
Program SlicingProgram Slicing

Xiangyu Zhang

Outline

What is slicing.
Wh li iC

S510 S o

Why slicing.
Static slicing.
Dynamic slicingo f t w

 a r e E
 n

Dynamic slicing.
Data dependence detection
Control dependence detectionn g i n e e r i n g

Slicing algorithms (forward vs. backward)
Chopping

g

2

What is a slice?

C
S510 S o

S: …. = f (v)
Slice of v at S is the
set of statements

Void main () {
int I=0;

1

2o f t w
 a r e E

 n

set of statements
involved in computing v’s
value at S.
[M k W i 1982]

int sum=0;
while (I<N) {

sum=add(sum I);

3

4

5n g i n e e r i n g

[Mark Weiser, 1982]sum=add(sum,I);
I=add(I,1);

}

5

6

7g }
printf (“sum=%d\n”,sum);
printf(“I=%d\n”,I);

8

9

3

Why Slicing?

Debugging: that’s why slicing was introduced.
Data Flow Testing: Reduce cost of regression C

S510 S o

Data Flow Testing: Reduce cost of regression
testing after modifications to the program.
Code Reuse: Extracting modules for reuse.o f t w

 a r e E
 n

g
Version Integration: Safely integrate non-
interfering extensions of an application.
Partial Execution replay: Replay only part of the n g i n e e r i n g

Partial Execution replay: Replay only part of the
execution that is relevant to a failure.
Partial roll back: partially roll back a transaction.g

Information flow: prevent confidential information
from being sent out to untrusted environment.
Others

4

Others.

How to Compute Slices?

Dependence Graph
D dI 0C

S510 S o

Data dep.
Control dep.

I=0

sum=0
X is data dependent on Y if (1) o f t w

 a r e E
 n

I < N

+I
T

X is data dependent on Y if (1)
there is a variable v that is
defined at Y and used at X and
(2) there exists a path of n g i n e e r i n g

sum=sum+I

I I+1

F
nonzero length from Y to X
along which v is not re-defined.

g

I=I+1

print (sum);

5

p ();

print(I)

How to Compute Slices? (continued)

Dependence Graph
D dI 0C

S510 S o

Data dep.
Control dep.

I=0

sum=0

o f t w
 a r e E

 n

I < N

+I
T Y is control-dependent on X

iff X directly determines n g i n e e r i n g

sum=sum+I

I I+1

F

iff X directly determines
whether Y executes

X is not strictly post-dominated
by Y
there exists a path from X to Y g

I=I+1

print (sum);

there exists a path from X to Y
s.t. every node in the path other
than X and Y is post-dominated
by Y

6

p ();

print(I)

How to Compute Slices? (continued)

Given a slicing criterion 1: I 0C
S510 S o

Given a slicing criterion,
i.e., the starting point, a
slice is computed as the

 f h bl d i

1: I=0

2: sum=0

o f t w
 a r e E

 n

set of reachable nodes in
the dependence graph3: I < N

4 +I
T

n g i n e e r i n g

4: sum=sum+I

5 I I+1

F Slice(I@7)={1,3,5,7}

g

5: I=I+1

6: print (sum);

Slice(6)=?

7

p ();

7:print(I)

Static Slices are Imprecise

Don’t have dynamic control flow information
1 if (P)C

S510 S o

1: if (P)
2: x=f(…);
3: elseo f t w

 a r e E
 n

4: x=g(…);
5. …=x;

n g i n e e r i n g

• Use of Pointers – static alias analysis is very imprecise
1: int a,b,c;
2: a=…; g ;
3: b=…;
4: p=&a;
5 [i]

8
• Use of function pointers

5: …=p[i];

Dynamic Slicing
Korel and Laski, 1988

The set of executed statement instances that did

C
S510 S o

f
contribute to the value of the criterion.

Dynamic slicing makes use of all information about a
particular execution of a program o f t w

 a r e E
 n

particular execution of a program.
Dynamic slices are often computed by constructing a
dynamic program dependence graph (DPDG).n g i n e e r i n g

Each node is an executed statement (instruction).
An edge is present between two nodes if there exists a
data/control dependence.

 d i li i i i i l V E i P i

g

A dynamic slice criterion is a triple <Var, Execution Point,
Input>
The set of statements reachable in the DPDG from a criterion
constitute the slice

9

constitute the slice.
Dynamic slices are smaller, more precise, more
helpful to the user

An Example

1: I 0 Slice(I@7)={1 3 5 7}

C
S510 S o

1: I=0

2: sum=0 Trace (N=0)
1 : I=0

Slice(I@7)={1,3,5,7}

o f t w
 a r e E

 n

3: I < N

4 +I
T

11: I=0
21: sum=0
31: I<Nn g i n e e r i n g

4: sum=sum+I

5 I I+1

F

1
61: print(sum)
71: print(I);

g

5: I=I+1

6: print (sum);
DSlice(I@71,,N=0)={1,7}

10

p ();

7:print(I)

Another Example

1: I 0 Slice(I@7)={1 3 5 7}

C
S510 S o

1: I=0

2: sum=0 Trace (N=1)
1 : I=0

Slice(I@7)={1,3,5,7}

o f t w
 a r e E

 n

3: I < N

4 +I
T

11: I=0
21: sum=0
31: I<Nn g i n e e r i n g

4: sum=sum+I

5 I I+1

F

1
41: sum=sum+I
51: I=I+1
3 I<N

g

5: I=I+1

6: print (sum);

32: I<N
61: print(sum)
71: print(I);

11

p ();

7:print(I)
1 p ();

DSlice(I@71,,N=1)={1,3,5,7}

Effectiveness of Dynamic Slicing

Program Static / Dynamic (25 slices)
AVG MIN MAX

C
S510 S o

AVG MIN MAX
126.gcc 5448 3.5 27820
099.go 1258 2 4246o f t w

 a r e E
 n

99.g
134.perl 66 1 1598
130.li 149 1 1436n g i n e e r i n g

008.espresso 49 1 1359

g

Sometimes, static and dynamic get the same answers.
Sometimes, static gets explosions
O st ti sli s b ti s l

12

On average, static slices can be many times larger

Computing Dynamic Slices

Data dependence: - do we still care about aliasing?

C
S510 S o

No.
A backwards linear scan over the trace is able to recover all
data dependences.o f t w

 a r e E
 n

Control dependence
In order to find the predicate instance that a statement
execution X is control dependent on can I simply traverse n g i n e e r i n g

execution X is control dependent on, can I simply traverse
backwards and find the closest predicate?

No. Trace:
There exist inefficient backwards algorithms

g

11: if (P)
21: …
31: i=

There exist inefficient backwards algorithms

13

31: i …

Offline Algorithms – Data Dep

Instrument the program to generate the control
flow and memory access traceC

S510 S o

flow and memory access trace
Void main () {

int I=0;1o f t w
 a r e E

 n

int I 0;
int sum=0;
while (I<N) {

1
2
3

n g i n e e r i n g

sum=add(sum,I);
I=add(I,1);

}

4
5
6g }

printf (“sum=%d\n”,sum);
printf(“I=%d\n”,I);

6
7
8

14

Offline Algorithms – Data Dep

Instrument the program to generate the control
flow and memory access traceC

S510 S o

flow and memory access trace
Trace (N=0)
1 W &I

Void main () {
int I=0; trace(“1 W ”+&I);1o f t w

 a r e E
 n

2 W &sum
3 R &I &N
4 R &I &sum W &sum

int I 0; trace(1 W +&I);
int sum=0; trace(“2 W ”+&sum);
while (trace(“3 R ”+&I+&N),I<N) {

1
2
3

n g i n e e r i n g

4 R &I &sum W &sum
5 R &I W &I
3 R &I &N

sum=add(sum,I);
trace(“4 R ”+&I+&sum+ “ W ”

+&sum);

4

g

7 R &sum
8 R &I

+&sum);
I=add(I,1);

}
5
6

15

printf (“sum=%d\n”,sum);
printf(“I=%d\n”,I);

7
8

Offline Algorithms – Data Dep

Instrument the program to generate the control
flow and memory access traceC

S510 S o

flow and memory access trace
Trace (N=0)
1 W &Io f t w

 a r e E
 n

For a “R, addr”, traverse
backward to find the closest
“W addr” introduce a DD edge

2 W &sum
3 R &I &N
4 R &I &sum W &sumn g i n e e r i n g

W,addr , introduce a DD edge,
traverse further to find the
corresponding writes of the

4 R &I &sum W &sum
5 R &I W &I
3 R &I &Ng

reads on the identified write. 7 R &sum
8 R &I“8, R &I” -> “5, W &I”-> “5, R

16

&I”->”1, R&I”

Offline Algorithms – Control Dep

Assume there are no recursive functions and
CD(i) i h f i l d d C

S510 S o

CD(i) is the set of static control dependence
of i, traverse backward, find the closest x,
s t x is in CD(i) introduce a dynamic CD from o f t w

 a r e E
 n

s.t. x is in CD(i), introduce a dynamic CD from
i to x.

n g i n e e r i n g

Problematic in the presence of recursion.

g

17

Efficiently Computing Dynamic Dependences

The previous mentioned graph construction
algorithm implies offline traversals of long memory C

S510 S o

algorithm implies offline traversals of long memory
reference and control flow traces
Efficient online algorithmso f t w

 a r e E
 n

Efficient online algorithms
Online data dependence detection.
Online control dependence detection.

n g i n e e r i n gg

18

Efficient Data Dependence Detection

Basic idea
i h h [] iC

S510 S o

i: x=… => hashmap[x]= i
j: … =x… => dependence detected j hashmap[x], which is j i

T (N 1) HashMap Data Depo f t w
 a r e E

 n

Trace (N=1)
11: I=0
21: sum=0

HashMap
I: 11

I: 11 sum: 21

Data Dep.

n g i n e e r i n g

1
31: I<N
41: sum=sum+I

1 1

31 hashmap[I]=11
I: 11 sum: 41 41 hashmap[sum]=21
I 5 4 5 h h [I] 1

g

51: I=I+1
32: I<N
61: print(sum)

I: 51 sum: 41 51 hashmap[I]=11

32 hashmap[I]=51
61 hashmap[sum]=41

19

61: print(sum)
71: print(I);

61 hashmap[sum] 41
71 hashmap[I]=51

Efficient Dynamic Control Dependence (DCD) Detection

Def: yj DCD on xi iff there exists a path from xi to
Exit that does not pass yj and no such paths for

C
S510 S o

Exit that does not pass yj and no such paths for
nodes in the executed path from xi to yj.
Region: executed statements between a predicate
i t d it i di t t d i t f

o f t w
 a r e E

 n

instance and its immediate post-dominator form a
region.

n g i n e e r i n gg

20

Region Examples

11. for(i=0; i<N, i++) {

C
S510 S o

1. for(i=0; i<N, i++) {
2. if(i%2 == 0)

1 () {
21. if(i%2 == 0)
31. p = &a[i];

o f t w
 a r e E

 n

()
3. p = &a[i];
4. foo(p);
5 }

41. foo(p);
…
1 for(i=0; i<N i++) {n g i n e e r i n g

5. }
6. a = a+1;

12. for(i=0; i<N, i++) {
22. if(i%2 == 0)
42. foo(p);g 2 (p)
…
13. for(i=0; i<N, i++) {

A statement instance xi DCD on
the predicate instance leading xi
‘s enclosing region.

Regions are either nested or

21

61. a = a+1;Regions are either nested or
disjoint. Never overlap.

DCD Properties

Def: yj DCD on xi iff there exists a path from xi to
Exit that does not pass yj and no such paths for

C
S510 S o

Exit that does not pass yj and no such paths for
nodes in the executed path from xi to yj.
Region: executed statements between a predicate
i t d it i di t t d i t f

o f t w
 a r e E

 n

instance and its immediate post-dominator form a
region.

n g i n e e r i n g

Property One: A statement instance xi DCD on the
predicate instance leading xi ‘s enclosing region.

g

22

Property One

A statement instance xi DCD on the predicate
instance leading x ‘s enclosing regionC

S510 S o

instance leading xi s enclosing region.
Proof: Let the predicate instance be pj and assume xi does not

DCD pj. Therefore, o f t w
 a r e E

 n

either there is not a path from pj to exit that does not pass xi ,
which indicates xi is a post-dominator of pj, contradicting the
condition that xi is in the region delimited by pj and its
i di t t d i t

n g i n e e r i n g

immediate post-dominator;
or there is a yk in between pj and xi so that yk has a path to exit

that does not pass xi . Since pj’s immediate post-dominator is
l t d i t f d ’ t d i t f

g

also a post dominator of yk, yk and pj’s post-dominator form a
smaller region that include xi , contradicting that pj leads the
enclosing region of xi .

23

DCD Properties

Def: yj DCD on xi iff there exists a path from xi to
Exit that does not pass yj and no such paths for

C
S510 S o

Exit that does not pass yj and no such paths for
nodes in the executed path from xi to yj.
Region: executed statements between a predicate
i t d it i di t t d i t f

o f t w
 a r e E

 n

instance and its immediate post-dominator form a
region.

n g i n e e r i n g

Property Two: regions are disjoint or nested, never
overlap.

g

24

Property Two

Regions are either nested or disjoint, never overlap.
P f A th t i () d () th t C

S510 S o

Proof: Assume there are two regions (x, y) and (m, n) that
overlap. Let m reside in (x, y). Thus, y resides in (m, n), which
implies there is a path from m to exit without passing y. Let
the path be P Therefore the path from x to m and P o f t w

 a r e E
 n

the path be P. Therefore, the path from x to m and P
constitute a path from x to exit without passing y,
contradicting the condition that y is a post-dominator of x.

n g i n e e r i n gg

25

Efficient DCD Detection

Observation: regions have the LIFO characteristic.
Otherwise, some regions must overlap.

C
S510 S o

w , m g n mu p.
Implication: the sequence of nested active regions for the
current execution point can be maintained by a stack, called
control dependence stack (CDS).o f t w

 a r e E
 n

p
A region is nested in the region right below it in the stack.
The enclosing region for the current execution point is always the
top entry in the stack, therefore the execution point is control
dependent on the predicate that leads the top regionn g i n e e r i n g

dependent on the predicate that leads the top region.
An entry is pushed onto CDS if a branching point (predicates, switch
statements, etc.) executes.
The current entry is popped if the immediate post-dominator of the

h d h d f h

g

branching point executes, denoting the end of the current region.

26

Algorithm
Predicate (xi)
{

C
S510 S o

CDS.push(<xi, IPD(x) >);
}

o f t w
 a r e E

 n

Merge (tj)
{ n g i n e e r i n g

while (CDS.top().second==t)
CDS.pop();

}g }
GetCurrentCD ()
{

27

return CDS.top().first;
}

An Example

C
S510 S oo f t w

 a r e E
 n

p2@11, 561, 14

62, 14

n g i n e e r i n g

p1@11, 551, EXIT

g

28

Interprocedural Control Dependence

13
cc3, 4

C
S510 S o

12
cc2, 4

11
cc1, 4

3 ,

o f t w
 a r e E

 n

11 , 4

n g i n e e r i n g g

Annotate CDS entries with calling context.

29

Wrap Up

We have introduced the concept of slicing and
dynamic slicingC

S510 S o

dynamic slicing
Offline dynamic slicing algorithms based on
backwards traversal over traces is not efficiento f t w

 a r e E
 n

backwards traversal over traces is not efficient
Online algorithms that detect data and control
dependences are discussed.n g i n e e r i n gg

30

Forward Dynamic Slice Computation

The approaches we have discussed so far are
backwardsC

S510 S o

backwards.
Dependence graphs are traversed backwards from a slicing
criterion.o f t w

 a r e E
 n

The space complexity is O (execution length).
Forward computation

A slice is represented as a set of statements that are involved n g i n e e r i n g

A slice is represented as a set of statements that are involved
in computing the value of the slicing criterion.
A slice is always maintained for a variable.

g

31

The Algorithm

An assignment statement execution is formulated as
s : x= p ? op (src1 src2);

C
S510 S o

si: x= pj? op (src1, src2, …);
That is to say, the statement execution instance si is control
dependent on pj and operates on variables of src1, src2, etc.

Upon the execution of si, the slice of x is updated too f t w
 a r e E

 n

Upon the execution of si, the slice of x is updated to
Slice(x) = {s} U Slice(src1) U Slice(src2) U … U Slice(pj)

The slice of variable x is the union of the current statement, the
slices of all variables that are used and the slice of the predicate
i h i l d d B h ll

n g i n e e r i n g

instance that si is control dependent on. Because they are all
contributing to the value of x.
Such slices are equivalent to slices computed by backwards
algorithms.g

– Proof is omitted.
Slices are stored in a hashmap with variables being the keys.
The computation of Slice (pj) is in the next slide. Note that pj is not a
variable.

32

variable.

The Algorithm (continued)

A predicate is formulated as
 ? (1 2)C

S510 S o

si: pj? op (src1, src2, …)
That is to say, the predicate itself is control dependent on another
predicate instance pj and the branch outcome is computed from
variables of src1, src2, etc.o f t w

 a r e E
 n

variables of src1, src2, etc.

Upon the execution of si
A triple is pushed to CDS with the format of

 IPD() U li (1) U li (2) U U li ()

n g i n e e r i n g

<si, IPD(s), s U Slice (src1) U Slice (src2) U… U Slice(pj) >
The entry is popped at its immediate post dominator

Slice(pj) can be retrieved from the top element of g (pj) p
CDS.

33

Example

11: a=1 Slice(a) = {1}
Statements Executed Dynamic Slices

C
S510 S o

1: a=1
2: b=2
3 +b

21: b=2 Slice(b) = {2}

31: c=a+b Slice(c) = {1,2,3}

h(<4 6 {1 2 4}>)

o f t w
 a r e E

 n

3: c=a+b
4: if a<b then
5: d=b*c

41: if a<b then push(<41,6, {1,2,4}>)

51: d=b*c Slice(d) = {1,2,3,4,5}

n g i n e e r i n g

6: ……..

g

34

41, 6, {1,2,4}

… …

Properties

The slices are equivalent to those computed by
backwards algorithmsC

S510 S o

backwards algorithms
The proof is omitted.

The space complexity is boundedo f t w
 a r e E

 n

p mp y
O ((# of variables + MAX_CDS_DEPTH) * # of statements)

Efficiency relies on the hash map implementation
d t ti

n g i n e e r i n g

and set operations.
A cost-effective implementation will be discussed later in
cs510.g

35

Extending Slicing

Essentially, slicing is an orthogonal approach to
isolate part of a program (execution) giving certain C

S510 S o

isolate part of a program (execution) giving certain
criterion.
Mutations of slicingo f t w

 a r e E
 n

Mutations of slicing
Event slicing – intrusion detection, execution fast forwarding,
understanding network protocol, malware replayer.
Forward slicingn g i n e e r i n g

Forward slicing.
Chopping.
Probabilistic slicing.

g

36

