
CS 510/12CS 510/12

Model Checking Java Programs
(P hF d)(Java PathFinder)

Slides partially compiled from the NASA p y p
JavaPathFinder project and E. Clarke’s course

material

Java PathFinder

JPF is an explicit state software model
h k f J b d

cs 5
1

0

checker for Java bytecode
JPF is a Java virtual machine that executes your
program not just once (like a normal VM) but 0

 S
o

ftw
a
re

program not just once (like a normal VM), but
theoretically in all possible ways, checking for
property violations like deadlocks or unhandled

i l ll i l i h

 E
n

g
in

e
e
rin

exceptions along all potential execution paths.

n
g

Symbolic Model Checking

cs 5
1

0 Program Analysis SATCNF0
 S

o
ftw

a
re

Claim

Analysis

Engine

SAT

Solver

CNF

 E
n

g
in

e
e
rin

UNSAT

(no counterexample found)

SAT

(counterexample exists)

n
g (no counterexample found)(counterexample exists)

Explicit State Model Checking

The program is indeed executing

cs 5
1

0

jpf <your class> <parameters>
Very similar to “java <your class> <parameters>

Execute in a way that all possible scenarios are 0
 S

o
ftw

a
re

Execute in a way that all possible scenarios are
explored

Thread interleaving
U d i i i l (d l)

 E
n

g
in

e
e
rin

Undeterministic values (random values)
Concrete input is provided
A state is indeed a concrete state consisting ofn

g A state is indeed a concrete state, consisting of
Concrete values in heap/stack memory

JPF Status

developed at the Robust Software Engineering Group at
NASA Ames Research Center

cs 5
1

0

m
currently in it’s fourth development cycle

v1: Spin/Promela translator - 1999
v2: backtrackable state matching JVM - 20000

 S
o

ftw
a
re

v2: backtrackable, state matching JVM - 2000
v3: extension infrastructure (listeners, MJI) - 2004
v4: symbolic execution, choice generators - 4Q 2005

open sourced since 04/2005 under NOSA 1 3 license: E
n

g
in

e
e
rin

open sourced since 04/2005 under NOSA 1.3 license:
<javapathfinder.sourceforge.net>
it’s a first: no NASA system development hosted on public
it b f

n
g site before

11100 downloads since publication 04/2005

An Example

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

An Example (cont.)

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rin n

g

One execution corresponds to one path.

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rin n

g

JPF explores multiple possible executions GIVEN
THE SAME CONCRETE INPUT

Another Example

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

Two Essential Capabilities

Backtracking
M th t JPF t i ti

cs 5
1

0

Means that JPF can restore previous execution
states, to see if there are unexplored choices left.

While this is theoretically can be achieved by re-executing
th p m f m th b innin b kt kin is m h m 0

 S
o

ftw
a
re

the program from the beginning, backtracking is a much more
efficient mechanism if state storage is optimized.

State matching

 E
n

g
in

e
e
rin

JPF checks every new state if it already has seen an
equal one, in which case there is no use to continue
along the current execution path, and JPF can n

g g p ,
backtrack to the nearest non-explored non-
deterministic choice

Heap and thread-stack snapshots.p p

The Challenge

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

The Challenge (cont.)

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

State Explosion!!

JPF’s Solution

Configurable search strategy
Di ti th h th t d f t b f d i k

cs 5
1

0

Directing the search so that defects can be found quicker
A debugging tool instead of a “proof” system.

User can easily develop his/her own strategy0
 S

o
ftw

a
re

Host VM Execution
Delegate execution to the underlying host VM (no state
tracking) E

n
g

in
e
e
rin

tracking).
Reducing state storage

State collapsingn
g

Premise: only a tiny part of the state is changed upon each
transaction. (e.g. a single stack frame)
Dividing a state into components, use hashtable to index a

ifi l f specific value for a component.

Solution- State Collapsing

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

Solution (3) – State Reduction

Orthogonal (our focus)

cs 5
1

0

State Abstraction
Partial Order Reduction0

 S
o

ftw
a
re

art a Or r uct on

 E
n

g
in

e
e
rinn

g

Abstraction

Eliminate details irrelevant to the property

cs 5
1

0

Eliminate details irrelevant to the property

Obtain simple finite models sufficient to 0
 S

o
ftw

a
re

Obtain simple finite models sufficient to
verify the property

 E
n

g
in

e
e
rin

Disadvantage
Loss of Precision: False positives/negativesn

g Loss of Precision: False positives/negatives

Data Abstraction

cs 5
1

00
 S

o
ftw

a
re

S

 E
n

g
in

e
e
rin

h h hh h

n
g h h hh h

S’

Abstraction Function h : from S to S’

Data Abstraction Example p

Abstraction proceeds component-wise, where

cs 5
1

0

p p
variables are components

0
 S

o
ftw

a
re

x:int
Even…, -2, 0, 2, 4, … E

n
g

in
e
e
rin

x:int
Odd…, -3, -1, 1, 3, …

n
g

…, -3, -2, -1

0

Neg

Zeroy:int
1, 2, 3, … Pos

How do we Abstract Behaviors?

Abstract domain A

cs 5
1

0

Abstract concrete values to those in A

Th t t iti i th b t t

0
 S

o
ftw

a
re

Then compute transitions in the abstract
domain

 E
n

g
in

e
e
rinn

g

Data Type Abstractionyp

Abstract Data domainCode

cs 5
1

0

Abstract Data domain

i t

Code

0
 S

o
ftw

a
re

int x = 0;

if (x == 0)

x = x + 1;

int

 E
n

g
in

e
e
rin

(n<0) : NEG
(n==0): ZERO
(n>0) : POS

n
g (n>0) : POS

Signs

NEG POSZERO

Signs x = ZERO;

if (Signs.eq(x,ZERO))

x = Signs.add(x,POS);

Existential/Universal Abstractions

Existential
M k t iti f b t t t t if t l t

cs 5
1

0

Make a transition from an abstract state if at least
one corresponding concrete state has the
transition.

0
 S

o
ftw

a
re

Abstract model M’ simulates concrete model M

 E
n

g
in

e
e
rin

Universal
Make a transition from an abstract state if all the n

g Make a transition from an abstract state if all the
corresponding concrete states have the transition.

Existential Abstraction (Over-approximation)

cs 5
1

0

I

0
 S

o
ftw

a
re

S

 E
n

g
in

e
e
rin hn

g

I

h

S’

Universal Abstraction (Under-Approximation)

cs 5
1

0

I

0
 S

o
ftw

a
re

S

 E
n

g
in

e
e
rin hn

g

I

h

S’

Guarantees from Abstraction

Assume M’ is an abstraction of M

cs 5
1

0 Strong Preservation: 0
 S

o
ftw

a
re

P holds in M’ iff P holds in M

 E
n

g
in

e
e
rin

Weak Preservation:
P holds in M’ implies P holds in Mn

g

Guarantees from Exist. Abstraction

Let φ be a hold-for-all-paths property

cs 5
1

0 Preservation Theorem

M’ existentially abstracts M

0
 S

o
ftw

a
re

Preservation Theorem
M’ ⊨ φ → M φ M

 E
n

g
in

e
e
rin

Converse does not hold
M’ φ → M φ

M’

n
g

M’ φ : counterexample may be spurious

M φ → M φ

M φ : counterexample may be spurious

Guarantees from Univ.
AbstractionAbstraction

Let φ be an existential-quantified property and

cs 5
1

0 Preservation Theorem

M simulates M’

0
 S

o
ftw

a
re

Preservation Theorem
M’ φ → M φ

 E
n

g
in

e
e
rin

Converse does not hold
M φ → M’ φn

g M φ → M φ

Spurious counterexample in Over-
approximationapproximation

Deadend
states

cs 5
1

0

I

0
 S

o
ftw

a
re

 E
n

g
in

e
e
rinn

g

I

Bad Failure

f

States Failure
State

Refinement

Problem: Deadend and Bad States are in the
 b

cs 5
1

0

same abstract state.
Solution: Refine abstraction function.

0
 S

o
ftw

a
re

The sets of Deadend and Bad states should
be separated into different abstract states.

 E
n

g
in

e
e
rinn

g

Refinement

cs 5
1

00
 S

o
ftw

a
re

 E
n

g
in

e
e
rin

h’

n
g h’

Refinement : h’

Automated Abstraction/Refinement

Good abstractions are hard to obtain

cs 5
1

0

G n n
Automate both Abstraction and Refinement processes

0
 S

o
ftw

a
re

Counterexample-Guided AR (CEGAR)
Build an abstract model M’
Model check property P M’ ⊨ P? E

n
g

in
e
e
rin

Model check property P, M ⊨ P?
If M’ ⊨ P, then M ⊨ P by Preservation Theorem
Otherwise, check if Counterexample (CE) is spurious
R fi b i CE l i l

n
g Refine abstract state space using CE analysis results

Repeat

Counterexample-Guided
Abstraction-Refinement (CEGAR)Abstraction Refinement (CEGAR)

cs 5
1

0 Model CheckBuild New
Abstract Model

M’M

No Bug

Pass

0
 S

o
ftw

a
re

Abstract Model No Bug

Fail E
n

g
in

e
e
rin

Ch k

Fail

Real CESpurious CEn
g Check
Counterexample

Obtain
Refinement Cue

Bug

