
CS510 Assignement #4 Solution

May 1, 2017

1 Predicate Abstraction (20p)
In order to mitigate state explosion in explicit state model checking, predicate
abstraction is often used to reduce state space. Counter-example guided refine-
ment may be needed during the process.

void main (void)

{

int a, b;

a=1;

b=1;

if (a > b) {

a--;

} else {

a++;

}

assert(a>b);

}

(a) Starting with predicate a>b, apply predicate abstraction to the above
program.

(b) Perform explicit state model checking on the abstract program, present
your execution tree and the counter example, if there is one.

(c) If there is a counter example in (b), test if it is a counter example
in the original program.

(d) If the counter example is bogus, refine your abstraction so that ei-
ther you find a real counter example or show the correctess of the
program.

Answer:

(a) Assume p represents a>b

void main (void)

1



{

bool p;

p=*;

p=*;

if (p) {

p=*;

} else {

p=*;

}

assert(p);

}

(b) The counter example is shown in the tree-like figure.

(c) However, note that the true branch in the original program cannot
be taken. So this is a bogus counter example.

(d) As the contradiction occurs at the first three constraints, we refine
our model with the first two constraints. Now we have three predi-
cates: p1 is for a==1, p2 is for b==1, p3 is for a>b.

void main (void)

{

bool p;

p1= T; //a=1

p2= *; //a=1

p3= *; //a=1

p2= T; //b=1

p3=p1? F, *; //b=1

if (p3) {

2



p1=p1? F, *;

p3=p1 & p2? F, *;

} else {

p1=p1?F, *;

p3= p1 & p2 ?T, *;

}

assert(p);

}

The program always model-checks. Note that the refinement is not
unique, you can also have p1 for a==b, p2 for a>b.

3


