation study is available in [118].
In [117] a queueing based treatment of optimal aggregate-flow scheduling is presented. Finally, we
remark that when multi-dimensional QoS vectors are considered—e.g., delay, packet loss rate, delay
jitter, packet loss jitter, and bandwidth—a total order on the service classes is not guaranteed [29].
In general, only a partial order holds. For example, depending on the input and scheduling disci-
pline, a high priority class with small delay or packet loss rate may experience a larger variance
than a low priority class with larger delay or packet loss rate. Initial observations on multi-class
QoS games with multi-dimensional QoS vectors may be found in [104].

5.4 Discussion

A game theoretic view of the Internet is interesting because a significant segment of its daily activi-
tity is carried out by network protocols, software that act on behalf of human users. The sometimes
unpredictable human element is delimited by this layer of automated agents whose behavioral rules,
for the most part, are transparent and remain invariant for months and years. Playing out game
theory on the Internet provides a new opportunity to advance theory as well as inject much needed
effectiveness into a largely thought experiment driven, unverifiable subject matter. The scale of the
Internet and its end-to-end design paradigm facilitate experimental design and quantitative studies
where measurement based analysis of cause and effect can put the predictive power of theories
to the test. This may complement the small scale experiments with human and animal subjects
available today. Perhaps in a manner similar to self-similar Internet traffic and power-law Internet
topology that have provided fresh jolts and experiential grounding to queueing theory and random
graph theory, respectively, the Internet may provide a platform to further advance game theory.
What is, as yet, missing is the identification of a phenomenological basis—long-range dependence
in queueing and power-law connectivity in random graph theory—that directly connects with the
foundations of game theory. Perhaps a quantification of the tragedy of the commons—very large or
very small—and its linkage to “bounded rationality” and cooperativeness of present day protocols
may be avenues for further exploration.

The discussion of network games presented is far from complete, omitting a number of influential
works including market-based treatment of concave resource economies [53, 52, 123], noncooperative
congestion control analyses [77, 78], pricing, flow control, and admission control in multi-class
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networks [34, 45, 65], among others. A more comprehensive overview of related works can be found
in [104]. We conclude by noting that two works stand out as milestones in the application of
game theoretic ideas, including pricing, to network resource allocation. The Spawn system [139]
by Huberman et al. at Xerox PARC in the early 1990s remains as one of the few efforts that have
put microeconomic mechanisms to the test in a real working environment. The load balancing
measurements enabled by Spawn have acted as a proof of concept for later works. In a similar vein,
the INDEX project [122] by Varaiya et al. has served an important role by demonstrating the much
debated elasticity of humans—at least a 70+ population of students and faculty at Berkeley—with
respect to access network bandwidth pricing.

6 Concluding Remarks

This article has attempted to provide a discussion of three subject areas—self-similar traffic, power-
law connectivity, and noncooperative network games—whose underlying themes touch upon the
“Internet as a Complex System” metaphore through synergistic but scientifically grounded efforts.
The other two subject areas—scalable traffic control and organizational behavior—although alluded
to in the overall discussion, have been omitted due to time and space constraints. A complex systems
viewpoint of the sciences, including natural and engineered phenomena, has proved both successful
and unsuccessful. Successful because the ideas and challenges have helped the development of
other sciences such as dynamical systems theory in mathematics. Also, many of the concepts and
techniques—fractals, dynamics, randomness, automata, correlation at a distance, phase transition,
to mention a few—have entered into other areas and some into the everyday vocabulary of society
at large. Unsuccessful because “complex systems” has not had a problem domain—at least not
one that has withstood the test of time—that it can claim as its own. A problem domain that,
perhaps, is amenable to an arsenal of “complex systems tools and methods” that are not necessarily
the purview of other sciences. This may be a good thing, but also a tad unsatisfactory because
few serious scientists would venture to say that they work in the area of complex systems since
it is unclear what that would exactly mean. It is too early to say if the Internet as a Complex
System metaphore has depth and requisite legs. One positive thing it has going is that the subject
matters discussed in the article were developed in other areas, but they seem to require a unified
understanding of the phenomena and involve synergistic application of advanced tools with new
twists. Some have started using the term “Internet Science” to refer to the vast menagerie of
Internet related technologies, phenomena, and issues. We submit that a common thread to the
varied synergistic activities underlying the Internet may be a complex systems viewpoint, meaning
that the whole—in the Internet context—is greater than its parts, and to understand the varied
aspects of the Internet requires new glues to bond the pieces together that cannot be soley supplied
solely by the individual subareas.
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[20] Dietrich Braess. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung, pages
258–268, 1969.

63



[21] A. Brandt, P. Franken, and B. Lisek. Stationary Stochastic Models. John Wiley & Sons,
1990.

[22] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, and R. Stata. Graph structure in the Web.
Computer Networks, 33:309–320, 2000. Proc. 9th WWW Conference.

[23] CAIDA. Caida analysis of Code-Red, 2001. http://www.caida.org/analysis/security/code-
red.

[24] CAIDA. skitter, 2002. http://www.caida.org/tools/measurement/skitter.

[25] Computer Emergency Response Team (CERT). CERT Advisory CA-1999-04 Melissa Macro
Virus, March 1999. http://www.cert.org/advisories/CA-1999-04.html.

[26] Computer Emergency Response Team (CERT). CERT Advisory CA-2001-19 “Code
Red” worm exploiting buffer overflow in IIS indexing service DLL, July 2001.
http://www.cert.org/advisories/CA-2001-19.html.

[27] S. Chen and K. Park. A distributed protocol for multi-class QoS provision in noncooperative
many-switch systems. In Proc. IEEE International Conference on Network Protocols, pages
98–107, 1998.

[28] S. Chen and K. Park. An architecture for noncooperative QoS provision in many-switch
systems. In Proc. IEEE INFOCOM ’99, pages 864–872, 1999.

[29] S. Chen, K. Park, and M. Sitharam. On the ordering properties of GPS routers for multi-
class QoS provision. In Proc. SPIE International Conference on Performance and Control of
Network Systems, pages 252–265, 1998.

[30] J. Chuang and M. Sirbu. Pricing multicast communication: A cost based approach. In Proc.
INET ’98, 1998.

[31] F. Chung and L. Lu. The average distance in random graphs with given expected degrees.
Proc. Nat. Acad. Sci., 99:15879–15882, 2002.

[32] F. Chung and L. Lu. Connected components in a random graph with given degree sequences.
Annals of Combinatorics, 6:125–145, 2002.

[33] David Clark. The design philosophy of the DARPA internet protocols. In Proc. ACM SIG-
COMM ’88, 1988.

[34] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A study of priority pricing in multiple service
class networks. In Proc. SIGCOMM ’91, pages 123–129, 1991.

[35] D. R. Cox. Long-range dependence: a review. In H. A. David and H. T. David, editors,
Statistics: An Appraisal, pages 55–74. Iowa State Univ. Press, 1984.

[36] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible
causes. In Proc. ACM SIGMETRICS ’96, pages 160–169, 1996.

[37] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in web servers. In
Proc. USENIX Symposium on Internet Technologies and Systems, 1999.

64



[38] M. Crovella and L. Lipsky. Long-lasting transient conditions in simulations with heavy-tailed
workloads. In Proc. 1997 Winter Simulation Conference, pages 1005–1012, 1997.

[39] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW client-based traces.
Technical Report BU-CS-95-010, Computer Science Department, Boston University, 1995.

[40] G. Debreu. A social equilibrium existence theorem. Proc. Nat. Acad. Sci., 38:886–893, 1952.

[41] Robert Devaney. An Introduction to Chaotic Dynamical Systems. Addison-Wesley, 1985.

[42] Edsger Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
pages 269–271, 1959.

[43] M. Dresher. Probability of a pure equilibrium point in n-person games. Journal of Combi-
natorial Theory, 8:134–145, 1970.

[44] N. G. Duffield, J. T. Lewis, N. O’Connel, R. Russell, and F. Toomey. Statistical issues raised
by the bellcore data. In Proc. 11th IEE Teletraffic Symposium, 1994.

[45] Z. Dziong and L. Mason. Fair-efficient call admission control policies for broadband
networks—a game theoretic framework. IEEE/ACM Trans. Networking, 4(1):123–136, 1996.
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