CS510 Assignment \#2 (Due March 7th in class)

March 7, 2017

```
1 Dynamic Control Dependence (20p)
1. if (p1)
2. return;
3. while (p2) {
4. if (p3)
5. break;
6. if (p4) {
7. s1;
8. } else {
9. s2;
10. continue;
11. }
12. s3;
13. }
14. if (p5 ||
15. p6) {
16. s4;
17. }
```

Consider the above code snippet. Assume the execution trace is $1,3,4,6,7$, $12,3,4,6,9,10,3,4,5,14,16,17$.

Construct the dynamic control dependence subgraph, i.e., the graph that reveals control dependences between executed statements. Please show stepwise control dependence stack state and the dependence detected.

trace	cds	dep detected
1	$\left(1_{1}\right.$, EXIT $)$	
3	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)$	$3_{1} \rightarrow 1_{1}$
4	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)$	$4_{1} \rightarrow 3_{1}$
6	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(6_{1}, 3\right)$	$6_{1} \rightarrow 4_{1}$
7	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(6_{1}, 3\right)$	$7_{1} \rightarrow 6_{1}$
12	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(6_{1}, 3\right)$	$12_{1} \rightarrow 6_{1}$
3	$\left(1_{1}\right.$, EXIT $\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)$	$3_{2} \rightarrow 4_{1}$
4	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)$	$4_{2} \rightarrow 3_{2}$
6	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(6_{2}, 3\right)$	$6_{2} \rightarrow 4_{2}$
9	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(6_{2}, 3\right)$	$9_{1} \rightarrow 6_{2}$
10	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(6_{2}, 3\right)$	$10_{1} \rightarrow 6_{2}$
3	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(3_{3}, 14\right)$	$3_{3} \rightarrow 4_{2}$
4	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(3_{3}, 14\right)\left(4_{3}, 14\right)$	$4_{3} \rightarrow 3_{3}$
5	$\left(1_{1}\right.$, EXIT $)\left(3_{1}, 14\right)\left(4_{1}, 14\right)\left(3_{2}, 14\right)\left(4_{2}, 14\right)\left(3_{3}, 14\right)\left(4_{3}, 14\right)$	$5_{1} \rightarrow 4_{3}$
14	$\left(1_{1}\right.$, EXIT $)\left(14_{1}\right.$, EXIT $)$	$14_{1} \rightarrow 1_{1}$
16	$\left(1_{1}\right.$, EXIT $)\left(14_{1}\right.$, EXIT $)$	$16_{1} \rightarrow 14_{1}$
17		

A number of students made the mistake of popping at the syntactic termination point of an if-statement. The right answer should be to pop at the immediate post-dominator. For example, popping an entry of statement 4 upon the execution of 6 is not right, that should happen upon the execution of 14 .

2 Dynamic Data Dependence (20p)

1. void (* F) ();
2. char $\mathrm{A}[1]$;
3. char $\mathrm{B}[10]$;
4. int i,j;
5. $i=j=0$;
6. $\operatorname{read}(B, 10) ; / / r e a d 10$ bytes
7. $F=\& f \circ o()$;
8. while (j<10) \{
9. if (B[j]=='b')
10. break;
11. $j=j++$;
12. if ($\mathrm{j}>0$)
13. $i++$;
14. (*F) ();
15. \}
16. $A[i]=B[j]$;
17. (*F) ();

Data provenance tracking is a technique that tracks the set of INPUT VALUES that a variable or an executed statement is dependent on. For example, assume a program execution is

1. read (buf, 2) with input 10 and 20 ;
2. $x=b u f[0]$;
3. $\mathrm{y}=\mathrm{x}+\mathrm{buf}[1]$;

The provenance of x and y are $\{10\}$ and $\{10,20\}$, respectively. Data provenance can be used to defend against code injection attacks by not allowing a function call to have a non-empty provenance.
(a) (10 points) Sketch a forward online algorithm that computes data provenance forwards along program execution, considering both data and control dependences.
(b) (10 points) Assume the input is "cb", apply your algorithm to the program at the beginning to detect code injection vulnerabilities. Note that function pointer F and array A are next to each other on the stack so that $A[1]$ shares the same memory location with the first byte of F.

Answer:

For each memory address x, we define a $\operatorname{Pr}(\mathrm{x})$ as the provence of the current value in x.

statement	action	comment
read (B, n)	for $(\mathrm{i}=0$ to n$) \operatorname{Pr}(\mathrm{B}+\mathrm{i})=\mathrm{id}++$	id stores
$y=\operatorname{op}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$	$\operatorname{Pr}(\& y)=\operatorname{Pr}\left(\& x_{1}\right) \cup \ldots \cup \operatorname{Pr}\left(\& x_{n}\right) \cup$ stack.top (). third	
L:if (y)	stack.push $(\mathrm{L}$, immediate_post_dom $(\mathrm{L}), \operatorname{Pr}(\& y) \cup$ stack.top($)$. third	
L: an immediate post-dominator	while (stack.top().second=L) pop ()	

The following shows the execution of the program. Symbol \perp means not-input-related.

trace	Pr	stack
5. $\mathrm{i}=\mathrm{j}=0$;	$\operatorname{Pr}(\& i)=\operatorname{Pr}(\& j)=\{ \}$	
6. $\operatorname{read}(\mathrm{B}, 10)$;	$\operatorname{Pr}(\mathrm{B})=\{0\} ; \operatorname{Pr}(\mathrm{B}+1)=\{1\} ;$	
7. $\mathrm{F}=$ \&foo();	$\operatorname{Pr}(\& F)=\{ \}$	
8. while ($\mathrm{j}<10$) \{		[8, 16, \{\}]
9. if (B[j] $=$ ='b')		$[8,16,\{ \}][9,16,\{0\}]$
11. $\mathrm{j}=\mathrm{j}++$;	$\operatorname{Pr}(\& j)=\{0\}$	
12. if ($\mathrm{j}>0$)		$[8,16,\{ \}][9,16,\{0\}][12,14,\{0\}]$
13. $\mathrm{i}++$;	$\operatorname{Pr}(\& \mathrm{i})=\{0\}$	
14. (*F) ();		$[8,16,\{ \}][9,16,\{0\}]$
8. while ($\mathrm{j}<10$) \{		$[8,16,\{ \}][9,16,\{0\}][8,16,\{0\}]$
9. if (B[j] $=$ ='b')		$[8,16,\{ \}][9,16,\{0\}][8,16,\{0\}][9,16,\{0,1\}]$
10 break		
16. $\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{j}]$;	$\operatorname{Pr}(\mathrm{A}+1)=\operatorname{Pr}(\mathrm{B}+1)=\{1\}$	\{ \}
17. (*F) ();	warning as $\operatorname{Pr}(\& F)=\{1\}$	

3 Formulating Dynamic Analysis (20p)

Please write the formal semantics for tracking dynamic control dependences on-the-fly. Please use the language that supports functions, which is the language on page 15 of the slides for program semantics. The output of the analysis shall be a trace of dynamic control dependences, which includes all the dynamic control dependences exercised during execution.

Language:

$$
\begin{aligned}
& \text { Program } P \quad::=f d ; s \\
& \text { Function } f \quad::=M(y)\{s\} \\
& \text { FuncDef fd ::=f|fd; f } \\
& \text { Funcld M, M1, M2, ... } \\
& \text { Statement s ::=s1; s2|x=}{ }^{\mathrm{L}} y \mid x={ }^{\mathrm{L}} y \text { op } z\left|x={ }^{\mathrm{L}} \mathrm{c}\right| \\
& \text { if }(x)^{\mathrm{L}} \text { s1 else } \mathrm{s} 2 \text { | } \\
& \text { while (x) }{ }^{\text {L }} \text { s } \mid \text { call }(M, x)^{\text {L }} \\
& \text { Operation op }::=+|-|*| /|>|<| \ldots \\
& \text { Value } c::=0|1| 2 \ldots \mid \text { true | false } \\
& \text { Variable } x, x 1, x 2, x 3
\end{aligned}
$$

(a) The semantics configuration is $\left\langle s, \delta, C n t, C d s, C x t, D>\rightarrow\left\langle s^{\prime}, \delta^{\prime}, C n t, C d s^{\prime}, C x t^{\prime}, D^{\prime}\right\rangle\right.$ ControlDepStack Cds: (Label $\times \operatorname{Int} \times$ Context \times Label)*
For example, $<\mathrm{L} 1,1, \mathrm{~L} 2 \cdot \mathrm{~L} 3, \mathrm{~L} 4>$ as the top entry of the CDS means that the execution is currently in the region led by the first instance of L1, the region will end at L4 (the immediate post-dominator of L1) with the calling context of L2•L3

Counter Cnt: Label -> Int
DynControlDep D: P(Label \times Int \times Label \times Int $)$
(b) Semantics rules

$$
\begin{aligned}
& \delta^{\prime}=\delta[x \mapsto c] \quad \operatorname{Cnt}^{\prime}=\operatorname{Cnt}[L \rightarrow \operatorname{Cnt}[L]+1] \\
& \left.C d s=<L p, i>\cdot T \quad D^{\prime}=D \cup\{<L, C n t[L], L p, i\rangle\right\} \\
& \overline{<x}={ }^{L} \boldsymbol{c} ; \boldsymbol{s}, \boldsymbol{\delta}, \text { Cnt, } \mathrm{Cds}, \mathrm{D}>\rightarrow<\boldsymbol{s}, \delta^{\prime}, \text { Cnt }^{\prime}, C \operatorname{Cds}, \mathrm{D}^{\prime}> \\
& C_{n t}{ }^{\prime}=\operatorname{Cnt}[L \rightarrow \operatorname{Cnt}[L]+1] \quad \operatorname{Cds}^{\prime}=<L, \operatorname{cnt}[L]>\cdot C d s \\
& \text { Cds }=<L p, i>\cdot T \quad D^{\prime}=D \cup\{<L, C n t[L], L p, i>\} \\
& \leq s 1, \delta, C n t^{\prime}, C d s^{\prime}, D^{\prime}>\rightarrow<\text { skip, } \delta^{\prime}, \text { Cnt }^{\prime \prime}, \text { Cds }^{\prime \prime}, D^{\prime \prime}>\delta[x]==\text { true } \\
& <\text { if }(x)^{L} \text { s1 else s2; s, } \delta, \text { Cnt, Cds, } D>\rightarrow<s, \delta^{\prime}, \text { Cnt }^{\prime \prime}, C d s, D^{\prime \prime}>
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cnt }^{\prime}=\operatorname{Cnt}[L \rightarrow \operatorname{Cnt}[L]+1] \quad \text { Cds }^{\prime}=<L, \operatorname{cnt}[L]>\cdot \operatorname{Cds} \\
& C d s=<L p, i>\cdot T \quad D^{\prime}=D \cup\{<L, C n t[L], L p, i>\} \quad M(y)\{s 0\} \\
& <\text { s0, } \boldsymbol{\delta}, \text { Cnt }^{\prime}, \text { Cds }^{\prime}, \text { D }^{\prime}>\rightarrow<\text { skip, } \boldsymbol{\delta}^{\prime}, \text { Cnt }^{\prime \prime}, \text { Cds }^{\prime \prime}, \text { D }^{\prime \prime}> \\
& <M(x)^{L} ; \boldsymbol{s}, \boldsymbol{\delta}, \text { Cnt, Cds, } D>\rightarrow<\boldsymbol{s}, \delta^{\prime}, \text { Cnt }^{\prime \prime}, \text { Cds, } D^{\prime \prime}>
\end{aligned}
$$

4 Static Analysis (20p)

Design an analysis to determine the sign of the possible values of a variable, all negative numbers by the symbol -, zero by the symbol 0 , and all positive numbers by the symbol + Assume only int type is supported. Only two kinds of binary operations are possible: addition and subtraction. There may be predicates and loops.
(a)

$$
<V, W, s, D, X>\rightarrow<V^{\prime}, W^{\prime}, s^{\prime}, D^{\prime}, X^{\prime}>
$$

- Sign: $0\left|+|-|^{*}\right.$
- SignStore D: Variable -> Sign
- VarSign X: P (Variable \times Sign)
- WorkList W: P (Definition \times Statement)
- Visited V: P (Definition \times Statement)
(b)

$$
\begin{aligned}
& \frac{\left.D^{\prime}=D[x \mapsto+] c>0 \quad X^{\prime}=X \cup\{<x,+\rangle\right\}}{\left\langle V, W, x={ }^{L} c ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}\right\rangle} \\
& \frac{\boldsymbol{D}^{\prime}=\boldsymbol{D}[\boldsymbol{x} \mapsto \mathbf{0}] \boldsymbol{c}=\mathbf{0} \quad \boldsymbol{X}^{\prime}=X \cup\{\langle\boldsymbol{x}, \mathbf{0}\rangle\}}{\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{x}=^{L} \boldsymbol{c} ; \boldsymbol{s}, \boldsymbol{D}, \boldsymbol{X}\right\rangle \rightarrow\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{s}, \boldsymbol{D}^{\prime}, X^{\prime}\right\rangle} \\
& \frac{\boldsymbol{D}^{\prime}=\boldsymbol{D}[\boldsymbol{x} \mapsto-] \quad \boldsymbol{c}<\mathbf{0} \quad \boldsymbol{X}^{\prime}=\boldsymbol{X} \cup\{<\boldsymbol{x},->\}}{\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{x}={ }^{L} \boldsymbol{c} ; \boldsymbol{s}, \boldsymbol{D}, \boldsymbol{X}>\rightarrow<\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{s}, \boldsymbol{D}^{\prime}, \boldsymbol{X}^{\prime}>\right.} \\
& \frac{D^{\prime}=\boldsymbol{D}[x \mapsto+] D[y]=+\boldsymbol{D}[z]=+\quad \boldsymbol{X}^{\prime}=\boldsymbol{X} \cup\{<\boldsymbol{x},+>\}}{\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{x}=^{L} \boldsymbol{y}+\boldsymbol{z} ; \boldsymbol{s}, \boldsymbol{D}, \boldsymbol{X}>\rightarrow\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{s}, \boldsymbol{D}^{\prime}, \boldsymbol{X}^{\prime}\right\rangle\right.} \\
& \frac{\left.D^{\prime}=D[x \mapsto+] \quad D[y]=+D[z]=0 \quad X^{\prime}=X \cup\{<x,+\rangle\right\}}{\left\langle V, W, x={ }^{L} y+z ; s, D, X>\rightarrow\left\langle V, W, s, D^{\prime}, X^{\prime}\right\rangle\right.} \\
& \frac{D^{\prime}=D[x \mapsto+] D[y]=0 \quad D[z]=+\quad X^{\prime}=X \cup\{<x,+>\}}{\left\langle V, W, x=^{L} y+z ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}\right\rangle} \\
& \frac{\left.D^{\prime}=D[x \mapsto 0] D[y]=0 \quad D[z]=0 \quad X^{\prime}=X \cup\{<x, 0\rangle\right\}}{<V, W, x=^{L} y+z ; s, D, X>\rightarrow\left\langle V, W, s, D^{\prime}, X^{\prime}>\right.} \\
& \frac{\left.D^{\prime}=D[x \mapsto *] D[y]=+D[z]=-\quad X^{\prime}=X \cup\{<x, *\rangle\right\}}{\left\langle V, W, x=^{L} y+z ; s, D, X>\rightarrow\left\langle V, W, s, D^{\prime}, X^{\prime}\right\rangle\right.} \\
& \frac{\left.D^{\prime}=\boldsymbol{D}[\boldsymbol{x} \mapsto *] \quad D[y]=* \quad \boldsymbol{X}^{\prime}=\boldsymbol{X} \cup\{<\boldsymbol{x}, *\rangle\right\}}{\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{x}=^{L} \boldsymbol{y}+\boldsymbol{z} ; \boldsymbol{s}, \boldsymbol{D}, \boldsymbol{X}\right\rangle \rightarrow\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{s}, \boldsymbol{D}^{\prime}, \boldsymbol{X}^{\prime}\right\rangle}
\end{aligned}
$$

$$
\frac{D^{\prime}=\boldsymbol{D}[\boldsymbol{x} \mapsto *] D[z]=* \quad \boldsymbol{X}^{\prime}=\boldsymbol{X} \cup\{\langle\boldsymbol{x}, *\rangle\}}{\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{x}=^{L} \boldsymbol{y}+\boldsymbol{z} ; \boldsymbol{s}, \boldsymbol{D}, \boldsymbol{X}\right\rangle \rightarrow\left\langle\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{s}, \boldsymbol{D}^{\prime}, \boldsymbol{X}^{\prime}\right\rangle}
$$

$$
\begin{gathered}
\frac{D^{\prime}=D[x \mapsto *] D[y]=-D[z]=+\quad X^{\prime}=X \cup\{<x, *>\}}{<V, W, x={ }^{L} y+z ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}>} \\
\frac{D^{\prime}=D[x \mapsto-] D[y]=-D[z]=-\quad X^{\prime}=X \cup\{<x,->\}}{<V, W, x=^{L} y+z ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}>} \\
\frac{D^{\prime}=D[x \mapsto-] D[y]=-D[z]=0 \quad X^{\prime}=X \cup\{<x,+>\}}{<V, W, x==^{L} y+z ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}>} \\
\frac{D^{\prime}=D[x \mapsto-] \quad D[y]=0 \quad D[z]=-\quad X^{\prime}=X \cup\{<x,+>\}}{<V, W, x==^{L} y+z ; s, D, X>\rightarrow<V, W, s, D^{\prime}, X^{\prime}>}
\end{gathered}
$$

The rules for subtraction are similar and hence omitted.

$$
\begin{gathered}
W^{\prime}=W \cup<D, s 2 ; s>\neg<D, s 2 ; s>\ni V \\
\neg<D, s 1 ; s>\ni V \\
V^{\prime}=V \cup D<\operatorname{si} ; s>\cup<D, s 1 ; s> \\
\hline<V, W, \text { if }\left(x^{L}\right) s 1 \text { else } s 2 ; s, D, X>\rightarrow<V^{\prime}, W^{\prime}, s 1 ; s, D, X>
\end{gathered}
$$

$<V, W$, while (x) s1; $s, D, X>\rightarrow$
$<V, W$, if (x) s1; while (x) s1 else skip; $s, D, X>$
(c) V is monotonically growing and it has a finite domain.
(d) Configuration $\langle s, D, X\rangle \rightarrow\left\langle s^{\prime}, D^{\prime}, X^{\prime}\right\rangle$

$$
\begin{gathered}
<s 1, D, X>\rightarrow<\text { skip, } D 1, X 1> \\
<s 2, D, X>\rightarrow<\text { skip, D2, } X 2> \\
\forall x, D^{\prime}[x \rightarrow D 1[x] \bowtie D 2[x]] \quad X^{\prime}=X 1 \cup X 2 \\
\hline<\text { if }\left(x^{L}\right) \text { s1 else s2; s, } D, X>\rightarrow<s, D^{\prime}, X^{\prime}>
\end{gathered}
$$

The operator \bowtie The operator is defined as $+\infty+=+,+\infty 0=+,+\infty-=*, \ldots$

$$
\begin{gathered}
\langle s 1, D, X>\rightarrow<\text { skip, D1, } X 1> \\
\neg D 1 \subseteq D \\
\frac{\forall x, D^{\prime}[x \rightarrow D 1[x] \bowtie D[x]] \quad X^{\prime}=X \cup X 1}{} \begin{array}{r}
<\text { while }(x) s 1 ; s, D, X>\rightarrow \\
<\text { while }(x) s 1 ; s, D^{\prime}, X^{\prime}>
\end{array}
\end{gathered}
$$

The operator \subseteq The operator defines a partial order, we say $\boldsymbol{D} 1 \subseteq \boldsymbol{D}$ iff $\mathrm{D} 1[\mathrm{x}]<=\mathrm{D}[\mathrm{x}]$ for all x , with nil $<=0,+,-$ and $0,+,-<=*$

$$
\begin{gathered}
<s 1, D, X>\rightarrow<\text { skip, } D 1, X 1> \\
D 1 \subseteq D \\
\vdots \\
\hline<\text { while }(x) s 1 ; S, D, X>\rightarrow \\
<S, D, X 1>
\end{gathered}
$$

