Static Program Analysis

Xiangyu Zhang

What is static analysis

@ Static analysis analyzes a program without
executing it.

@ Static analysis is widely used in bug finding,
vulnerability detection, property checking

* Easier to apply compared to dynamic analysis (as
long as you have code)
® The user does not even need to know how to run it
* Better scalability compared to some dynamic
analysis (e.g. tracing)

* Findbug, coverity, codesurfer

Two kinds of Static Analysis

@ Syntax/structure oriented analysis

* They don't try to understand the semantics of a
program. Instead, they look at syntax and structure
of a program

= CFG, dominator, post-dominator, loop detection

* A lot of applications

= Code clone detection (text comparison, AST comparison, CFG
comparison)

= Malware analysis

= Serve as the foundation for other advanced static/dynamic
analysis

* Limitation: cannot reason about program semantics
and program state

@ Semantics oriented analysis (our focus)

S
(=]
>
@D
@D
-
>
(=]

Lets start with the Simplest Static

—_— Analysis

@ What are the possible definitions for each use

z=..

X=...

it)
X=...

else
sl

©OCoO~NOOOUITHA, WNEPE

-
(@]
=
QD
=
(9]
S
(o]
)
(9]
@D
=
)
(=]

@ What are the possible call targets

p=F1 /*F1, F2, F3, F4, F5 are functions*/
qg=F2
x=1nput ()
it C)
q=F3
else
p=F4
it C)
p=F5
10 else
11 pP=d;
12 Cp) ()

©CoOoO~NOOOUDAWNLE

S
(o]
)
@
@
=
)
(=]

@ What is the range of possible values for a
integer var.

x=10
y=input()
1=X+y
it (i>20)
1=20
else
z=1nput()
1T (3<z<5)
1I=i1-Z
O print z

=}
(@]
>
@D
(9]
=
>
(@]

P OOO~NOOThA, WNEPE

The first ingredient of static

—_—analysis

@ Abstract domain

* The results we want o compute by static
analysis

@ Transfer function

*How the abstract values are
computed/updated at each relevant
instruction

= Need to consider the instruction semantics

@ What are the possible call targets

x=F1 /*F1, F2, and F3 are functions*/
y=F2
q=&x
it C)
X=F3
else
p=&X
it C)
P=q
10 else
11 p=&y;
12 *C*p) (.)

©CoOoO~NOOOUDAWNLE

S
(o]
)
@
@
=
)
(=]

What about loops

@ When shall we terminate a loop path?
* Analyze the possible sign of a variable

1 x=1nput(Q
2 while (.)
3 X=-X

= @Since we are always interested in the
: aggregation of abstract values along all
paths. If the aggregation stabilizes, we
shall terminate

* Monotonically growth

* The abstract domain is finite

Semi-lattice

@ A semi-lattice is a domain of values Vand a
meet operator A such that,

*Yabd&cel:
1. an~a= a(idempotent)
2. an b= b A a(commutative)
3. ar(ba)= (an b) A c (associative)

* A imposes a partial orderon V,V a b,& c < V:
1. asbosanb=b
2. asb< axbandaz b
3. axband b3c,thenas ¢

* A semi-lattice has a top element, denoted T
1.VaelVasT
2.YaelVTAra=a

S
(=]
>
@D
@D
-
>
(=]

10

Semi-lattices for previous examples
@ Def[x@n]: the possible definitions of x at n

{} T
id,} {dy} {ds}

{d;, dy} id,, é3} {éz’ ds}

= =

{d,, d,, ds} 1

11

5
(=]
>
@D
@
-
>
(=]

@ Lattice + monotonicity + finite height =
termination

@ Are we there yet?

* Path explosion, e.g. a program with n diamonds.

12

Avoid Analyzing Individual Paths

@ Analyze multiple paths at a time and compute
aggregate information directly.

* Def, [x@n]: all the possible definitions of x along
some path reaching n (before getting through n)
Defin[x@n]= /\n's predecessorn, Defout[x @ n]
* For any xlzy (node nis "y=...")
Def, [x@n]=Def, [x@n]
* Def,:[y@n]={n}

13

Pultlaaulbu 91eM1]0 0

Other Examples

@ Call target analysis
@ Range analysis

14

o
=
®
-
@D
>
«
S
@D
®
-
S
«

Worklist Algorithm

For each block node n and every variable x
AD"[x@n]=Ad,,[x@n] = @
change = frue;
while change do begin
change = false;
for any n and x
ADi”[X@n]Z/\n's predecessorn,, ADout[X @ n]
oldvalue = Ad,[x@n] ;
Ad,[x@n] = F(AD"[x@n])
if Ad,:[x@n] = oldvalue then change = true;
end
end

15

Pultlaaulbu 91eM1]0 0

Example for Computing Dependences

1 Input (X,Yy);
2 1f (x<0)

3 pP=-Y;

4 else

S P=Y;

6 z=1

7 while (p!'=0)
8 Z=7Z*X

9 p=p-1;

10 Output(2);

16

Lost of Precision by Directly Computing
! te Inf tion Direct]

x=Foo();
y=gee();
it ()
P=&X;
gq=&X;
else
p=&y;
qQ=&y;
*p:*q
0 *C*P)O:

P OO ~NO O, WNEPE

-
o
=
QD
=
@
=)
(=]
)
(9>
(9>
=
)
(=]

@ Distributive analysis: the aggregation of
individual path analysis results is equivalent to
computing the aggregate information directly

F(arb)=F(a)AF(b) i

-
(@]
=
D
=
@D
S5
(o]
)
(0]
@D
=
)
(@]

Summary

@ Abstraction domain
@ Transfer function
@ Termination

@ Compute aggregate information directly
* Precision lost?

18

