
Program Profiling

Xiangyu Zhang

2

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is profiling.
Why profiling.
Gprof.
Efficient path profiling.
Object equality profiling

3

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

What is Profiling

Tracing is lossless, recording every detail of a
program execution

Thus, it is expensive.
Potentially infinite.

Profiling is lossy, meaning that it aggregates
execution information to finite entries.

Control flow profiling
Instruction/Edge/Function: Frequency;

Value profiling
Value: Frequency

4

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Why Profiling

Debugging
Enable time travel to understand what has happened.

Code optimizations
Identify hot program paths;
Data compression;
Value speculation;
Data locality that help cache design;
Performance tuning

Security
Malware analysis

Testing
Coverage.

5

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

GNU gprof Profiler

Gprof is a profiler for C programs.
It profiles execution times for each individual
functions and produces a call graph with call edges
annotated with frequencies.
Working

Gcc with the –p –pg options. –p tells the program to save
profiling information, and –pg saves debug information in the
compiled executable.
Gcc instruments the entry and exit of each function to record
the calling frequency of each function.
Sampling is used to measure execution time.

inaccuracy
A gmon.out file will be created at the end.
Run gprof ./a.out to view the profiler’s information.

6

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

How often does a control-flow path
execute?
Levels of profiling:

blocks
edges
paths

More Advanced: Path Profiling

B C

D

E F

A
343

400

57

Edge profile equivalent to block profile?

7

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Naive Path Profiling

put(“B”)
put(“C”)

put(“D”)

put(“E”)
put(“F”);
record_path();

buffer

B C

D

E F

A put(“A”)
A B D F

Find the smallest set of
places to instrument

8

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A
r = 4

r = 2

r += 1

count[r]++

Path Encoding
ABDEF 0
ABDF 1
ABCDEF 2
ABCDF 3
ACDEF 4
ACDF 5

9

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A

1

2

1

24

6

Each node is annotated with
the number of paths from
that node to the end.

Num(n)= ∑ (child i) Num(i)

10

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A

count[r]++

1

2

1

24

6

w1 w2 w3

Exit

n1 n2 n3

0 +n1
+(n1+n2)

v

r = 4

r = 2

r += 1

11

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Path Regeneration

1

4

2

P = 3

P = 3 P = 1

P = 1

P = 0

Given path sum P, which path produced it?

w1 w2 w3

Exit

n1 n2 n3

0 n1
n1+n2

v

B C

D

E F

A

12

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Handling Loops

C D

E

G H

A

F

B

C D

E

G H

A

F

B

Entry

Exit
1

6

1

2

3

3

14

3

8 r = 8

r+ = 2

r+ = 3

r+ = 2

r +=2

r +=3

r +=2
count[r]++;
r=8

r+ = 1

r+ = 1

13

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Overhead and Others

EPP causes 40% overhead on average.
The path explosion problem.

If the number of paths is too large to enumerate, which is not
very uncommon, hash maps have to be used.

Can be used to achieve efficient tracing.
Reading assignment

Efficient Path Profiling, by T. Ball and J. Larus, Micro 1996
The optimization (chord algorithm) is not required.

14

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Object Equality Profiling (OEP)

OEP discovers opportunities for replacing a set of
equivalent object instances with a single
representative object.

Replacing an object x with an object y means replacing all
references to x by references to y.
Requires x and y have same field values.

Object oriented programs typically create and
destroy large numbers of objects. Creating,
initializing and destroying an object consumes
execution time and also requires space for the
object while it is alive.

Many objects are identical

15

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

In the white paper “WebSphere Application Server
Development Best Practices for Performance and
Scalability”. Four of the eighteen “best practices” are
instructions to avoid repeated creation of identical
objects (in particular, “Use JDBC connection pooling”,
“Reuse data sources for JDBC connections”).
Merging objects reduces memory usage, improves
memory locality, reduces GC overhead, and reduces
the runtime costs of allocating and initializing objects.

16

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example

17

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Mergability

The objects are of the same class.
Each pair of corresponding field values in the

objects is either a pair of identical values or a pair
of references to objects which are themselves
mergeable.
Neither object is mutated in the future.
The objects have overlapping lifetimes.

18

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Mergability Profiling

The profiler produces triples <class, allocation site, estimated saving>

Information to collect

Allocation times

The last references

Field values

19

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Results

Reduce the memory footprints of two SpecJVM
programs by 37% and 47%.
In program DB, which is a database application
entry.items.addElement (new String(buffer, 0, s, e-s));

20

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Extra Credit Challenge

Encoding backtrace
A very useful feature of GDB is backtrace, which captures the
sequence of call sites leading from the main function to the current
execution point. For instance, in case of a segfault, the user can use
the “bt” command to investigate the current call sequence.
Consider the sequence of call sites as a path in the call graph from
the main function to the current execution point. Please design an
efficient encoding scheme for call paths. The requirement is that it
should be able to distinguish the multiple call paths to the same
program point. The scheme ought to be minimal, meaning using the
minimal number of ids. Apply your technique to the following program.

A () {
B();
C();

}

B () {
D();
E();

}

C () {
D();

}

D () {
E();
F();

}

E () {
segfault;

}

F () {

}

21

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Challenge (1 extra credit)

A recent trend to parallelize a sequential program is
to spawn a method call as a separate thread.

foo(…)

foo’s body

foo’s continuation

asynchronous foo(…)

foo’s body

foo’s continuation

22

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Devise a profiler that identifies method calls that
are amenable to such parallelization.

Hint: you ought to consider if dependences between a method
and its continuation are broken in the parallelized version.
You can assume a dependence detector.

