Testing and Debugging
Concurrent Programs



Concurrent Programming is HARD

@ Concurrent executions are highly nondeterminisitic

@ Rare thread interleavings result in Heisenbugs
* Difficult to find, reproduce, and debug

@ Observing the bug can “fix” it

* Likelihood of interleavings changes, say, when you add
printfs

@ A huge productivity problem

* Developers and testers can spend weeks chasing a
single Heisenbug



Concurrent Errors

@ Data Race

* Two accesses to the same memory address in two
respective threads, with one write, can occur in two
orders.

@ Atomicity violation

* A code region should be executed atomically.
@ Deadlock
@ Livelock



Datarace Detection

@ Lockset algorithm

* Accesses to the same shared variable need to be
protected by the same lock(s)

* limitation
@ Happens-before algorithm
* Happens-before relations

* There exists happens-before between any pair of
shared accesses (with one write)

* Limitation
@ Hybrid algorithm



int food_on_table() {
pthread_mutex_lock(&foodlock);
if (food>0) { food--; }
pthread_mutex_unlock(&foodlock);
return food;

}



public class State {
private int cnt = 0;
public synchronized int getCnt() {
return cnt;
}
public synchronized void setCnt(int newValue) {
cnt = newValue;

}
}

public class MyThread extends Thread {

State s;

public MyThread(State s) { this.s =s; }

public void run() {
s.setCnt(s.getCnt()+1);

}

public void main(String args[]) {
State s = new State();
MyThread threadl = new MyThread(s);
MyThread thread2 = new MyThread(s);
threadl.start(); thread2.start();

}
}



CHESS: Stateless MC

@ Explicit state MC is expensive due to state explosion

@ CHESS: a practical testing tool that is highly
effective. It systematically explores a subset of
possible schedules.

* Bounded preemptions
* Fair scheduling



