
On the Hardness of Optimization in Power Law
Graphs?

Alessandro Ferrante1 Gopal Pandurangan2 Kihong Park2

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, University of
Salerno, Via Ponte don Melillo - 84084 Fisciano (SA), Italy.

E-mail: ferrante@dia.unisa.it
2 Department of Computer Science, Purdue University, West Lafayette, IN 47907,

USA. E-mail: {gopal, park}@cs.purdue.edu

Abstract. Our motivation for this work is the remarkable discovery
that many large-scale real-world graphs ranging from Internet and World
Wide Web to social and biological networks exhibit a power-law distri-
bution: the number of nodes yi of a given degree i is proportional to
i−β where β > 0 is a constant that depends on the application domain.
There is practical evidence that combinatorial optimization in power-law
graphs is easier than in general graphs, prompting the basic theoreti-
cal question: Is combinatorial optimization in power-law graphs easy?
Does the answer depend on the power-law exponent β? Our main result
is the proof that many classical NP-hard graph-theoretic optimization
problems remain NP-hard on power law graphs for certain values of β.
In particular, we show that some classical problems, such as CLIQUE
and COLORING, remains NP-hard for all β ≥ 1. Moreover, we show
that all the problems that satisfy the so-called “optimal substructure
property” remains NP-hard for all β > 0. This includes classical prob-
lems such as MIN VERTEX-COVER, MAX INDEPENDENT-SET, and
MIN DOMINATING-SET. Our proofs involve designing efficient algo-
rithms for constructing graphs with prescribed degree sequences that
are tractable with respect to various optimization problems.

1 Overview and Results

The elegant theory of NP-hardness serves as an important cornerstone in under-
standing the difficulty of solving various combinatorial optimization problems
in graphs. A natural and relevant question is whether such hardness results on
combinatorial problems are applicable to “real-world” graphs since such graphs
possess certain well-defined special properties which may very well render them
tractable. Our motivation for this work is the remarkable discovery that many
large-scale real-world graphs ranging from Internet and World Wide Web to so-
cial and biological networks exhibit a power-law distribution. In such networks,
the number of nodes yi of a given degree i is proportional to i−β where β > 0

? Work partially supported by funds for research from MIUR ex 60% 2005.

is a constant that depends on the application domain. Power-law degree distri-
bution has been observed in the Internet (β = 2.1), World Wide Web (β = 2.1),
social networks (movie actors graph with β = 2.3, citation graph with β = 3),
and biological networks (protein domains with β = 1.6, protein-protein interac-
tion graphs with β = 2.5). In most real-world graphs, β ranges between 1 and
4 (see [3] for a comprehensive list). Thus, power-law graphs have emerged as
a partial answer to the perennial search for representative real-world graphs in
combinatorial optimization.

There is practical evidence that combinatorial optimization in real-world
power law graphs is easier than in general graphs. For example, experiments
in Internet measurement graphs (power law with β = 2.1) show that a simple
greedy algorithm that exploits the power law property yields a very good ap-
proximation to the MINIMUM VERTEX COVER problem (much better than
random graphs with no power law) [10, 11]. Gkantsidis, Mihail, and Saberi [7]
argue that the performance of the Internet suggests that multi-commodity flow
can be routed more efficiently (i.e., with near-optimal congestion) in Internet
graphs than in general graphs. Eubank et al. [6] show that in power-law social
networks, a simple and natural greedy algorithm that again exploits the power-
law property (choose enough high-degree vertices) gives a 1+o(1) approximation
to the DOMINATING SET problem. There is also similar practical evidence that
optimization in power-law biological networks is easier [8]. All these results on
disparate problems on various real-world graphs motivate a coherent and sys-
tematic algorithmic theory of optimization in power law graphs (and in general,
graphs with prescribed degree sequences).

In this work, we study the following theoretical questions: What are the
implications of power-law degree distribution to the algorithmic complexity of
NP-hard optimization problems? Can the power-law degree distribution property
alone be sufficient to design polynomial-time algorithms for NP-hard problems
on power-law graphs? And does the answer depend on the exponent β?

A number of power law graph models have been proposed in the last few years
to capture and/or explain the empirically observed power-law degree distribu-
tion in real-world graphs. They can be classified into two types. The first takes a
power-law degree sequence and generates graph instances with this distribution.
The second type arises from attempts to explain the power-law starting from ba-
sic assumptions about a growth evolution. Both approaches are well motivated
and there is a large literature on both (e.g., [4, 1, 2]). Following Aiello, Chung,
and Lu [1, 2], we adopt the first approach, and use the following model for (undi-
rected) power-law graphs (henceforth called ACL model): the number of vertices
yi with degree i is roughly given3 by yi = eα/iβ , where eα is a normalization
constant (so that the total number of vertices sum to the size of the graph, thus
α determines the size). While the above model is potentially less accurate than
the detailed modeling approach of the second type, it has the advantage of being
robust and general [1]: the structural properties that are true in this model will
be true for all graphs with the given degree sequence.

3 Our model is defined precisely in Section 2.

Investigating the complexity of problems in power law graphs (in particular,
the ACL model) involves an important subtlety. The ACL model allows graphs
with self-loops and multi-edges. However, many real-world networks, such as In-
ternet domain graphs, are simple undirected power-law graphs. Thus, we restrict
ourselves to simple undirected power-law graphs (no multi-edges or self-loops).
In this paper we study the complexity of many classical graph problems in the
ACL model. In particular, we first show that problems such as COLORING and
CLIQUE remains NP-hard in simple power-law graphs of the the ACL model for
all β ≥ 1, and then we show that all the graph problems that satisfy an “optimal
substructure” property (such as MINIMUM VERTEX COVER, MAXIMUM IN-
DEPENDENT SET and MINIMUM DOMINATING SET) remain NP-hard on
simple power law graphs of the ACL model for all β > 0. This property essen-
tially states that the optimal solution for a problem on given graph is the union
of the optimal (sub-)solutions on its maximal connected components. A main
ingredient in our proof is a technical lemma that guarantees that any arbitrary
graph can be “embedded” in a suitably large (but polynomial in the size of the
given graph) graph that conforms to the prescribed power-law degree sequence.
This lemma may be of independent interest and can have other applications
as well e.g., in showing hardness of approximation of problems in power-law
graphs. Another contribution is constructions of graphs with prescribed degree
sequences that admit polynomial time algorithms. These constructions are useful
in showing the NP-hardness of certain optimization problems that do not satisfy
the optimal substructure property. In particular, we will use them to show the
NP-hardness of CLIQUE and COLORING for all β ≥ 1.

Our results show that the worst-case complexity of power law graphs is hard
with respect to many important graph optimization problems. However, exper-
imental evidence shows that optimization is considerably easier in real-world
power-law graphs. This suggests that real-world graphs are not “worst-case”
instances of power-law graphs, but rather typical instances which may be well
modeled by power law random graph models (e.g., [1, 6, 3, 4, 7, 9]). Combinatorial
optimization is generally easier in random graphs and hence from an optimiza-
tion perspective this somewhat justifies using power law random graphs to model
real-world power law graphs. We believe that further investigation, both in the
modeling of real-world graphs and in the optimization complexity of real-world
graphs and their models, is needed to gain a better understanding of this im-
portant issue.

2 Notations and Definitions

In this section we introduce some notations and definitions that we will use
throughout the paper. For all x, y ∈ N with x ≤ y, we will use [x, y] to denote
{x, x + 1, · · · , y} and [x] to denote [1, x].

Given a graph, we will refer to two types of sequence of integers: y-degree
sequence and d-degree sequence. The first type lists the number of vertices with
a certain degree (i.e., the degree distribution) and the latter lists the degrees of

the vertices in non-increasing order (i.e., the degree sequence of the graph in non-
increasing order). More formally, we can define the y-degree sequence as follows.
Given a graph G = (V,E) with maximum degree m, the y-degree sequence is
the sequence Y G =< yG

1 , · · · , yG
m > where yi = |{v ∈ V : degree(v) = i}|,

i ∈ [m]. Given a graph of n vertices, the d-degree sequence will be denoted by
DG =< dG

1 , · · · , dG
n >, where dG

i ’s are the vertex degrees in non-increasing order.
When the referred graph is clear from the context, we will use only Y and D to
denote the y- and d-degree sequence respectively. (We note that we don’t allow
vertices with zero degree (i.e., singletons) in G. This is not really a issue, because
we will deal with problems in which singletons can be treated separately from
the rest of the graph to obtain a (optimum) solution to the problem with “minor
effects” on the running time.)

Given a sequence of integers S =< s1, · · · , sm >, we define the following
operator that expands S in a new non increasing sequence of integers.

Definition 1 ((Expansion)). Let S =< s1, · · · , sn > be a sequence of integers
and j ∈ [n]. Then we define

EXP(S) =<

sn︷ ︸︸ ︷
n, · · · , n, · · · ,

s1︷ ︸︸ ︷
1, · · · , 1 > .

Note that the expansion operation converts a y-degree sequence into a d−sequence.
In the rest of the paper, given two degree sequences S =< s1, · · · , sn > and
T =< t1, · · · , tm > with n ≥ m, we will denote S − T =< x1, · · · , xn > with
xi = si − ti if i ∈ [m] and xi = si otherwise.

The ACL model of power-law graphs introduced in [1] have a particular
kind of y-degree sequence which we henceforth call (β, α)-degree sequence and
is defined as follows.

Definition 2 (((β, α)-degree sequence)). Given α, β ∈ R
+, the y-degree se-

quence of a graph G = (V,E) is a (β, α)-degree sequence (denoted by Y (β,α) =<

y
(β,α)
1 , · · · , y(β,α)

m >) if m = beα/βc and, for i ∈ [m]

yi =
{⌊

eα

iβ

⌋
if i > 1 or

∑m
k=1

⌊
eα

kβ

⌋
is even

beαc+ 1 otherwise.

In the rest of the paper, given a sequence of integers S =< s1, · · · , sk >, we
will define tot(S) =

∑k
i=1 si and w(S) =

∑k
i=1 isi. Note that if S is the y-degree

sequence of a graph, then w(S) is the total degree of the graph, whereas if S is
the d-degree sequence of a graph, then tot(S) is the total degree of the graph.

Our aim is to study the NP-hardness of graph-theoretic optimization prob-
lems when they are restricted to ACL power-law graphs with a fixed β, in partic-
ular, simple graphs belonging to this class. (Of course, showing hardness results
for this class implies hardness for arbitrary power law graphs as well.) Formally,
we define such graphs as:

Definition 3 ((β-graph)). Given β ∈ R
+, a graph G = (V,E) is a β-graph if

it is simple and there exists α ∈ R
+ such that the y-degree sequence of G is a

(β, α)-degree sequence.

3 NP-Hardness of CLIQUE AND COLORING

In this section we introduce a general technique to prove the NP-hardness of
some optimization problems. The main idea of the proof is the following. Given
an arbitrary graph G, it is possible to construct a simple graph G1 which contains
G as a set of maximal connected components. Let G2 = G1\G be the remaining
graph. Obviously, G2 is simple and if we can show that we can efficiently (i.e.,
in polynomial time) compute the optimal solution in G2 then this essentially
gives us the result. However, it is a priori not obvious how to design an efficient
algorithm given a particular problem. The key idea we will use here is that we
have the choice of constructing G1 (and hence G2) and thus we can construct
the graph in such a way that it admits an efficient algorithm. If we construct the
graph in a careful way, it will be possible to design a polynomial time algorithm
that finds the optimal.

Below we illustrate this idea by showing the NP-completeness of certain
problems, including CLIQUE AND COLORING, in β-graphs for β ≥ 1. Our
idea here is to make G2 to be a simple bipartite graph. Since bipartite graphs
are 2-colorable and have a maximum clique of size 2, this immediately gives the
reduction. Obviously, the main difficulty is in constructing the bipartite graph.
We first need the following definitions.

Definition 4 ((Contiguous Sequence)). A sequence D =< d1, · · · , dn > with
maximum value m is contiguous if yD

i > 0 for all i ∈ [m], where yD
i = |{j ∈

[n] s.t. dj = i}|.
Definition 5 ((Bipartite-Eligible Sequence)). A sequence D =< d1, · · · , dn >
with maximum value m is bipartite-eligible if it is contiguous and m ≤ bn/2c.

Given a simple graph G = (V,E), for every vertex u ∈ V we will denote
NEIG(u) = {v ∈ V \{u} s.t. (u, v) ∈ E}.
Lemma 1. Let D =< d1, · · · , dn > be a sequence. If D is non increasing and
bipartite-eligible and tot(D) is even, then it is possible to construct in time O(n2)
a simple bipartite graph G = (V,E) such that DG = D.

Proof. First note that since D is non increasing and bipartite-eligible, d1 ≤
bn/2c. We build the graph iteratively by adding some edges to certain vertices.
Define the residual degree of a vertex as its final degree minus its “current”
degree. Initially all the vertices have degree 0. To build the graph we use the
following algorithm:

1. let d(si) and d(ti) be the residual degree of the i-th vertex of S and T ;
2. E ← ∅; S ← ∅; T ← ∅; tot(S)← 0; tot(S)← 0; k ← |S|; l← |T |;
3. while i ≤ n do

(a) while i ≤ n and tot(S) ≤ tot(T) do
i. S ← S ∪ {u | u 6∈ S}; k ← k + 1; d(sk)← di; tot(S)← tot(S) + di;

(b) while i ≤ n and tot(T) ≤ tot(S) do
i. T ← T ∪ {v | v 6∈ T}; l← l + 1; d(tl)← di; tot(T)← tot(T) + di;

4. while tot(S) > 0 do
(a) SORT S and T separately in non increasing order of the residual degree;
(b) for i← 1 to d(s1) do

i. E ← E ∪ {(s1, ti)}; d(s1) ← d(s1) − 1; d(ti) ← d(ti) − 1; tot(S) ←
tot(S)− 1; tot(T)← tot(T)− 1;

(c) for i← 2 to d(t1) + 1 do
i. E ← E ∪ {(t1, si)}; d(t1) ← d(t1) − 1; d(si) ← d(si) − 1; tot(T) ←

tot(T)− 1; tot(S)← tot(S)− 1;
5. return G = (S ∪ T,E);

Note that the entire loop 3) requires O(n2) time to be completed. Moreover,
in every iteration of the loop 4), at least one vertex is completed and will be no
longer considered in the algorithm. Therefore, the loop 4) is completed in O(n2)
time and the algorithm has complexity O(n2).

Now we prove that the algorithm correctly works. We first introduce some
notations. The residual degree of the set S (T respectively) after the SORT
instruction of the round i is denoted by Ri(S) (Ri(T) respectively). The number
of vertices with positive residual degree (non full vertices) in S (T) is denoted
by Ni(S) (Ni(T)). The set S is si

1, · · · , si
h and the set T is ti1, · · · , tik.

The proof is by induction on the round i. More exactly, we prove the following
invariant: After the SORT instruction we have: (i) Ri(S) = Ri(T) and (ii)
Ni(T) ≥ d(si

1) and Ni(S) ≥ d(ti1).
It is easy to see that if this invariant holds, then the algorithm correctly

builds a bipartite graph. We start proving the base (i = 1) by showing that the
above two conditions hold.

1. Let totj(S) and totj(T) be the total degree of the sets S and T after the
insertion of the j-th vertex. We first show that |totj(S) − totj(T)| ≤ dj+1

for all j ∈ [2, n − 1]. This is obvious for j = 2 since the sequence is non
increasing and contiguous. Let us suppose that this is true until j − 1 and
let us show it for j.
Without loss of generality, let us suppose that the j-th vertex is assigned to T .
Then this implies that totj−1(S) ≥ totj−1(T) and by induction totj−1(S)−
totj−1(T) ≤ dj and, therefore, totj(S)− totj(T) ≤ 0.
Now we can complete the proof of the bases. w.l.o.g. let us suppose that the
last one vertex is assigned to T . Then we have R1(S) ≥ R1(T)−1. But from
the preceding proof we also know that R1(S) ≤ R1(T) and, from the fact
that the last one vertex has degree 1 and that the total degree of D is even,
we have the claim.

2. Since the degree sequence is contiguous and after the insertion we have
tot(S) = tot(T), it is easy to see that after the insertion we have −1 ≤
|S| − |T | ≤ 1. From this and from the hypothesis d1 ≤ bn/2c the claim
follows.

Let us suppose that the invariant is true until i− 1 and let us prove it for i.

1. We have Ri(S) = Ri−1(S) − d(si−1
1) − (d(ti−1

1) − 1) = Ri−1(T) − d(ti−1
1) −

(d(si−1
1)− 1) = Ri(T) as claimed.

2. The case d(si
1) = 0 is trivial, therefore let us suppose that d(si

1) ≥ 1. If
d(si−1

2) = 1, then d(si
1) = 1 since the degrees in S are non increasing.

Moreover, from item (1) we have Ri(T) = Ri(S) ≥ 1 and this completes this
case.
If d(si−1

2) > 1, then we have two cases. If d(ti−1
2) = 1, from item (1) and the

fact that d(tij) ≤ 1 for all j we simply have the claim. On the other hand, if
d(si−1

2) > 1, we have Ni(T) = Ni−1(T) ≥ d(si−1
1) ≥ d(si

1). ut
The following lemma shows that for β ≥ 1 it is possible to embed a sim-

ple graph G in a polynomial-size β-graph G1 such that G is a set of maximal
connected components of G1 and G2 = G1\G is bipartite-eligible.

Lemma 2. Let G = (V,E) be a simple graph with n1 vertices and β ≥ 1.
Let α0 = max{4β, β lnn1 + ln(n1 + 1)}. Then, for all α ≥ α0 the sequence
D = EXP(Y (β,α) − Y G) is contiguous and bipartite-eligible.

Proof. Let n2 be the number of elements in D and α ≥ α0. We have

n2 ≥
beα/βc∑

i=1

⌊
eα

iβ

⌋
−n1 > eα

beα/βc∑
i=1

1
iβ
−beα/βc−n1 ≥ eα

∫ beα/βc+1

i=1

1
iβ
−beα/βc−n1.

If β = 1, then we have n2 ≥ αeα − eα − n1 ≥ 4eα − 2eα + 1 ≥ 2m + 1.
If β > 1 we have n2 ≥ eα

β−1 − eα/β − n1 ≥ 4eα/β − 2eα/β + 1 ≥ 2m + 1.

Moreover, y
(β,α)
n1 ≥

⌊
eα

nβ
1

⌋
> eα

nβ
1
− 1 ≥ nβ+1

1 +nβ
1

nβ
1

− 1 = n1, that is EXP(Y) is

contiguous. Therefore, EXP(Y) is bipartite-eligible and this completes the proof
of this lemma. ut

We finally show the NP-completeness of certain problems in β-graphs with
β ≥ 1. The following definition is useful to introduce the class of problems we
analyze in what follows.

Definition 6 ((c-Oracle)). Let P be an optimization problem and c > 0 a con-
stant. A c-oracle for the problem P is a polynomial-time algorithm AP

c (I) which
takes in input an instance I of P and correctly returns an optimum solution for
P given that on the instance I the problem has an optimum solution with size
at most c.

The following theorem shows the NP-completeness of a particular class of
decision problems defined using the c-oracle in β-graphs with β ≥ 1.

Theorem 1. Let β ≥ 1. Let P be a graph decision problem such that its opti-
mization version obeys the following properties:

1. OPT (G) = max1≤i≤k OPT (Ci) (where Ci are the maximal connected com-
ponents of G),

2. exists a constant c > 0 such that for all bipartite simple graphs H it holds
|OPT (H)| ≤ c and

3. it admits a c-oracle.

If P is NP-complete in general graphs, then it is NP-complete in β-graphs too.

Proof. From Lemmas 2 and 1, it is possible to construct, in time poly(|G|), a
β-graph G1 embedding G such that |G1| = poly(|G|), G is a set of maximal
connected components of G1 and G2 = G1\G is a simple bipartite graph. Since
OPT (G1) = maxk{OPT (Ck)}, |OPT (G2)| ≤ c and the optimization version of
P admits a c-oracle, it is easy to see that P can be reduced in polynomial time
to β-P (where β-P is P restricted to β-graphs). ut

Since CLIQUE and COLORING satisfy all conditions of Theorem 1 with
c = 2, we easily obtain the following corollary.

Corollary 1. CLIQUE, and COLORING are NP-Complete in β-graphs for all
β ≥ 1.

4 Hardness of Optimization Problems with Optimal
Substructure

We show that if an optimization problem is NP-hard on (simple) general graphs
(i.e., computing a solution in polynomial time is hard) and it satisfies the follow-
ing “optimal substructure” property, then it is NP-hard on β-graphs also. We
state this property as follows. Let P be an optimization problem which takes a
graph as input. For every input G, the following should be true: every optimum
solution of P on G should contain an optimum solution of P on each of G’s
maximal connected components. To illustrate with an example, it is easy to see
that MINIMUM VERTEX COVER problem satisfies this property: an optimal
vertex cover on any graph G should contain within it an optimal vertex cover
of its maximal connected components. On the other hand, MINIMUM COLOR-
ING does not satisfy the above property, since the optimal coloring of a graph
need not contain an optimal coloring of all its maximal connected components.
We first need some definitions. We say that a sequence D is graphic if there
exists a simple graph G such that DG = D.

Definition 7 ((Eligible Sequence)). A sequence of integers S =< s1, · · · , sn >
is eligible if s1 ≥ · · · ≥ sn and, for all k ∈ [n], fS(k) ≥ 0, where

fS(k) = k(k − 1) +
n∑

i=k+1

min{k, si} −
k∑

i=1

si.

The following result due to Havel and Hakimi ([5]) gives a straightforward
algorithm to construct a simple graph from a graphic degree sequence.

Lemma 3 ([5]). A sequence of integers D =< d1, · · · , dn > is graphic if and
only if it is non-increasing, and the sequence of values D′ =< d2 − 1, d3 −
1, · · · , dd1+1− 1, dd1+2, · · · , dn > when sorted in non-increasing order is graphic.

In the next technical lemma, which proof is missing because of lack of space,
we introduce a new sufficient condition for a sequence of integers to be eligible.

Lemma 4. Let Y (1) and Y (2) be two degree sequences with m1 and m2 elements
respectively such that (i) y

(1)
j ≤ y

(2)
j for all j ∈ [m1], and (ii) D(1) = EXP(Y (1))

and D(2) = EXP(Y (2)) are contiguous. If D(1) is eligible then D(2) is eligible.

The previous lemma is useful to show the following key lemma (Embedding
Lemma) that shows that it is possible to quickly construct a β-graph with a
certain property.

Lemma 5 ((Embedding Lemma)). Let G = (V,E) be a simple undirected
graph and β ∈ R

+. Then there exists a simple undirected graph G1 = (V1, E1)
such that G is a set of maximal connected components of G1, |V1| = poly(|V |) and
G1 is a β-graph. Furthermore, given G, we can construct G1 in time polynomial
in the size of G.

Proof. Let n1 = |V |. From Lemma 3, we have only to show that there exist
α0 = O(lnn1) such that for all α ≥ α0, the degree sequence D = EXP(Y) =
Y (β,α)−Y G is graphic, that is, from Lemma 3 such that D is eligible. For β ≥ 1
the proof directly comes from Lemmas 2 and 1. Let us complete the proof for
0 < β < 1.

Note that, y
(1,α)
i ≤ y

(β,α)
i and beα/βc ≥ beαc for 0 < β < 1 and i ∈ beαc and,

from Lemma 2, EXP(Y (1,α)−Y G) is contiguous for α ≥ max{4, ln n1+ln(n1+1)}.
Therefore, from Lemma 4, the sequence EXP(Y (β,α) − Y G) is eligible for

0 < β < 1 and α ≥ max{4, ln n1 + ln(n1 + 1)} and this completes the proof of
this lemma. ut

Now we are ready to show the main theorem of this section.

Theorem 2. Let P be an optimization problem on graphs with the optimal sub-
structure property. If P is NP-hard on (simple) general graphs, then it is also
NP-hard on β-graphs for all β > 0.

Proof. We show that we can reduce the problem of computing an optimal solu-
tion on general graphs to computing an optimal solution on β-graphs and this
reduction takes polynomial time. Let G = (V,E) be a simple undirected graph.
Lemma 5 says that we can construct (in time polynomial in the size of G) a sim-
ple undirected graph G1 = (V1, E1) such that G is a set of maximal connected
components of G1, and G1 is a β-graph with |V1| = poly(|V |). Since P has the
optimal substructure property and G is a set of maximal connected components
of G1, this implies that an optimum solution for the graph G can be computed
easily from an optimal solution for G1. ut

5 Concluding Remarks and Open Problems

We showed a general technique for establishing NP-hardness and NP-completeness
of a large class of problems in power-law graphs. Our technique of “embedding”

any arbitrary (given) graph into a polynomial-sized power-law graph is quite
general and can have other applications, e.g., in showing hardness of approxi-
mation in power-law graphs (which is the next important question, now that we
have established hardness). On the positive side, one may investigate approxima-
tion algorithms that exploit the power law property to get better approximation
ratios compared to general graphs. Another interesting and relevant direction
is to investigate the hardness or easiness of non-trivial restrictions of the ACL
model.

We conclude by mentioning some open problems that follow directly from
our work. We showed NP-hardness of CLIQUE and COLORING only for power
law graphs with β ≥ 1. We believe that a different construction might show
that these problems are NP-Complete for all β > 0. It will also be interesting
to investigate the complexity of node- and edge-deletion problems, that is a
general and important class of problems defined in [12]. We finally note that our
technique does not directly imply hardness in connected power-law graphs. We
conjecture that our techniques can be extended to show these results.

References

1. W. Aiello, F.R.K. Chung, L. Lu, “A Random Graph Model for Massive Graphs”,
in Proceedings of STOC 2000, 171-180, ACM 2000.

2. W. Aiello, F.R.K. Chung, L. Lu, “A random graph model for power law graphs”,
in Experimental Mathematics, 10, 53-66, 2000.

3. A. Barabasi, “Emergence of Scaling in Complex Networks”, in Handbook of Graphs
and Networks, S. Bornholdt and H. Schuster (Ed.), Wiley 2003.

4. B. Bollobas, O. Riordan, “Mathematical Results on Scale-free Random Graphs”,
in Handbook of Graphs and Networks, S. Bornholdt and H. Schuster (Ed.), 2003.

5. J.A. Bondy, U.S.R. Murty, “Graph Theory with Applications”, North Holland
1976.

6. S. Eubank, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, N. Wang, “Structural and
Algorithmic Aspects of Massive Social Networks”, in Proceedings of 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004), 711-720, SIAM 2004.

7. C. Gkantsidis, M. Mihail, A. Saberi, “Throughput and Congestion in Power-Law
Graphs”, in Proceedings of SIGMETRICS 2003, 148-159, ACM 2003.

8. M. Koyuturk, A. Grama, W. Szpankowski, “Assessing significance of connectivity
and conservation in protein interaction networks”, in Proceedings of RECOMB
2006, LLNCS 3909, 45-49, Springer 2006.

9. M. Mihail, C. Papadimitriou, A. Saberi, “On Certain Connectivity Properties of
the Internet Topology”, in Proc. of FOCS 2003, 28-35, IEEE Comp. Soc. 2003.

10. K. Park, H. Lee, “On the effectiveness of route-based packet filtering for distributed
DoS attack prevention in power-law internets”, in Proceedings of SIGCOMM 2001,
15-26, ACM 2001.

11. K. Park, “The Internet as a complex system”, in The Internet as a Large-Scale
Complex System, K. Park and W. Willinger (Editors), Santa Fe Institute Studies
on the Sciences of Complexity, Oxford University Press 2005.

12. M. Yannakakis, “Node- and Edge-Deletion NP-Complete Problems”, in Proceedings
of STOC 1978, San Diego, California (USA), 253-264, SIAM 1978.

