
CS510 Assignment Solutions#1

February 20, 2013

1 Control Graph, Dominator and Post-Domintor
(25p)

(a) Construct the control flow graph for the below code snippet. Please
also list the dominators and immediate post-dominators for 3, 5, 6,
7, 8, and 17.

1. n=input();

2. s=0;

3. if (n>10)

4. return;

5. while (n>0) {

6. if (s>10) {

7. while (n>0) {

8. s=s-n;

9. n=n-1;

10. }

11. break;

12. }

13. s=s+2;

14. n=n-1;

15. }

16. if (s>0 &&

17. s\%2==0) {

18. s=s+1;

19. }

Solution:

DOM(3)={Start, 1, 2, 3} IPDOM(3)={End}
DOM(5)={Start, 1, 2, 3, 5} IPDOM (5)={16}
DOM(6)={Start, 1, 2, 3, 5, 6} IPDOM (6)={16}
DOM(7)={Start, 1, 2, 3, 5, 6, 7} IPDOM (7)={11}
DOM(8)={Start, 1, 2, 3, 5, 6, 8} IPDOM (8)={9}
DOM(17)={Start, 1, 2, 3, 5, 16, 17} IPDOM (17)={End}
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1: n = input();

2: s = 0;

3: if (n>10)

Start

4: return;

5: while (n>0)

6: if (s>10)

7. while (n>0)

8: s = s-n;

9: n=n-1;

16: if (s>0

17: && s%2==0)

18: s=s+1;

End

13. s=s+2;

14. n=n-1;

11.break;

Figure 1: Control Flow Graph

(b) Prove that a statement has only one immediate post-dominator (8p).

Proof: Suppose a statement s has two IPDOM a and b. That
means we have two paths: s → a → ... → b → ... → Exit and
s → b → ... → a → ... → Exit. Note that both a in b have to appear
in both paths as they are post-dominators of s. The existence of the
two paths implies we must also have a path a → ... → Exit without
passing b. Connecting this path with the edge s → a in path one
get a path from a to Exit without passing b.

Many students simply assumed an IPDOM is the closest PDOM
along any paths to Exit. As a result, the property is trivially true.
A proper understanding of IPDOM is that it is the closest PDOM
along A path, but its property decides it is also the clostest PDOM
for all other paths.

2 Program Dependence Graph (20p)
Build the program dependence graph for the code in problem 1. If the graph
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is too crowded, you can separate it to two subgraphs: data dependence graph
and control dependence graph.

Solution:

1: n = input();

2: s = 0;

3: if (n>10)

Start

4: return;

5: while (n>0)

6: if (s>10)

7. while (n>0)

8: s = s-n;

9: n=n-1;

16: if (s>0

17: && s%2==0)

18: s=s+1;

End

13. s=s+2;

14. n=n-1;

11.break;

Figure 2: Data dependence graph

3



1: n = input();

2: s = 0;

3: if (n>10)

Start

4: return;

5: while (n>0)

6: if (s>10)

7. while (n>0)

8: s = s-n;

9: n=n-1;

16: if (s>0

17: && s%2==0)

18: s=s+1;

End

13. s=s+2;

14. n=n-1;

11.break;

Figure 3: Control dependence graph

Program dependence graph = Data dependence graph + control dependnece
graph.

3 Trace Compression (10p)
Let a plain text string be
a b a b c d c b a b c b.
Assume the initial lookup table is

Context Prediction

ab a
bc a
cd b

.

Use FCM-2 to compress the string. The final compressed string and the final
lookup table are required. Intermediate steps are not required but encouraged.

Solution:
Output: 1 a 1 b 0 1 b 1 c 1 d 1 c 1 b 1 a 0 0 1 b
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Context Prediction

ab c
bc b
cd c
ba b
dc b
cb a

.

Note: Few students forgot to put bit 0 before a mis-predicted value. The
bit is needed because with bit representation, a letter might start with a bit 0
or 1. In order to distinguish such bits from the bits that indicate prediction
results, prediction result bit 0/1 need to put into the stream all the time. The
rule becomes, if the algorithm sees prediction bit 1, it looks at the next bit; if
the algorithm sees prediction bit 0, it extracts the next 8 bits as the value, and
then looks at the next bit.

4 Path Profiling (25p)
1. if (p1)

2. s0;

3. while (p2) {

4. if (p3) {

5. s1;

6. continue;

7. }

8. while (p4) {

9. s2;

10. s3;

11. }

12. }

13. if (p5)

14. s4;

(a) Construct the path enumeration graph for the above program. Show
the path encoding.

(b) Show the final instrumented program, executing which collects the
path profile.

Solution:
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Exit

Start

13: if (p5)

3: while (p2)

4: if (p3) 

5: s1

6: continue 8. while (p4)

1: if (p1)

2: s0;

       r=0;

1.    if (p1) {
2.        s0;

      } else {
        r+=5;

3.    while (p2) {
           r+=2;

4.        If (p3) {
5.            s1;

              counter[r]++;

              r=10;

6.            continue;

         }
8. while (p4) {
              r+=1;

9.            s2;

10.          s3;

             counter[r]++;

             r=15;

         }
13.  if (p5) {
          r+=1;

14.      s4;

         }
     counter[r]++;

Control Flow Graph
Intrumentation

14: s4;

Path Enumeration 

Graph

9.  s2;

10: s3;

Exit

Start

13: if (p5)

3: while (p2)

4: if (p3) 

5: s1

6: continue 8. while (p4)

1: if (p1)

2: s0;

14: s4;

9.  s2;

10: s3;
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r+=15

r+=10
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r+=1

r+=1

R+=2

5 Predicate Tracing (20p)
Predicate tracing is a control flow tracing technique that records the branch
outcomes of predicates. For example,

1. if (...)

2. if (...)

3. s0;

4. if (...)

5. s1

6. s2;

The trace 1 2 3 4 6 for the above program can be represented as T T F.
Three bits are needed.

(a) Please list the challenges for making the above idea work on real
world programs. You can assume C or Java languages.

(b) Sketch solutions to such challenges.

Using examples is encouraged.
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Solution:
Assume C language.

(1) One challenge is that when a function has more than one callers. The
trace does not directly tell you where to return. The solution includes recording
the program point that is returned to. Or the decoding algorithm needs to
maintain a call stack.

(2) When a method is called through a function pointer, the target needs to
be traced.

(3) For switch-case statments, the algorithm needs to trace which case is
taken.

(4) For long jumps and set jumps, the correspondence needs to be traced.
Getting 3 out of 4 should be sufficient.

Assume Java language.
(1) Due to class inheritance, the dynmic method that is being called needs

to be traced.
(2) The places that an exception is thrown and handled need to be traced.
(3) The above (1).
(4) The above (3).
Getting 3 out of 4 should be sufficient.
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