
CS 510/12CS 510/12

Program RepresentationProgram Representation
Xiangyu Zhang



Why Program Representations

Original representations
S  d  (  l )C

S510    S o

Source code (cross languages).
Binaries (cross machines and platforms).
Source code / binaries + test caseso f t w

 a r e   E
 n

Source code / binaries + test cases.
They are hard for machines to analyze.
Software is translated into certain representations n g i n e e r i n g

Software is translated into certain representations 
before analyses are applied.

g

2



Outline

Control flow graphs.
P  d d  hC

S510    S o

Program dependence graphs.
Super control flow graphs.
Call grapho f t w

 a r e   E
 n

Call graph

n g i n e e r i n gg

3



Control Flow Graph

Chapter 1.14 of “Foundations of Software 
Engineering”C

S510    S o

Engineering
Available on the course website. 
The most commonly used program representationo f t w

 a r e   E
 n

The most commonly used program representation.

n g i n e e r i n gg

4



Program representation: Basic blocks

C
S510    S o

A basic block in  program P is a sequence of consecutive 
statements with a single entry and a single exit point.  Thus o f t w

 a r e   E
 n

a  block has  unique entry and  exit points. 

Control always enters a basic block at its entry point and exits n g i n e e r i n g

from its exit point. There is no possibility of exit or a halt at any 
point inside the basic block except at its exit point. The entry 
and exit points of a basic block coincide when the block g p
contains only one statement.

5
© Aditya P. Mathur 2005



Control Flow Graph (CFG)

C
S510    S o

A control flow graph (or flow graph) G is defined as a finite set N of 
nodes and a finite set E of edges.   An edge (i, j)  in E connects two o f t w

 a r e   E
 n

nodes ni and nj in N.  We often write G= (N, E) to denote a  flow 
graph G with nodes given by  N  and edges by  E.

n g i n e e r i n gg

8
© Aditya P. Mathur 2005



Control Flow Graph (CFG)

C
S510    S o

In  a flow graph of a program, each basic block  becomes a node 
and edges are used to indicate  the  flow of control between  
blockso f t w

 a r e   E
 n

blocks. 

An edge (i, j) connecting basic blocks bi and bj implies that n g i n e e r i n g

control can  go from block bi to block bj.  

g

We also assume that there is a node labeled Start in N that has no 
incoming edge, and another node labeled End, also in N,  that has 

t i d

9
© Aditya P. Mathur 2005

no outgoing edge.



Paths

Consider a flow graph G= (N, E). A sequence of k edges, k>0,  

C
S510    S o

(e_1, e_2, … e_k) , denotes a path  of length k through the flow 
graph if the following  sequence condition holds.

o f t w
 a r e   E

 n

Given that np, nq, nr, and ns are nodes belonging to N, 
and 0< i<k if ei = (n n ) and ei = (n n ) then n =n g i n e e r i n g

and 0< i<k, if  ei  (np, nq) and ei+1  (nr, ns) then nq  
nr. }

g

Complete path: a path from start to exit
Subpath: a subsequence of a complete path

12
© Aditya P. Mathur 2005



Paths: infeasible paths

C
S510    S o

A path  p  through  a flow graph for 
program P is considered feasible if o f t w

 a r e   E
 n

there exists at least one test case which 
when input to P causes p to be 
traversed.n g i n e e r i n g p1= ( Start 1 3 4 5 6 5 7 8 9 End)

traversed.

g p1  ( Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)
p2= (Start, 1, 2, 4,  5, 7,  9, End)

14
© Aditya P. Mathur 2005



Number of paths

C
S510    S o

There can be many distinct paths through a program. A 
program with no condition contains exactly one path that o f t w

 a r e   E
 n

begins at node  Start and terminates at node End. 

Each additional condition in the program can increases then g i n e e r i n g

Each additional condition in the program can increases the 
number of distinct paths by at least one. 

g

Depending on  their location,  conditions can have a 
multiplicative effect on the number of paths. 

15
© Aditya P. Mathur 2005



A Simplified Version of CFG

Each statement is represented by a node
F  dibilitC

S510    S o

For readibility.
Not for efficient implementation.

o f t w
 a r e   E

 nn g i n e e r i n gg

16



Dominator

X dominates Y if all possible program paths from 
START to Y have to pass X  C

S510    S o

START to Y have to pass X. 

o f t w
 a r e   E

 nn g i n e e r i n gg

17



Dominator

X strictly dominates Y if X dominates Y and X!=Y

C
S510    S o 1:  sum=0o f t w

 a r e   E
 n

1:     sum=0
2:     i=1
3:     while ( i<N) do 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

n g i n e e r i n g

4: i=i+1
5: sum=sum+i

endwhile

3:  while ( i<N) do 

4:  i=i+1
5:  sum=sum+ig

6:   print(sum) 5:  sum=sum+i

6:  print (sum)SDOM(6)={1,3}   

19

p ( )



Dominator

X is the immediate dominator of Y if X is the last 
dominator of Y along a path from Start to YC

S510    S o

dominator of Y along a path from Start to Y.

1:  sum=0o f t w
 a r e   E

 n

1:     sum=0
2:     i=1
3:     while ( i<N) do 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

n g i n e e r i n g

4: i=i+1
5: sum=sum+i

endwhile

3:  while ( i<N) do 

4:  i=i+1
5:  sum=sum+ig

6:   print(sum) 5:  sum=sum+i

6:  print (sum)IDOM(6)={3}   

20

p ( )



Postdominator

X post-dominates Y if every possible program path 
from Y to End has to pass XC

S510    S o

from Y to End has to pass X.
Strict post-dominator, immediate post-dominance.

1:  sum=0o f t w
 a r e   E

 n

1:     sum=0
2:     i=1
3:     while ( i<N) do 3:  while ( i<N) do 

1:  sum=0
2:  i=1

n g i n e e r i n g

3 e ( ) do
4: i=i+1
5: sum=sum+i

endwhile

3:  while ( i<N) do 

4:  i=i+1
5:  sum sum+i

g endwhile
6:   print(sum) 

5:  sum=sum+i

6:  print (sum)
SPDOM(4)={3,6}   IPDOM(4)=3

21

6:  print (sum)



Back Edges

A back edge is an edge whose head dominates its tail
B k d  ft  id tif  lC

S510    S o

Back edges often identify loops

1:  sum=0o f t w
 a r e   E

 n 3:  while ( i<N) do 

2:  i=1

n g i n e e r i n g

( )

4:  i=i+1
5:  sum=sum+ig

6:  print (sum)

22



Program Dependence Graph

Read Chapter 1.15 and 1.16 of “Foundations of 
Software Testing”C

S510    S o

Software Testing
The second widely used program representation.
Nodes are constituted by statements instead of o f t w

 a r e   E
 n

Nodes are constituted by statements instead of 
basic blocks.
Two types of dependences between statementsn g i n e e r i n g

yp p
Data dependence
Control dependenceg

23



Data Dependence

X is data dependent on Y if (1) there is a variable v 
that is defined at Y and used at X and (2) there C

S510    S o

that is defined at Y and used at X and (2) there 
exists a path of nonzero length from Y to X along 
which v is not re-defined.o f t w

 a r e   E
 n

1:  sum=0
2:  i=1

n g i n e e r i n g

3:  while ( i<N) do 

4:  i=i+1g 4:  i=i+1
5:  sum=sum+i

24

6:  print (sum)



Computing Data Dependence is Hard in General

Aliasing
A i bl   f  t  lti l   C

S510    S o

A variable can refer to multiple memory 
locations/objects.

o f t w
 a r e   E

 n

1:     int x, y, z …;
2:     int * p;
3:     x= ;

1:     foo (ClassX  x,     ClassY  y) {
2:        x.field= …;
3:        …=y.field;n g i n e e r i n g

3:     x=…;
4:     y=…;
5:     p = & x;
6:     p=p +z;

y ;
4:     }        

g 6:     p=p +z;
7:     … = *p;    foo ( o, o);

o1=new ClassX( );

25

( )
o2= new ClassY( );
foo ( o1, o2);



Control Dependence

Intuitively, Y is control-dependent on X iff X 
directly determines whether Y executes 

C
S510    S o

d rect y determ nes whether Y e ecutes 
(statements inside one branch of a predicate are 
usually control dependent on the predicate)

X is not strictly post-dominated by YThere is a path from X to End that
d

o f t w
 a r e   E

 n

there exists a path from X to Y s.t. every node in the path other than 
X and Y is post-dominated by Y

does not pass Y or X==Y

No such paths for nodes in a path n g i n e e r i n g

p y

X Not post-dominated by Y

No such paths for nodes in a path 
between X and Y.

g

Every node is post-dominated by Y

26

Y



Control Dependence - Example
Y is control-dependent on X iff X directly determines whether 
Y executes

X is not strictly post-dominated by Y
th  i t   th f  X t  Y t   d  i  th  th C

S510    S o 1:  sum=0

there exists a path from X to Y s.t. every node in the path 
other than X and Y is post-dominated by Y

o f t w
 a r e   E

 n

1:     sum=0
2:     i=1
3:     while ( i<N) do 3:  while ( i<N) do 

2:  i=1

n g i n e e r i n g

3:     while ( i<N) do 
4: i=i+1
5: sum=sum+i

endwhile

( )

4:  i=i+1
5:  sum=sum+ig endwhile

6:   print(sum) 

6:  print (sum)CD(5)=3

27

CD(3)=3, tricky!



Note: Control Dependence is not 
Syntactically ExplicitSyntactically Explicit

Y is control-dependent on X iff X directly determines whether 
Y executes

X is not strictly post-dominated by Y
th  i t   th f  X t  Y t   d  i  th  th C

S510    S o

1:  sum=0
2   i 1

there exists a path from X to Y s.t. every node in the path 
other than X and Y is post-dominated by Y

o f t w
 a r e   E

 n

1:     sum=0
2:     i=1
3:     while ( i<N) do 

3:  while ( i<N) do 

2:  i=1

n g i n e e r i n g

( )
4: i=i+1
5: if (i%2==0) 
6: continue;

4:  i=i+1
5:  if (i%2==0)

g ;
7: sum=sum+i

endwhile
8:    print(sum) 

7:  sum=sum+i

28

8 p (su )
8:  print (sum)



Control Dependence is Tricky!
Y is control-dependent on X iff X directly determines whether 
Y executes

X is not strictly post-dominated by Y
th  i t   th f  X t  Y t   d  i  th  th C

S510    S o Can a statement control depends on two 
d

there exists a path from X to Y s.t. every node in the path 
other than X and Y is post-dominated by Y

o f t w
 a r e   E

 n

predicates?

n g i n e e r i n gg

29



Control Dependence is Tricky!
Y is control-dependent on X iff X directly determines whether 
Y executes

X is not strictly post-dominated by Y
th  i t   th f  X t  Y t   d  i  th  th C

S510    S o Can one statement control depends on two 
d

there exists a path from X to Y s.t. every node in the path 
other than X and Y is post-dominated by Y

o f t w
 a r e   E

 n

1:     if ( p1 || p2 ) 
2:     s1;

1:    ? p1

predicates?

n g i n e e r i n g

2:     s1;
3:     s2; 1:    ? p2

2:    s1
What if ?g 2:    s1

3:    s2

1:     if ( p1 && p2 ) 
2:     s1;
3:     s2;

30

3 s



The Use of PDG 

A program dependence graph consists of control 
dependence graph and data dependence graphC

S510    S o

dependence graph and data dependence graph
Why it is so important to software reliability?

In debugging  what could possibly induce the o f t w
 a r e   E

 n

In debugging, what could possibly induce the 
failure?
In securityn g i n e e r i n g

p=getpassword( );p=getpassword( );

g …
if (p==“zhang”) {

send (m);
}

…
send (p);

31

}



Super Control Flow Graph (SCFG)

Besides the normal intraprocedural control flow 
graph  additional edges are added connectingC

S510    S o

graph, additional edges are added connecting
Each call site to the beginning of the procedure it 
calls.o f t w

 a r e   E
 n

The return statement back to the call site.
1:     for (i=0; i<n; i++) { 1n g i n e e r i n g

2:        t1= f(0);
3:        t2 = f(243); 
4:        x[i] = t1 + t2 + t3;

2 7

g

5:    }
6:  int  f (int v) {
7:    return (v+1);

3

32

8:  } 4



Call Graph (CG)

Each node represents a function; each edge 
represents a function invocationC

S510    S o

represents a function invocation

void A( ) { void B( ) { Ao f t w
 a r e   E

 n

( ) {
B( );
C( );

}

( ) {
L1:   D( );
L2:   D( );
}

CBn g i n e e r i n g

}

void C ( ) {
D( );

}

void D ( ) {
} Dg D( );

A( );
} 

} 

33



The Use of CG

When reasoning across function boundaries is 
neededC

S510    S o

needed.
A mouse click suddenly drives a desktop application 
into a coma, and the operating system declares it o f t w

 a r e   E
 n

, p g y
“not responding”. While the application usually 
responds eventually, no user actions can be taken 
during the wait  n g i n e e r i n g

during the wait. 

g

34



Many Other Representations

Points-to Graph.
S i  i l  i  (SSA)C

S510    S o

Static single assignment (SSA).

o f t w
 a r e   E

 nn g i n e e r i n gg

35



Tools

C/C++: LLVM, CIL
J  SOOT  W lC

S510    S o

Java: SOOT, Wala
Binary: Valgrind, Pin

o f t w
 a r e   E

 nn g i n e e r i n gg

36


