
CS510 Assignement #3

April 26, 2017

1 Proof
(20p) Prove the following sequents:

(a) p → q, r → s ` p ∨ r → q ∨ s

(b) (p ∧ q) ∨ (p ∧ r) ` p ∧ (q ∨ r)

(c) ` ¬p → (p → (p → q))

(d) q ` (p ∧ q) ∨ (¬p ∧ q) using LEM

(e) p ∧ q ` ¬(¬p ∨ ¬q)

Answer:

(a)

1 p → q premise
2 r → s premise
3 p ∨ r assumption
4 p assumption
5 q → e 1,4
6 q ∨ s ∨i1 5
7 r assumption
8 s → e 2,7
9 q ∨ s ∨i2 8
10 q ∨ s ∨e 3, 4-6, 7-9
11 p ∨ r → q ∨ s

(b)

1

1 (p ∧ q) ∨ (p ∧ r) premise
2 p ∧ q assumption
3 p ∧e1 2
4 q ∧e2 2
5 q ∨ r ∨i1 4
6 p ∧ (q ∨ r) ∧i 3, 5
7 p ∧ r assumption
8 p ∧e1 7
9 r ∧e2 7
10 q ∨ r ∨i1 9
11 p ∧ (q ∨ r) ∧i 8, 10
12 p ∧ (q ∨ r) ∨e 1, 2-6, 7-11

(c)

1 ¬p assumption
2 p assumption
3 ⊥ ¬e 1,2
4 p → q ⊥e 3
5 p → (p → q) → I 2,4
6 ¬p → (p → (p → q)) → I 1,5

(d)

1 q premise
2 p ∨ ¬p LEM
3 p assumption
4 p ∧ q ∧i 1,3
5 (p ∧ q) ∨ (¬p ∧ q) ∨i1 4
6 ¬p assumption
7 ¬p ∧ q ∧i 1,6
8 (p ∧ q) ∨ (¬p ∧ q) ∨i1 7
9 (p ∧ q) ∨ (¬p ∧ q) ∨e 2, 3-5, 6-8

(e)

1 p ∧ q premise
2 p ∧e1 1
3 q ∧e2 1
4 (¬p ∨ ¬q) assumption
5 ¬p assumption
6 ⊥ ¬e 2, 5
7 ¬q assumption
8 ⊥ ¬e 3, 7
9 ⊥ V e 4, 5-6, 7-8
10 ¬(¬p ∨ ¬q) RAA 4,9

2

2 Validity
(15p) Determine the validity of the following semantic entailment by construct-
ing the truth table.

¬r → (p ∨ q), r ∧ ¬q |= r → q

Answer:

r p q r ∧ ¬q ¬r → (p ∨ q) r → q
T T T F T T
T T F T T F
T F T F T T
T F F T T F
F T T F T T
F T F F T T
F F T F T T
F F F F F T

The valuation at rows 2 and 4 makes the premises to be true and the corre-
sponding conclusion to be false. Invalid.

3 CNF and SAT solving
(25p)

If I study, then I will not fail basket weaving 101. If I do not

play cards to often, then I will study. I failed basket weaving 101.

Therefore, I played cards too often.

(a) Model the above statement to a formula. Turn the formula to its
CNF form to decide validity. (15p)

(b) Decide its validity by formulating it as a satisfiability problem and
solving it. Please show the parse tree and the value assignment
process. (10p)

Answer:

(a) Let s, f and p stand for Study, Fail, and PlayCards. It is equivalent
to prove

` (s → ¬f) → ((¬p → s) → (f → p))

It equals to

¬(¬s ∨ ¬f) ∨ (¬(¬¬p ∨ s) ∨ (¬f ∨ p))
= (s ∧ f) ∨ (¬p ∧ ¬s) ∨ ¬f ∨ p
= ((s ∧ f) ∨ ¬p) ∧ ((s ∧ f) ∨ ¬s) ∨ ¬f ∨ p
= ((s ∨ ¬p) ∧ (f ∨ ¬p) ∧ (s ∨ ¬s) ∧ (f ∨ s)) ∨ ¬f ∨ p
= ((s ∨ ¬p ∨ ¬f ∨ p) ∧ (f ∨ ¬p ∨ ¬f ∨ p)∧

(s ∨ ¬s ∨ ¬f ∨ p) ∧ (f ∨ s ∨ ¬f ∨ p)

We can see at each clause, there exist a literal and its negation,
leading to a valid argument.

3

(b) We determine the satisfiability of the negation of the original for-
mula.

¬((s → ¬f) → ((¬p → s) → (f → p)))

It equals to

(s → ¬f) ∧ ¬((¬p → s) → (f → p))
= ¬(s ∧ f) ∧ ¬(¬(¬p ∧ s) → ¬(f ∧ ¬p))
= ¬(s ∧ f) ∧ ¬((¬p ∧ s) ∨ ¬(f ∧ ¬p))
= ¬(s ∧ f) ∧ ¬(¬p ∧ s) ∧ (f ∧ ¬p))

Figure 1:

Observe that there is a contradiction between steps 3, 5, and 8.

4 SAT solving
(20p)

(a) Find a formula such that the cubic SAT solving algorithm cannot
decide its satisfiability, that is, it fails to converge on a deterministic
value for any unmarked node. Please do not use examples from the
text book. (10p)

(b) Devise a try-and-backtrack SAT solving algorithm that operates on
formulas with ¬ and ∧. You can use the linear algorithm as a prim-
itive to construct your algorithm, e.g. linear solve() means perform-
ing the linear inference as much as possible. (10p)

(a)
¬(x ∧ y)

4

When the linear resolution gets stuck at the conjunction, the algo-
rithm tries to proceed with both T/F with x, then the corresponding
y has F/T value. However, neither has a deterministic value. There-
fore the algorithm gets stuck.

(b)
1 resolve (ast) {

2 linear_resolution();

3 if (contradition was found) return;

4 if (all nodes are consistently assigned) {

6 output the assigned ast;

6 exit;

7 }

8 for (each unmarked node n in ast) {

9 assign(n)=T;

10 resolve(ast);

11 assign(n)=F;

12 resolve(ast);

13 unassign(n);

}

14 return

15}

At each call of resolve(), the algorithm tries its best to perform
linear inference of assignments. If there are still unresolved nodes,
it traverses each unmarked node, trying to procceed with assigning
T to the node and then assigning F. Note that it remove the mark
at the end of each iteration of the loop.

5

5 The DIMACS Format
(10p) Most fast SAT solvers require the input formula in CNF. The input
CNF formula is specified in the DIMACS format. Consider the following file
sample.cnf in DIMACS format.
p cnf 4 5

1 0

2 -3 0

-4 -1 0

-1 -2 3 4 0

-2 4 0

The first line (p cnf x y) says that the input is a CNF formula containing
x variables and y clauses. Our example has 4 variables (1, 2, 3, 4) and five
clauses. The negation of a variable is denoted by putting a minus sign in front
of the variable number. Each clause is described in a line terminated by a zero.
Note that 0 cannot be used as a variable number. So sample.cnf denotes the
following CNF formula: 1 ∧ (2 ∨ ¬3) ∧ (¬4 ∨ ¬1) ∧ (¬1 ∨ ¬2 ∨ 3 ∨ 4) ∧ (¬2 ∨ 4).

Express the following clause set in the DIMACS format. Use the variable name
i in the DIMACS format for the variable named xi in the the above clauses. (For
example, use 4 for x4.)

ω1 = x1 ∨ x3 ∨ x4 ω3 = ¬x1 ∨ x2 ∨ x3

ω2 = x1 ∨ ¬x2 ∨ x3 ω4 = x1 ∨ ¬x2 ∨ x4

ω5 = x2 ∨ x4 ω6 = x3 ∨ x4

Answer:
p cnf 4 5

1 3 4 0

1 -2 3 0

-1 2 3 0

1 -2 4 0

2 4 0

3 4 0

6 Using a SAT solver
(10p)

Some publicly available fast SAT solvers are MiniSat, zChaff, siege. For
this assignment you will install and use the MiniSat SAT solver which was the
fastest SAT solver in the SAT-competitions of 2005 and 2006. You can run
MiniSat SAT solver simply by the following command:

/path/MiniSat v1.14 linux sample.cnf sample.result

The file sample.cnf is a description of a CNF formula in DIMACS for-
mat. MiniSat reports whether the given formula is (un)satisfiable in the file
sample.result. If the formula is satisfiable, then a satisfying assignment is
also written to sample.result.

6

Run MiniSat on the DIMACS file you made from the previous problem. What
is the output stored in results file?

Answer: Satisfiable, -1 -2 -3 4 0

7

7. Describe the execution of DPLL on the following formulae (20p).

(a) (P ∨ ¬Q ∨ ¬R) ∧ (Q ∨ ¬P ∨ R) ∧ (R ∨ ¬Q)

(b) (P ∨ Q ∨ R) ∧ (¬P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (Q ∨ ¬R)

(a)

Step 1: P=T, we have C1 (the first clause) = T
Step 2: P=T, Q=T, we have C1=T, C2=T
Step 3: P=T, Q=T, R=T, we have C1=C2=C3=T

(b)
Step 1: P=T, we have C1=T
Step 2: P=T, Q=F, we have C1=T, C2=T, C4=T
Step 3: P=T, Q=F, R=T, we have C1=T, C2=T, C3=T, C4=T, C5=F
 roll back to 3 and reassign R
Step 4: P=T, Q=F, R=F, we have C1=T, C2=T, C3=F, C4=T, C5=T
 roll back to step 2 and reassign Q
Step 5: P=T, Q=T, we have C1=T, C3=T, C5=T
Step 6: P=T, Q=T, R=F, we have C1=T, C2=T, C3=T, C4=F, C5=T
 roll back to 6 and reassign R
...
 roll back to 1 and reassign P
Step 10: P=F
Step 11: P=F, Q=T
Step 12: P=F, Q=T, R=F, SAT

3. x=random(0.0, 1.0); /*x is a random sample from [0.0,1.0];*/

4. y=random(-50,50); /*y is a radom sample in [-50,50];*/

5. if (y<0)

6. p= -y;

7. else

8. p=y;

9. z=100;

10. while (p>0) {

11. z=z*x;

12. p=p-1;

13. }

14. output(z);

15. output(p);

• Apply range analysis to the above program and compute the range of
variables using the worklist algorithm. Please do not use the per-path
analysis, but rather compute the aggregate results directly (10p).

• Does the worklist algorithm terminate on the program(3p)? Does it guar-
antee termination in general, why(3p)? Is range analysis distributive? If
not, give an example (4p).

Answer:
(1)

Iteration one

trace range
3. x=random(0.0, 1.0); Ro[x@3]=[0,1]
4. y=random(-50,50); Ro[y@3]=[-50,50]
5. if (y<0)
6. p= -y; Ro[y@6]=[-50,0), Ro[p@6]=(0,50]
7. else
8. p=y; Ro[y@8]=[0,50], Ro[p@8]=[0,50]

9. z=100; Ro[y@9]=Ri[y@9]=Ro[y@6]∧Ro[y@8]=[-50,50], Ro[p@9]=Ri[p@9]=[0,50] Ro[z@9]=[100,100]

10. while (p>0) { Ri[z@10]=Ro[z@10]=Ro[z@9]∧Ro[z@12]=[100,100], Ri[p@10]=[0,50], Ro[p
true@10]=(0,50]

11. z=z*x; Ri[z@11]=[100,100], Ro[z@11]=[0,100], Ri[p@11]=Ro[p@11]=(0,50]
12. p=p-1; Ro[p@12]=(-1,49]
13. }
14. output(z); Ri[z@14]=Ro[z@10]=[100,100]

15. output(p); Ri[p@15]=Ro[p
false@10]=[0,0]

Iteration 2
trace range
3. x=random(0.0, 1.0); same as iteration 1
4. y=random(-50,50); same
5. if (y<0)
6. p= -y; same
7. else
8. p=y; same
9. z=100; same

10. while (p>0) { Ri[z@10]=Ro[z@10]=[0,100],Ri[p@10]=(-1,50], Ro[p
true@10]=(0,50]

11. z=z*x; Ri[z@11]=[0,100], Ro[z@11]=[0,100], Ri[p@11]=Ro[p@11]=(0,50]
12. p=p-1; Ro[p@12]=(-1,49]
13. }
14. output(z); Ri[z@14]=Ro[z@10]=[0,100]

15. output(p); Ri[p@15]=Ro[p
false@10]=(-1,0]

5

Static Analysis from Homework 2 (20p)
1. int y, t, p;

2. float x,z;

Iteration 3 is the same as iteration 2.
(2) It terminates on the program. However, it does not guarantee termina-

tion. For example, “while (...) x++”. The lattice has inifite height. No, it is not
distributive.

Example:

 if (...) {
 a=[0,2];
 b=[0,2];
} else {
 a= [3,5];
 b=[3,5];
}
c=a-b;

For per-path analysis, the true branch yields c=[-2,2] and the false branch yeilds
c=[-2,2], so c is in the range of [-2,2].

 However, if we merge first, we get a=[0,5], b=[0,5], c=a-b=[-5,5].

6

