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n g i n e e r i n g Xiangyu Zhangg Xiangyu Zhang

1



Problem

In 1999 Bugzilla, the bug database for the browser 
Mozilla  listed more than 370 open bugs

C
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Mozilla, listed more than 370 open bugs
Each bug in the database describes a scenario which 
caused software to failo f t w
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these scenarios are not simplified
they may contain a lot of irrelevant information
a lot of the bug reports could be equivalentn g i n e e r i n g

Overwhelmed with this work Mozilla developers sent 
out a call for volunteers

Process the bug reports by producing simplified bug reportsg Process the bug reports by producing simplified bug reports
Simplifying means: turning the bug reports into minimal test 
cases where every part of the input would be significant in 
reproducing the failure
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An Example Bug Report

Printing the following file causes Mozilla to crash:
<td align=left valign=top>
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td align left valign top
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION 
VALUE="Windows 95">Windows 95<OPTION VALUE="Windowso f t w
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98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION 
VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac n g i n e e r i n g

System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 
8.0<OPTION VALUE="Mac System 8.5">Mac Systemg

8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 
9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION 
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VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION

Continued in the next page



VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION 
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION
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VALUE= OpenVMS >OpenVMS<OPTION VALUE= OS/2 >OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION 
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>o f t w
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<SELECT NAME= priority  MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION 
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>n g i n e e r i n g

</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION 
VALUE="major">major<OPTIONg VALUE= major >major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION 
VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>
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</table>



Delta-Debugging

It is hard to figure out what the real cause of the 
failure is just by staring at that fileC
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failure is just by staring at that file
It would be very helpful  in finding the error if we 
can simplify the input file and still generate the o f t w
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can simplify the input file and still generate the 
same failure
A more desirable bug report looks like thisn g i n e e r i n g

Printing an HTML file which consists of:
<SELECT>
causes Mozilla to crashg causes Mozilla to crash.

The question is: Can we automate this?
Andreas Zeller
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Overview

Let’s use a smaller bug report as a running example: 
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When Mozilla tries to print the following HTML input it crashes:
<SELECT NAME="priority" MULTIPLE SIZE=7>o f t w
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p y

How do we go about simplifying this input?

n g i n e e r i n g

Manually remove parts of the input and see if it still causes 
the program to crash g

For the above example assume that we remove 
characters from the input file
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characters from the input file



Bold parts remain in the input, the rest is removed

1 <SELECT NAME="priority" MULTIPLE SIZE=7>  F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P
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4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> Fo f t w
 a r e   E

 n

6 <SELECT NAME priority  MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

n g i n e e r i n g

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> Pg

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

F means input caused failure
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F  means input caused failure
P  means input did not cause

failure (input passed)



14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F
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p y

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME " i it " MULTIPLE SIZE 7> P

o f t w
 a r e   E
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19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> Pn g i n e e r i n g

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> Pg p y

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F
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Example

After 26 tries we found that:
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Printing an HTML file which consists of:
<SELECT>o f t w
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<SELECT>
causes Mozilla to crash.

n g i n e e r i n g

Delta debugging technique automates this approach 
of repeated trials for reducing the input. 

g
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A Simplified Description of the Algorithm
Initially, n=2
(1) Divide a string S equally into Δ1, Δ2, ... Δn and the respective 

complements are ∇  ∇   ∇

C
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complements are ∇1, ∇2, ..., ∇n.
(2) Test each Δ1, Δ2, ... Δn and ∇1, ∇2, ..., ∇n .
if (all pass) {

2

o f t w
 a r e   E

 n

n=2n;
if (n>|s|) return the most recent failure inducing 

substring.n g i n e e r i n g

else goto (1)
} else if (Δt fails) {

n=2;   s= Δt g t 
if (|s|==1) return s   
else goto (1) 

} else { /* ∇t fails */
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} else { /  ∇t fails /
s= ∇t ;    n=n-1;    goto (1);

}



Examples

a b c d e f * h
P  f il    b t i  t i i  ‘*’C
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Program fails on any substrings containing ‘*’
a b c d e f g h

Any strings containing a g h failo f t w
 a r e   E

 n

y g g g f
*abcdef*”, 

the program fails if both *s appear in the input

n g i n e e r i n gg
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Minimality

A    i  ll d h  l b l i i f C
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A test case c ⊆ cF is called the global minimum of cF
if
for all c’ ⊆ cF , |c’| < |c| ⇒ test(c’) ≠ Fo f t w
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for all c ⊆ cF , |c |  |c| ⇒ test(c ) ≠ F

Global minimum is the smallest set of changes which n g i n e e r i n g

g
will make the program fail

F d  h  l b l      

g

Finding the global minimum may require us to 
perform exponential number of tests
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Minimality

A test case c ⊆ cF is called a local minimum of cF if
for all c’ ⊆ c  test(c’) ≠ F
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for all c ⊆ c , test(c ) ≠ F

A test case c ⊆ cF is n-minimal if
f  ll   | | | |  ( ) F

o f t w
 a r e   E
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for all c’ ⊆ c , |c| − |c’| ≤ n ⇒ test(c’) ≠ F

n g i n e e r i n g

The delta debugging algorithm finds a 1-minimal test 
case

g

Ex: AAAABBBBCCCC, program fails when 
|A|=|B|=|C|>0
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Monotonicity

The super string of a failure inducing string always 
induces the failureC
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induces the failure
DD is not effective for cases without monotonicity.

o f t w
 a r e   E

 nn g i n e e r i n gg
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Case Studies

The following C program causes GCC to crash
#define SIZE 20
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#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;o f t w
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i  0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];n g i n e e r i n g

return z[n];
}

g

Continued in the next page
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void copy(double to[], double from[], int count)
{
int n = count + 7) / 8;
it h( t % 8) d {

C
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switch(count % 8) do {
case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;

5 *t ++ *f ++

o f t w
 a r e   E

 n

case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1 *to++ *from++

n g i n e e r i n g

case 1: *to++ = *from++;
} while ( --n > 0);
return mult(to, 2);

}
int main(int argc char *argv[])

g

int main(int argc, char *argv[])
{
double x[SIZE], y[SIZE];
double *px = x;
while (px < x + SIZE)
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while (px < x + SIZE)
*px++ = (px – x) * (SIZE + 1.0);

return copy(y, x, SIZE);
}



Case Studies

The original input file 755 characters
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Delta debugging algorithm minimizes the input file to 
the following file with 77 characterso f t w
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the following file with 77 characters

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]* n g i n e e r i n g

( [], ){ ,j; (;;){ j ; [ ] [ ]
(z[0]+0);}return[n];}

g

If a single character is removed from this file then 
it does not induce the failure
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Isolating Failure Inducing 
DifferencesDifferences

Instead of minimizing the input that causes the failure we can 
also try to isolate the differences that cause the failure
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y
Minimization means to make each part of the simplified test case 
relevant: removing any part makes the failure go away
Isolation means to find one relevant part of the test case: removing 
this particular part makes the failure go awayo f t w
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this particular part makes the failure go away
For example changing the input from
<SELECT NAME="priority" MULTIPLE SIZE=7>
ton g i n e e r i n g

to 
SELECT NAME="priority" MULTIPLE SIZE=7>
makes the failure go away

This means that inserting the character < is a failure inducing differenceg This means that inserting the character  is a failure inducing difference
Delta debugging algorithm can be modified to look for minimal 
failure inducing differences

Although it is not as popular, it is quite useful in some applications.
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Failure Inducing Differences: 
ExampleExample

Changing the input program for GCC from the one on 
the left to the one on the right removes the failureC

S510    S o

the left to the one on the right removes the failure

#define SIZE 20 #define SIZE 20

This input causes failure This input does not cause failure

o f t w
 a r e   E

 n

#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;

double mult(double z[], int n)
{
int i , j ;
i = 0;n g i n e e r i n g

i  0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];

for (j = 0; j < n; j++) {
i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];g return z[n];
} }

Modified statement is shown in box
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Discussions

DD on scheduling decisions:
Given a thread schedule for which a concurrent program works 
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Given a thread schedule for which a concurrent program works 
and another for which the program fails, delta debugging 
algorithm can narrow down the differences between two 
thread schedules and find the locations where a thread switch 

 h    f l

o f t w
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causes the program to fail.
Chipping

Given two versions of a program such that one works correctly n g i n e e r i n g

p g y
and the other one fails, delta debugging algorithm can be used 
to look for changes which are responsible for introducing the 
failure

g

Fault Localization – apply DD to memory state
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Discussions

Demands an oracle.
A l  b  f  i dC
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A large number of runs required.

o f t w
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 nn g i n e e r i n gg
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Statistical Debugging

n g i n e e r i n gg
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What is statistical debugging

It relies on a large pool of test cases. Some failing 
and the other passing  Dynamic info from both C
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and the other passing. Dynamic info from both 
passing and failing cases are aggregated to localize 
the possible faulty statements. The end outcome is o f t w
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p y
often a ranked list of statements.
Tarantula

H th i   f lt  t t t i   lik l  t d i  

n g i n e e r i n g

Hypothesis: a faulty statement is more likely executed in 
failing runs.

F(s)/P(s): the number of failing/passing cases that execute s.

g

Suspiciousness(s)=

F(s)

|failing|

23

F(s)

|failing|

P(s)

|passing|
+



Scalable Remote Bug Isolation

Tarantula requires a large pool of test cases, which 
may not be availableC
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may not be available.
Idea: rely on deployed systems and end users to 
provide needed dynamic information.o f t w
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provide needed dynamic information.
Based on predicates

Branch predicatesn g i n e e r i n g

Function return (<0, ==0, <=0, …)
Scalar pairs

For each assignment x=…, from some other variables yi and some g

constants ci, acquire (x==yi, x<=yi, ... x==ci)

Collect evaluation of these predicates.
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Statistical analysis
F( )/S( ) h   t t  i  hi h  i  t  d th  C
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F(p)/S(p) – how many test cases in which p is true and the 
program fails/passes.

o f t w
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Failure(p)=
F(p)

+S(p) F(p)n g i n e e r i n g

1. f=…;

2 if (f==null) {

Assume we have 100 test cases 
with 90 passing and 10 g

2. if (f==null) {

3. x=0;

4. …=*f;

failing.

F(p@2)=10     S(p@2)=0   
Failure(p@2)=1

25

5. }



However, there are predicates whose executions 
only occur in failing runs but not faulty. A context 

l  i  d  dj  h  i iC
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value is computed to adjust the suspiciousness
F(p is observed) / S(p is observed): how many cases in which p 
is executed and the program fails/passeso f t w
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Context(p)=
F(p is observed)

+S(p is observed) F(p is observed)

S i i ( ) F il ( ) C ( )

n g i n e e r i n g

0.  x=10;

1   f= ;

Assume we have 100 test cases 
with 90 passing and 10 

Suspiciousness(p)=Failure(p)-Context(p)

g

1.  f=…;

2.  if (f==null) {

2.5  if (x>0) 

failing.

F(p@2.5)=10     S(p@2.5)=0   
Failure(p@2.5)=1
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3.           x=0;

4.     …=*f;

5. }

Context (p@2.5)=1

Context(p@2)=0.1



Scalability

Distribute instrumentation to multiple versions.
S liC
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Sampling

o f t w
 a r e   E

 nn g i n e e r i n gg
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Scalability

Distribute instrumentation to multiple versions.
S liC
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Sampling
Create two versions of a function, one is the original, the 
other is the instrumentedo f t w
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Using a counter instead of a % operation to perform sampling
Assume one sample is collected for n instances

n g i n e e r i n g

counter--;

If (!counter) {

counter=n;g

call the instrumented version;

} else {

call the original version;

}
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Limitation of Remote Bug Isolation 

The faulty predicate may be ever evaluated to true 
in both passing and failing cases (when it is nested in C
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in both passing and failing cases (when it is nested in 
loops).

SOBERo f t w
 a r e   E
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Limitations of Statistical Debugging in 
General General 

Need many test cases, including passing and failing. 
Or need an oracleC
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Or need an oracle.
Unclear how to handle multiple bugs.
Bug reports are often not informative enougho f t w
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Bug reports are often not informative enough.

n g i n e e r i n gg
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