
C
S510 S oo f t w

 a r e E
 n

Delta Debugging

n g i n e e r i n g Xiangyu Zhangg Xiangyu Zhang

1

Problem

In 1999 Bugzilla, the bug database for the browser
Mozilla listed more than 370 open bugs

C
S510 S o

Mozilla, listed more than 370 open bugs
Each bug in the database describes a scenario which
caused software to failo f t w

 a r e E
 n

these scenarios are not simplified
they may contain a lot of irrelevant information
a lot of the bug reports could be equivalentn g i n e e r i n g

Overwhelmed with this work Mozilla developers sent
out a call for volunteers

Process the bug reports by producing simplified bug reportsg Process the bug reports by producing simplified bug reports
Simplifying means: turning the bug reports into minimal test
cases where every part of the input would be significant in
reproducing the failure

2

An Example Bug Report

Printing the following file causes Mozilla to crash:
<td align=left valign=top>

C
S510 S o

td align left valign top
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windowso f t w

 a r e E
 n

98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION
VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac n g i n e e r i n g

System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System
8.0<OPTION VALUE="Mac System 8.5">Mac Systemg

8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System
9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION

3

VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION

Continued in the next page

VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION

C
S510 S o

VALUE= OpenVMS >OpenVMS<OPTION VALUE= OS/2 >OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>o f t w

 a r e E
 n

<SELECT NAME= priority MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>n g i n e e r i n g

</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION
VALUE="major">major<OPTIONg VALUE= major >major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION
VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

4

</table>

Delta-Debugging

It is hard to figure out what the real cause of the
failure is just by staring at that fileC

S510 S o

failure is just by staring at that file
It would be very helpful in finding the error if we
can simplify the input file and still generate the o f t w

 a r e E
 n

can simplify the input file and still generate the
same failure
A more desirable bug report looks like thisn g i n e e r i n g

Printing an HTML file which consists of:
<SELECT>
causes Mozilla to crashg causes Mozilla to crash.

The question is: Can we automate this?
Andreas Zeller

5

Andreas Zeller

Overview

Let’s use a smaller bug report as a running example:

C
S510 S o

When Mozilla tries to print the following HTML input it crashes:
<SELECT NAME="priority" MULTIPLE SIZE=7>o f t w

 a r e E
 n

p y

How do we go about simplifying this input?

n g i n e e r i n g

Manually remove parts of the input and see if it still causes
the program to crash g

For the above example assume that we remove
characters from the input file

6

characters from the input file

Bold parts remain in the input, the rest is removed

1 <SELECT NAME="priority" MULTIPLE SIZE=7> F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P

C
S510 S o

4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> Fo f t w
 a r e E

 n

6 <SELECT NAME priority MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

n g i n e e r i n g

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> Pg

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

F means input caused failure

7

F means input caused failure
P means input did not cause

failure (input passed)

14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F

C
S510 S o

p y

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME " i it " MULTIPLE SIZE 7> P

o f t w
 a r e E

 n

19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> Pn g i n e e r i n g

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> Pg p y

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F

8

Example

After 26 tries we found that:

C
S510 S o

Printing an HTML file which consists of:
<SELECT>o f t w

 a r e E
 n

<SELECT>
causes Mozilla to crash.

n g i n e e r i n g

Delta debugging technique automates this approach
of repeated trials for reducing the input.

g

9

A Simplified Description of the Algorithm
Initially, n=2
(1) Divide a string S equally into Δ1, Δ2, ... Δn and the respective

complements are ∇ ∇ ∇

C
S510 S o

complements are ∇1, ∇2, ..., ∇n.
(2) Test each Δ1, Δ2, ... Δn and ∇1, ∇2, ..., ∇n .
if (all pass) {

2

o f t w
 a r e E

 n

n=2n;
if (n>|s|) return the most recent failure inducing

substring.n g i n e e r i n g

else goto (1)
} else if (Δt fails) {

n=2; s= Δt g t
if (|s|==1) return s
else goto (1)

} else { /* ∇t fails */

10

} else { / ∇t fails /
s= ∇t ; n=n-1; goto (1);

}

Examples

a b c d e f * h
P f il b t i t i i ‘*’C

S510 S o

Program fails on any substrings containing ‘*’
a b c d e f g h

Any strings containing a g h failo f t w
 a r e E

 n

y g g g f
abcdef”,

the program fails if both *s appear in the input

n g i n e e r i n gg

11

Minimality

A i ll d h l b l i i f C
S510 S o

A test case c ⊆ cF is called the global minimum of cF
if
for all c’ ⊆ cF , |c’| < |c| ⇒ test(c’) ≠ Fo f t w

 a r e E
 n

for all c ⊆ cF , |c | |c| ⇒ test(c) ≠ F

Global minimum is the smallest set of changes which n g i n e e r i n g

g
will make the program fail

F d h l b l

g

Finding the global minimum may require us to
perform exponential number of tests

12

Minimality

A test case c ⊆ cF is called a local minimum of cF if
for all c’ ⊆ c test(c’) ≠ F

C
S510 S o

for all c ⊆ c , test(c) ≠ F

A test case c ⊆ cF is n-minimal if
f ll | | | | () F

o f t w
 a r e E

 n

for all c’ ⊆ c , |c| − |c’| ≤ n ⇒ test(c’) ≠ F

n g i n e e r i n g

The delta debugging algorithm finds a 1-minimal test
case

g

Ex: AAAABBBBCCCC, program fails when
|A|=|B|=|C|>0

13

Monotonicity

The super string of a failure inducing string always
induces the failureC

S510 S o

induces the failure
DD is not effective for cases without monotonicity.

o f t w
 a r e E

 nn g i n e e r i n gg

14

Case Studies

The following C program causes GCC to crash
#define SIZE 20

C
S510 S o

#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;o f t w

 a r e E
 n

i 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];n g i n e e r i n g

return z[n];
}

g

Continued in the next page

15

void copy(double to[], double from[], int count)
{
int n = count + 7) / 8;
it h(t % 8) d {

C
S510 S o

switch(count % 8) do {
case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;

5 *t ++ *f ++

o f t w
 a r e E

 n

case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1 *to++ *from++

n g i n e e r i n g

case 1: *to++ = *from++;
} while (--n > 0);
return mult(to, 2);

}
int main(int argc char *argv[])

g

int main(int argc, char *argv[])
{
double x[SIZE], y[SIZE];
double *px = x;
while (px < x + SIZE)

16

while (px < x + SIZE)
*px++ = (px – x) * (SIZE + 1.0);

return copy(y, x, SIZE);
}

Case Studies

The original input file 755 characters

C
S510 S o

Delta debugging algorithm minimizes the input file to
the following file with 77 characterso f t w

 a r e E
 n

the following file with 77 characters

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]* n g i n e e r i n g

([],){ ,j; (;;){ j ; [] []
(z[0]+0);}return[n];}

g

If a single character is removed from this file then
it does not induce the failure

17

Isolating Failure Inducing
DifferencesDifferences

Instead of minimizing the input that causes the failure we can
also try to isolate the differences that cause the failure

C
S510 S o

y
Minimization means to make each part of the simplified test case
relevant: removing any part makes the failure go away
Isolation means to find one relevant part of the test case: removing
this particular part makes the failure go awayo f t w

 a r e E
 n

this particular part makes the failure go away
For example changing the input from
<SELECT NAME="priority" MULTIPLE SIZE=7>
ton g i n e e r i n g

to
SELECT NAME="priority" MULTIPLE SIZE=7>
makes the failure go away

This means that inserting the character < is a failure inducing differenceg This means that inserting the character is a failure inducing difference
Delta debugging algorithm can be modified to look for minimal
failure inducing differences

Although it is not as popular, it is quite useful in some applications.

18

g p p q pp

Failure Inducing Differences:
ExampleExample

Changing the input program for GCC from the one on
the left to the one on the right removes the failureC

S510 S o

the left to the one on the right removes the failure

#define SIZE 20 #define SIZE 20

This input causes failure This input does not cause failure

o f t w
 a r e E

 n

#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;

double mult(double z[], int n)
{
int i , j ;
i = 0;n g i n e e r i n g

i 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];

for (j = 0; j < n; j++) {
i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];g return z[n];
} }

Modified statement is shown in box

19

Discussions

DD on scheduling decisions:
Given a thread schedule for which a concurrent program works

C
S510 S o

Given a thread schedule for which a concurrent program works
and another for which the program fails, delta debugging
algorithm can narrow down the differences between two
thread schedules and find the locations where a thread switch

 h f l

o f t w
 a r e E

 n

causes the program to fail.
Chipping

Given two versions of a program such that one works correctly n g i n e e r i n g

p g y
and the other one fails, delta debugging algorithm can be used
to look for changes which are responsible for introducing the
failure

g

Fault Localization – apply DD to memory state

20

Discussions

Demands an oracle.
A l b f i dC

S510 S o

A large number of runs required.

o f t w
 a r e E

 nn g i n e e r i n gg

21

C
S510 S oo f t w

 a r e E
 n

Statistical Debugging

n g i n e e r i n gg

22

What is statistical debugging

It relies on a large pool of test cases. Some failing
and the other passing Dynamic info from both C

S510 S o

and the other passing. Dynamic info from both
passing and failing cases are aggregated to localize
the possible faulty statements. The end outcome is o f t w

 a r e E
 n

p y
often a ranked list of statements.
Tarantula

H th i f lt t t t i lik l t d i

n g i n e e r i n g

Hypothesis: a faulty statement is more likely executed in
failing runs.

F(s)/P(s): the number of failing/passing cases that execute s.

g

Suspiciousness(s)=

F(s)

|failing|

23

F(s)

|failing|

P(s)

|passing|
+

Scalable Remote Bug Isolation

Tarantula requires a large pool of test cases, which
may not be availableC

S510 S o

may not be available.
Idea: rely on deployed systems and end users to
provide needed dynamic information.o f t w

 a r e E
 n

provide needed dynamic information.
Based on predicates

Branch predicatesn g i n e e r i n g

Function return (<0, ==0, <=0, …)
Scalar pairs

For each assignment x=…, from some other variables yi and some g

constants ci, acquire (x==yi, x<=yi, ... x==ci)

Collect evaluation of these predicates.

24

Statistical analysis
F()/S() h t t i hi h i t d th C

S510 S o

F(p)/S(p) – how many test cases in which p is true and the
program fails/passes.

o f t w
 a r e E

 n

Failure(p)=
F(p)

+S(p) F(p)n g i n e e r i n g

1. f=…;

2 if (f==null) {

Assume we have 100 test cases
with 90 passing and 10 g

2. if (f==null) {

3. x=0;

4. …=*f;

failing.

F(p@2)=10 S(p@2)=0
Failure(p@2)=1

25

5. }

However, there are predicates whose executions
only occur in failing runs but not faulty. A context

l i d dj h i iC
S510 S o

value is computed to adjust the suspiciousness
F(p is observed) / S(p is observed): how many cases in which p
is executed and the program fails/passeso f t w

 a r e E
 n

Context(p)=
F(p is observed)

+S(p is observed) F(p is observed)

S i i () F il () C ()

n g i n e e r i n g

0. x=10;

1 f= ;

Assume we have 100 test cases
with 90 passing and 10

Suspiciousness(p)=Failure(p)-Context(p)

g

1. f=…;

2. if (f==null) {

2.5 if (x>0)

failing.

F(p@2.5)=10 S(p@2.5)=0
Failure(p@2.5)=1

26

3. x=0;

4. …=*f;

5. }

Context (p@2.5)=1

Context(p@2)=0.1

Scalability

Distribute instrumentation to multiple versions.
S liC

S510 S o

Sampling

o f t w
 a r e E

 nn g i n e e r i n gg

27

Scalability

Distribute instrumentation to multiple versions.
S liC

S510 S o

Sampling
Create two versions of a function, one is the original, the
other is the instrumentedo f t w

 a r e E
 n

Using a counter instead of a % operation to perform sampling
Assume one sample is collected for n instances

n g i n e e r i n g

counter--;

If (!counter) {

counter=n;g

call the instrumented version;

} else {

call the original version;

}

28

}

Limitation of Remote Bug Isolation

The faulty predicate may be ever evaluated to true
in both passing and failing cases (when it is nested in C

S510 S o

in both passing and failing cases (when it is nested in
loops).

SOBERo f t w
 a r e E

 nn g i n e e r i n gg

29

Limitations of Statistical Debugging in
General General

Need many test cases, including passing and failing.
Or need an oracleC

S510 S o

Or need an oracle.
Unclear how to handle multiple bugs.
Bug reports are often not informative enougho f t w

 a r e E
 n

Bug reports are often not informative enough.

n g i n e e r i n gg

30

