Testing

Why Testing

Researchers investigate many approaches to
improving software quality

But the world tests

>50% of the cost of software development is
testing

Testing is consistently a hot research topic

Testing Practice

Manual testing
Automated testing
Regression testing
Code coverage

Bug trends

Outline

Manual Testing

@ Test cases are lists of instructions
* “fest scripts”

@ Someone manually executes the script

* Do each action, step-by-step
Click on “login”

Enter username and password

Click “"OK"

* And manually records results

@ Low-tech, simple to implement

Manual Testing

@ Manual testing is very widespread
* Probably not dominant, but very, very common

@ Why? Because

* Some tests can't be automated
" Usability testing

* Some tests shouldn't be automated
= Not worth the cost

Manual Testing

@ Those are the best reasons

@ There are also not-so-good reasons
* Not-so-good because innovation could remove them
* Testers aren't skilled enough to handle automation
* Automation tools are too hard to use

* The cost of automating a test is 10X doing a manual
test

Manual testing
Automated testing
Regression testing
Code coverage

Bug trends

Topics

Automated Testing

@ Idea:
* Record manual test
* Play back on demand

@ This doesn't work as well as expected
* E.g., Some tests can't/shouldn’'t be automated

Fragility

Test recording is usually very fragile

* Breaks if environment changes
* E.g., location of a textbox
" Code changes - the name of dialog changes.

More generally, automation tools cannot generalize a test
* They literally record exactly what happened
* If anything changes, the test breaks

Maintaining tests is a lot of work
* Broken tests must be fixed; this is expensive
* Cost is proportional o the number of tests

A hidden strength of manual testing

* Because people are doing the tests, ability to adapt tests to
slightly modified situations is built-in

Improved Automated Testing

@ Recorded tests are too low level
* E.g., every test contains the name of the dialog box

@ Need to abstract tests
* Replace dialog box string by variable hame X

* Variable hame X is maintained in one place

" So that when the dialog box name changes, only X needs to be updated and all
the tests work again

Data Driven Testing (for Web

__ Applications)

Build a database of event tuples
< Document, Component, Action, Input, Result >

Eg.,
< LoginPage, Password, InputText, $password, "OK">

A test is a series of such events chained together

Complete system will have many relations
* As complicated as any large database

Discussion

@ Testers have two jobs
* Clarify the specification
* Find (important) bugs

@ Only the latter is subject to automation
* The oracle problem.

@ Helps explain why there is so much manual testing

Manual testing
Automated testing
Regression testing
Code coverage

Bug trends

Topics

Regression Testing

@ TIdea
* When you find a bug,
* Write a test that exhibits the bug,
* And always run that test when the code changes,
* So that the bug doesn't reappear

@ Without regression testing, it is surprising how
often old bugs reoccur

Regression Testing (Cont.)

@ Regression testing ensures forward progress
* We never go back to old bugs

@ Regression testing can be manual or automatic
* Ideadlly, run regressions after every change
* To detect problems as quickly as possible

@ But, regression testing is expensive
* Limits how often it can be run in practice
* Reducing cost is a long-standing research problem

Research in Regression Testing

@ Test selection

* A change is made at line x, should I rerun the whole
regression set?

Efficient Regression Testing

@ Problem: Regression testing is expensive

@ Observation: Changes don't affect every test
* And tests that couldn't change need not be run

@ Tdea: Use a conservative static analysis to prune
test suite

The Algorithm

Two pieces:
1. Run the tests and record for each basic block
which tests reach that block

2. After modifications, do a DFS of the new control
flow graph. Wherever it differs from the original
control flow graph, run all tests that reach that
point

11

Example

1
12
);N
13
12

Label each node
of the control
flow graph with
the set of tests
that reach it.

More

@ Test minimization
* A test suite is often redundant, select a minimal set
that satisfies a certain criterion
@ Test prioritization

* Assignh test cases different priorities given certain

constraints.
" Greedy algorithms

A Problem

@ How do we know when we are done?
* Could keep going forever

@ But, testing can only find bugs, not prove their
absence
* We need a proxy for the absence of bugs

Manual testing
Automated testing
Regression testing
Code coverage

Bug trends

Topics

Code Coverage

@ TIdea
* Code that has never been executed likely has bugs

@ This leads to the notion of code coverage
* Divide a program into units (e.g., statements)
* Define the coverage of a test suite to be

of statements executed by suite
of statements

Code Coverage (Cont.)

@ Code coverage has proven value
* TIt's areal metric, though far from perfect

@ But 100% coverage does not mean no bugs
* E.g.,abug visible after loop executes 1,025 times

@ And 100% coverage is almost never achieved
* Infeasible paths
* Ships happen with < 60% coverage

* High coverage may not even be desirable
" May be better to devote more time to tricky parts with good coverage

Using Code Coverage

Code coverage helps identify weak test suites

Code coverage can't complain about missing code

¢ But coverage can hint at missing cases

" Areas of poor coverage indicate areas where not enough thought has
been given to specification

More on Coverage

Statement coverage
Edge coverage

Path coverage
Def-use coverage

Mutation Coverage

@ Create mutations of the subject program by
performing simple transformations

* x<y transforms to x<zy, x<y+c, ...
@ Kill set= all mutations P’ s.t. there exists a test case
t P(H)I=P'(¥)
* Adequacy= |kill set| / # of mutations

Manual testing
Automated testing
Regression testing
Code coverage

Bug trends

Topics

Bug Trends

@ Idea: Measure rate at which new bugs are found

@ Rational: When this flattens out it means

1. The cost/bug found is increasing dramatically
2. There aren't many bugs left o find

The Big Picture

@ Standard practice
* Measure progress often
* Make forward progress (regression testing)
* Stopping condition (coverage, bug trends)

Test Generation

@ Combinatorial testing
@ Concolic testing.

