
Dynamic Program Analysis

Xiangyu Zhang

2

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Introduction
Dynamic program analysis is to solve problems regarding software
dependability and productivity by inspecting software execution.
Program executions vs. programs

Not all statements are executed; one statement may be executed many times.
Analysis on a single path – the executed path
All variables are instantiated (solving the aliasing problem)

Resulting in:
Relatively lower learning curve.
Precision.
Applicability.
Scalability.

Dynamic program analysis can be constructed from a set of primitives
Tracing
Profiling
Checkpointing and replay
Dynamic slicing
Execution indexing
Delta debugging

Applications
Dynamic information flow tracking
Automated debugging

Program Tracing

4

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.

5

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

What is Tracing

Tracing is a process that faithfully records detailed
information of program execution (lossless).

Control flow tracing
the sequence of executed statements.

Dependence tracing
the sequence of exercised dependences.

Value tracing
the sequence of values that are produced by each instruction.

Memory access tracing
the sequence of memory references during an execution

The most basic primitive.

6

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Why Tracing

Debugging
Enables time travel to understand what has happened.

Code optimizations
Identify hot program paths;
Data compression;
Value speculation;
Data locality that help cache design;

Security
Malware analysis

Testing
Coverage.

7

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.
Trace accessibility

8

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Printf
Max = 0;
for (p = head; p; p = p->next)
{

if (p->value > max)
{

max = p->value;
}

}

printf(“In loop\n”);

printf(“True branch\n”);

9

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

The Minimum Set of Places to
Instrument

if (…)
S1

else
S2

S3
if (…)

S4
else

S5

2017年1月26日星期四

if (…)
S1
if (…)

S2
else

S3

10

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Source Level Instrumentation

Read a source file and parse it into ASTs.
Annotate the parse trees with instrumentation.
Translate the annotated trees to a new source file.
Compile the new source.
Execute the program and a trace produced.

11

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example

12

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example

;

printf(“In loop\n”)

13

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Limitations of Source Level Instrumentation

Hard to handle libraries.
Proprietary libraries: communication (MPI, PVM), linear
algebra (NGA), database query (SQL libraries).

Hard to handle multi-lingual programs
Source code level instrumentation is heavily language
dependent.

Requires source code
Worms and viruses are rarely provided with source code

14

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Binary Instrumentation

What is binary instrumentation
Given a binary executable, parses it into intermediate
representation. More advanced representations such as
control flow graphs may also be generated.
Tracing instrumentation is added to the intermediate
representation.
A lightweight compiler compiles the instrumented
representation into a new executable.

Features
No source code requirement
Easily handle libraries.

15

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Static vs. Dynamic Instrumentation

Static: takes an executable and generate an
instrumented executable that can be executed with
many different inputs
Dynamic: given the original binary and an input,
starts executing the binary with the input, during
execution, an instrumented binary is generated on
the fly; essentially the instrumented binary is
executed.

16

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Dynamic Binary Instrumentation -
Valgrind

Developed by Julian Seward at Cambridge University.
Google-O'Reilly Open Source Award for "Best Toolmaker" 2006
A merit (bronze) Open Source Award 2004

Open source
works on x86, AMD64

Easy to execute, e.g.:
valgrind --tool=memcheck ls

It becomes very popular
One of the two most popular dynamic instrumentation tools

Pin and Valgrind
Very good usability, extendibility, robust

25MLOC
Mozilla, MIT, Berkeley-security, Me, and many other places

Overhead is the problem
5-10X slowdown without any instrumentation

Reading assignment
Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation (PLDI07)

17

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

pc

pc
BB

New BB
New BB

New pc

state

18

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1

1

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

19

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2; 1: do {

2: i=i+1;
3: s1;
4: } while (i<2)

OUTPUT:

20

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

1: do {
print(“1”)

2: i=i+1;
3: s1;
4: } while (i<2)

OUTPUT:

21

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1

1

1

22

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1 1

5

5
5: s2;

23

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1 1

5: print (“5”);
s2;

24

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

5: print (“5”);
s2;

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2)

1 1 5

25

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Instrumentation with Valgrind
UCodeBlock* SK_(instrument)(UCodeBlock* cb_in, …)
{

…
UCodeBlock cb = VG_(setup_UCodeBlock)(…);
…
for (i = 0; i < VG_(get_num_instrs)(cb_in); i++) {

u = VG_(get_instr)(cb_in, i);
switch (u->opcode) {

case LD:
…

case ST:
…

case MOV:
…

case ADD:
…

case CALL:
…

return cb;
}

26

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.

27

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Fine-Grained Tracing is Expensive

Trace(N=6): 1 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 6

1: sum=0
2: i=1
3: while (i<N) do
4: i=i+1
5: sum=sum+i

endwhile
6: print(sum)

3: while (i<N) do

1: sum=0
2: i=1

4: i=i+1
5: sum=sum+i

6: print (sum)

Space Complexity: 4 bytes * Execution length

28

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Basic Block Level Tracing

Trace(N=6): 1 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 6

1: sum=0
2: i=1
3: while (i<N) do
4: i=i+1
5: sum=sum+i

endwhile
6: print(sum)

3: while (i<N) do

1: sum=0
2: i=1

4: i=i+1
5: sum=sum+i

6: print (sum)

BB Trace: 1 3 4 3 4 3 4 3 4 3 4 3 6

29

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

More Ideas

Would a function level tracing idea work?
A trace entry is a function call with its parameters.

Predicate tracing

1: sum=0
2: i=1
3: while (i<N) do
4: i=i+1
5: sum=sum+i

endwhile
6: print(sum)

Instruction trace Predicate trace
1 2 3 6 F

1 2 3 4 5 3 6 T F

Lose random accessibility
Path based tracing

30

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression

Using zlib
Zlib is a software library used for data compression. It wraps
the compression algorithm used in gzip.
Divide traces into trunks, and then compress them with zlib.
Disadvantage: trace can only be accessed after complete
decompression; slow

Desired features
Accessing traces in their compressed form.
Traversing forwards and backwards.
fast

31

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

Last n values predictor
Facilitated by a buffer that stores the last n unique values
encountered
If the next value is one of the n values, the index of the value (in [0,
n-1]) is emitted to the encoded trace, prefixed with a bit 0 to
indicate the prediction is correct.
Otherwise (mis-prediction), the original value (32 bits) is emitted to
the encoded trace, prefixed with a bit 1 to indicate mis-prediction.
The buffer is updated with least used strategy.

Example:
999 333 999 333 999 999 999 333 use last-2 predictor
1 999 1 333 00 01 00 00 00 01 (underlined are 32 bits)

999 333 555 555 999 333 999 999 999 333

32

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

Decompression
Take one bit from the encoded trace, if it is 1, emit the next 32 bits. If it is 0,
emit the value in the buffer indexed by the next log n bits.
Maintain the table in the same way as compression

33

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

Finite Context Method (FCM)
Facilitated by a look up table that predicts a value based on the
context of left n values. 2-FCM, 3-FCM
If the next value can be found in the table through its left context, a
bit 0 is emitted to the encoded trace.
Otherwise (mis-prediction), the original value (32 bits) is emitted to
the encoded trace, prefixed with a bit 1 to indicate mis-prediction.
The lookup table is updated accordingly.

Example:
1 2 3 4 5 3 4 5 3 4 5 … 3 4 5 6
1 1 1 2 1 3 1 4 1 5 1 3 1 4 0 0 0 0 … 0 1 6 (underlined are 32 bits)

34

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

Decompression
Take one bit from the encoded trace, if it is 1, emit the next 32 bits. If it is 0,
emit the value looked up from the table using the left n values.
Maintain the table in the same way as compression

35

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

FCM (finite context method).
Example, FCM-3

X Y Z A
X Y Z A

1
Compressed

Uncompressed Left Context lookup table

36

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Intel PT

https://software.intel.com/en-
us/blogs/2013/09/18/processor-tracing

2017年1月26日星期四

37

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Compression using value predictors

FCM (finite context method).
Example, FCM-3

X Y Z
X Y Z A

B

0B
Compressed

Uncompressed

Length(Compressed) = n/32 + n*(1- prediction rate)

Left Context lookup table

It was shown that predictors are better than zlib;

It works so well because the repetitive pattern caused by loops;

Only forward traversable;

X Y Z AX Y Z B

38

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Bidirectional Compression

Allow trace traversal in the compressed form.
Bidirectional.
Fast.
Good compression.

Methodology:
Have a small sliding window on the compressed string.
The string in the window is plain text (decompressed)
The strings on the left and the right of the window are
compressed.

39

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Enable bidirectional traversal

Forward compressed, backward decompressed FCM
Traditional FCM is forward compressed, forward decompressed

A

Left Context lookup table

X Y Z AX Y Z A

Right Context lookup table

X Y Z

Compressed

Uncompressed

X Y ZY Z A1

 Bidirectional FCM

Right Context lookup table Left Context lookup table

X Y Z

Uncompressed
current context

40

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Left-context look up table
Predict the next value based on its left context

Right-context look up table
Predict the next value based on its right context

Moving the plain text window of size n one step
forward

Decompress using the left-context lookup (now get a window
of size n+1)
Compress the first value of window using the right-context
lookup table (again we get a window of size n)

Moving the window one step barward
The opposite actions.

41

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Bidirectional FCM - example

X Y Z1 1

A X Y ZA X Y Z

Right Context lookup table

A X Y Z 1

Left Context lookup table

A X Y 1 1

42

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Characteristics of bidirectional predictors

High compression rate
The compression rate is nearly the SAME as unidirectional
predictors;

Fast compression and de-compression
Roughly TWO times slower than unidirectional predictors;

