CS510 Project Handout: Provenance Tracking Tool

Feb 6, 2017

Project Description

In this project, you are asked to build a provenance tracking tool for Valgrind [2, 3, 4].
Provenance tracking is a process of marking and tracking input data in a program at
runtime in order to identify all dependencies on those values at certain execution points.
This type of dynamic analysis is becoming increasingly popular in the context of software
testing, debugging and system security.

Provenance sources provenance sources are initial entry points of information to your
program. Depending on the application context, many different types of sources could be
defined. Tt includes standard input (stdin), files , and network data, etc. In this project,
we choose only the standard input (stdin) and files as provenance sources. You must devise
a forward dynamic algorithm (similar to HW2-Q2) and maintain a proper data structure
to keep track of data provenance in memory locations and registers. The goal is to trace
back all provenance targets to the specified provenance sources.

Provenance Targets We consider program variables or function pointers as provenance
targets. Therefore, we are interested in finding their dependency on the specified prove-
nance sources.

Output Format The output trace-file must be a list of log records in the following for-
mat:
Ox##t#t##it [DD/CD]: [Ox###t#i#t###t: value] [all other memory locations and values]

e The first column specifies the memory address of a provenance target. You have to
repeat the log records to cover all provenance targets.

e The second column shows whether this memory location is dependent on a provenance
source due to a data dependency DD or control dependency CD or both. This field is
mandatory for those who work in teams.



e The remaining columns show pairs of memory addresses of provenance sources and
their corresponding values. These are the memory addresses that keep the inputs
from stdin or files.

For more technical details on Valgrind, please read [4] and refer to the technical docu-
mentations at [3]. In addition, the course slides on information flow system (week 5) are
particularly useful for this project [1].

Handling Data Dependency

Provenance tracking based on data dependency accounts only for explicit propagation of
information.

Example

1 int a, b, x,
2 input(&a);//a
3 input(&b);//b
=b x 3;
=x — a;
=x+vy;

Y, 2,

T
ot ow

S U
N <X

In this example, provenance of x is {<address of b>:5}; Provenance of y and z are
{<address of b>:5 , <address of a>:3}.

Handling Control Dependency

Provenance tracking based on control dependency accounts for implicit propagation of
information in addition to explicit information propagation.

Example
input(&a); a=4

int x, y ;

if (a>5?
x = 1
¥

else {

a
0
{
0:

I

print (x);
0

= © 00 O Ui Wi+



In this example, the value of a at line 1 is taken from input (provenance source).
Although a’s value is not involved in the computation of x, it nevertheless affects x’s value
through control dependency. The outcome of the predicate at line 3 decides whether line
4 or line 7 will be executed next. Therefore, the provenance of x is {<address of a>:4}.
Conversely, the provenance of variable y remains empty.

As mentioned before, a general approach to detect implicit information flow is based
on concept of control dependence. When a conditional branching statement br decides
about the execution of a statement st, the values that affect br’s outcome may affect the
value of the data modified by st. Therefore, the st’s destination operands must consider
the provenance of it’s operands. To achieve this result, one approach is to keep track
of relevant provenance data at runtime by leveraging statically-computed postdominance
information.

The second question of HW2 gives another interesting example.

Suggested Steps (Note: you are NOT required to follow this step-by-step. Since the
project is not trivial, we recommend you to start early.):

1. Familiarize yourself with running programs inside Valgrind by using memcheck,
cachegrind etc;

2. Familiarize yourself with how a Valgrind tool works by studying the none and lackey
tools. For example, you need to understand what code you write is executed at
instrumentation time and what code you write is executed at program execution
time. You can just modify the code of the none module to implement your own tool
to run inside Valgrind;

3. Familiarize yourself with the Valgrind IR (called VEX IR) and its associated header
files. Most of this milestone involves understanding the internal representation enough
to perform the next steps;

4. Decide how to trace data dependence, and decide what data structure to use (maybe
a graph? if so, what data to keep inside each node?) For example, you need to
know how to allocate memory for data structures for instrumentation code, and for
instrumented code;

5. Perform explicit provenance tracking based on data dependence.

6. Provenance tracking to handle control dependency (optional, if you are doing this
project individually);

Further Instructions



e Your tool will take two arguments specifying the input program to analyze and out-
put trace-file. The invocation will be similar to this:

valgrind --tool=PTool --target-file==<full_path> --trace-file=<full_path>

e If your linux kernel supports address space layout randomization, you need to disable
it using this command: echo "0" > /proc/sys/kernel/randomize_va_space to get
similar results at different executions.

e We assume that you have access to the source programs and you can control the
compiler options in generating object code that will be executed inside Valgrind.

Grading

Due Date: 24 April 2017, 11:59pm

You can work in a group of two members and both group members will receive the same
grade. Expectation of the the deliverables:

e [1 person] a provenance tracking tool which handles data dependency

e [2 persons| a provenance tracking tool which handles both data dependency and
control dependency

Your grade will be mainly based on the correctness of your implementation. We will
also use a mixture of face-to-face demonstration, efficient implementation, and your write
up of the project to grade.

References

[1] Implementing information flow system on Valgrind. http://www.cs.purdue.edu/
homes/xyzhang/springl7/5-slicing-IFS.updated.pdf.

[2] Valgrind Mailing List. http://valgrind.org/support/.

[3] Valgrind Technical Documentation. http://valgrind.org/docs/manual/tech-docs.
html.

[4] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM SIGPLAN Notices, 42(6):89-100, 2007.





