CS510 Assignement \#3 (Due 4/13 in class)

March 30, 2017

1 Proof

(20p) Prove the following sequents:
(a) $p \rightarrow q, r \rightarrow s \vdash p \vee r \rightarrow q \vee s$
(b) $(p \wedge q) \vee(p \wedge r) \vdash p \wedge(q \vee r)$
(c) $\vdash \neg p \rightarrow(p \rightarrow(p \rightarrow q))$
(d) $q \vdash(p \wedge q) \vee(\neg p \wedge q)$ using LEM
(e) $p \wedge q \vdash \neg(\neg p \vee \neg q)$

2 Validity

(15p) Determine the validity of the following semantic entailment by constructing the truth table.

$$
\neg r \rightarrow(p \vee q), r \wedge \neg q \models r \rightarrow q
$$

3 CNF and SAT solving
 (15p)

If I study, then I will not fail basket weaving 101. If I do not play cards to often, then I will study. I failed basket weaving 101. Therefore, I played cards too often.
(a) Model the above statement to a formula. Turn the formula to its CNF form to decide validity. (5p)
(b) Decide its validity by formulating it as a satisfiability problem and solving it. Please show the parse tree and the value assignment process. (10p)

4 SAT solving

(20p)
(a) Find a formula such that the cubic SAT solving algorithm cannot decide its satisfiability, that is, it fails to converge on a deterministic value for any unmarked node. Please do not use examples from the text book. (10p)
(b) Devise a try-and-backtrack SAT solving algorithm that operates on formulas with \neg and \wedge. You can use the linear algorithm as a primitive to construct your algorithm, e.g. linear_solve() means performing the linear inference as much as possible. (10p)

5 The DIMACS Format

(5p) Most fast SAT solvers require the input formula in CNF. The input CNF formula is specified in the DIMACS format. Consider the following file sample.cnf in DIMACS format.
p cnf 45
10
$2-30$
-4 -1 0
$-1-2340$
-2 40
The first line ($\mathrm{p} \operatorname{cnf} \mathrm{x} y$) says that the input is a CNF formula containing x variables and y clauses. Our example has 4 variables $(1,2,3,4)$ and five clauses. The negation of a variable is denoted by putting a minus sign in front of the variable number. Each clause is described in a line terminated by a zero. Note that 0 cannot be used as a variable number. So sample.cnf denotes the following CNF formula: $1 \wedge(2 \vee \neg 3) \wedge(\neg 4 \vee \neg 1) \wedge(\neg 1 \vee \neg 2 \vee 3 \vee 4) \wedge(\neg 2 \vee 4)$.

Express the following clause set in the DIMACS format. Use the variable name i in the DIMACS format for the variable named x_{i} in the the above clauses. (For example, use 4 for x_{4}.)

$$
\begin{array}{ll}
\omega_{1}=x_{1} \vee x_{3} \vee x_{4} & \omega_{3}=\neg x_{1} \vee x_{2} \vee x_{3} \\
\omega_{2}=x_{1} \vee \neg x_{2} \vee x_{3} & \omega_{4}=x_{1} \vee \neg x_{2} \vee x_{4} \\
\omega_{5}=x_{2} \vee x_{4} & \omega_{6}=x_{3} \vee x_{4}
\end{array}
$$

6 Using a SAT solver (5p)

Some publicly available fast SAT solvers are MiniSat, zChaff, siege. For this assignment you will install and use the MiniSat SAT solver which was the fastest SAT solver in the SAT-competitions of 2005 and 2006. You can run MiniSat SAT solver simply by the following command:
/path/MiniSat_v1.14_linux sample.cnf sample.result
The file sample.cnf is a description of a CNF formula in DIMACS format. MiniSat reports whether the given formula is (un)satisfiable in the file sample.result. If the formula is satisfiable, then a satisfying assignment is also written to sample.result.

Run MiniSat on the DIMACS file you made from the previous problem. What is the output stored in results file?
7. Describe the execution of DPLL on the following formulae (20p).
(a) $(P \vee \neg Q \vee \neg R) \wedge(Q \vee \neg P \vee R) \wedge(R \vee \neg Q)$
(b) $(P \vee Q \vee R) \wedge(\neg P \vee \neg Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(Q \vee \neg R)$

