
CS510 Software Engineering
Satisfiability Modulo Theories

(SMT)

Slides modified from those by Aarti Gupta

1

Textbook: The Calculus of Computation by A. Bradley
 and Z. Manna

Satisfiability Modulo Theory (SMT)

This lecture:

Theories, theory solvers

Next lecture: DPLL(T)

x = f(y)

(b >> 1) & c = d

10x + z < 20

a[i] = y

SMT Solver

FOL

Formulae

Theories

¬, ∧, ∨,

⇒, ⇔,

∀, ∃

Satisfiable?

theory

solver

theory

solver

DPLL(T)

. . .

5

First-Order Theories

Software manipulates structures
• Numbers, arrays, lists, bitvectors,…

Software (and hardware) verification
• Involve reasoning about such structures

First-order theories
• Formalize structures to enable reasoning about them

• Validity is sometimes decidable

• Note: Validity of FOL is undecidable

6

First-order theories
Recall: FOL

• Logical symbols

• Connectives: ¬, ∧, ∨, ⇒, ⇔

• Quantifiers: ∀, ∃

• Non-logical symbols

• Variables: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

• Constants: a, b, c

First-order theory T is defined by:

• Signature T

• set of constant, function, and predicate symbols

• Set of T-Models

• models that fix the interpretation of symbols of T

• alternately, can use Axioms AT (closed T formulae) to provide

meaning to symbols of T 7

-Every dog has its day
-Some dogs have more days than others
-All cats have more days than dogs
-Triangle length theory

Interpretation of a FOL formula:
∀x∀y x>0 ∧ y>0 ⇒ add(x,y)>0

Examples of FO theories

Equality (and uninterpreted functions)
• = stands for the usual equality

• f is not interpreted in T-model

Fixed-width bitvectors
• >> is shift operator (function)

• & is bit-wise-and operator (function)

• 1 is a constant

Linear arithmetic (over R and Z)
• + is arithmetic plus (function)

• < is less-than (predicate)

• 10 and 20 are constants

Arrays
• a[i] can be viewed as select(a, i) that selects the

i-th element in array a

x = f(y)

(b >> 1) & c = d

a[i] = y

10x + z < 20

8

Satisfiability Modulo Theory

First-order theory T is defined by:

• Signature T

• set of constant, function, and predicate symbols

• Set of T-Models

• models that fix the interpretation of symbols of T

• alternately, can use Axioms AT (closed T formulae) to provide

meaning to symbols of T

A formula F is T-satisfiable

(satisfiable modulo T) iff

M ⊨ F for some T-model M.

A formula F is T-valid

(valid modulo T) iff

M ⊨ F for all T-models M.

Theory T is decidable

if validity modulo T is decidable

for every T -formula F.

There is an algorithm

that always terminates

with “yes” if F is T-valid,

and “no” if F is T-invalid.
9

Fragment of a Theory

Fragment of a theory T

is a syntactically restricted subset of formulae of the theory

Example
• Quantifier-free fragment (QFF) of theory T is the set of formulae

without quantifiers

• Quantifier-free conjunctive fragment of theory T is the set of formulae

without quantifiers and disjunction

Fragments
• can be decidable, even if the full theory isn’t

• can have a decision procedure of lower complexity than for full theory

10

Theory of Equality TE

Signature

E : {=, a, b, c,…,f, g, h,…,p, q, r,…}

consists of
• a binary predicate “=“ that is interpreted using axioms

• constant, function, and predicate symbols

11

1. ∀x. x=x (reflexivity)

2. ∀x,y. x=y y=x (symmetry)

3. ∀x,y,z. x=y ˄ y=z x=z (transitivity)

4. for each n-ary function symbol f,

∀x1,…,xn,y1,…,yn. ˄i (xi=yi)

f(x1,…,xn) = f(y1,…,yn) (function congruence)

5. for each n-ary predicate symbol p,

∀x1,…,xn,y1,…,yn. ˄i (xi=yi)

(p(x1,…,xn) ↔ p(y1,…,yn)) (predicate congruence)

Axioms of TE

12

Decidability of TE

Bad news
• TE is undecidable

Good news
• Quantifier-free fragment of TE is decidable

• Very efficient algorithms for QFF conjunctive fragment

• Based on congruence closure

13

Theory solver for TE

• In 1954 Ackermann showed that the theory of equality

and uninterpreted functions is decidable.

• In 1976 Nelson and Oppen implemented an O(m2)

algorithm based on congruence closure computation.

• Modern implementations are based on the union-find

data structure (data structures again!)

• Efficient: O(n log n)

27

a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s t

Deciding Equality

Note: Quantifier-free, Conjunctive

28

Deciding Equality

a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s ta,b

29

Deciding Equality

a = b, b = c, d = e, b = s, d = t, a e, a s

c d e s ta,b a,b,c

30

Deciding Equality

d,e

a = b, b = c, d = e, b = s, d = t, a e, a s

d e s ta,b,c

31

Deciding Equality

a,b,c,s

a = b, b = c, d = e, b = s, d = t, a e, a s

s ta,b,c d,e

32

Deciding Equality

a = b, b = c, d = e, b = s, d = t, a e, a s

td,ea,b,c,s d,e,t

33

Deciding Equality

a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t

34

Deciding Equality

a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t

Unsatisfiable

35

Deciding Equality +

(uninterpreted) Functions

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) f(b, g(e))

a,b,c,s d,e,t g(d) f(a,g(d))g(e) f(b,g(e))

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

36

Deciding Equality +

(uninterpreted) Functions

a,b,c,s d,e,t g(d) f(a,g(d))g(e) f(b,g(e))

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

g(d),g(e)

Deciding Equality +

(uninterpreted) Functions

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) f(b, g(e))

37

a,b,c,s d,e,t f(a,g(d)) f(b,g(e))

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

g(d),g(e)

Deciding Equality +

(uninterpreted) Functions

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) f(b, g(e))

38

f(a,g(d)),f(b,g(e))

a,b,c,s d,e,t f(a,g(d)) f(b,g(e))g(d),g(e) f(a,g(d)),f(b,g(e))

Deciding Equality +

(uninterpreted) Functions

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) f(b, g(e))

Unsatisfiable

Efficient implementation using Union-Find data structure

39

int fun1(int y) {
int x, z;
z = y;
y = x;
x = z;
return x*x;

}

int fun2(int y) {
return y*y;

}

TE formula that is satisfiable iff

programs are not equivalent:

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = x1*x1) ∧
(r2 = y0* y0) ∧
¬(r2 = r1)

Using 32-bit integers,

and interpreting * as multiplication,

a SAT solver fails to return an answer

in 1 minute.

Example: program equivalence

14

quantifier-free

conjunctive fragment

int fun1(int y) {
int x, z;
z = y;
y = x;
x = z;
return x*x;

}

int fun2(int y) {
return y*y;

}

TE formula that is satisfiable iff

programs are not equivalent:

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = sq(x1) ∧
(r2 = sq(y0)) ∧
¬(r2 = r1)

Using TE (with uninterpreted functions),

SMT solver proves unsat

in a fraction of a second.

uninterpreted

function symbol sq

(abstraction of *)

Example: program equivalence

15

Example: program equivalence

int fun1(int y) {
int x, z;
x = x ^ y;
y = x ^ y;
x = x ^ y;
return x*x;

}

int fun2(int y) {
return y*y;

}

Is the uninterpreted function abstraction

going to work in this case?

No, we need the theory of fixed-width

bitvectors to reason about ^ (xor).

16

Theory of fixed-width bitvectors TBV

Signature
• constants

• fixed-width words (bitvectors) for modeling machine ints, longs, etc.

• arithmetic operations (+, -, *, /, etc.) (functions)

• bitwise operations (&, |, ^, etc.) (functions)

• comparison operators (<, >, etc.) (predicates)

• equality (=)

Theory of fixed-width bitvectors is decidable
• Bit-flattening to SAT: NP-complete complexity

17

Bit-Vector Logic: Syntax

formula : formula ∨ formula | ¬formula | atom
atom : term rel term | Boolean-Identifier | term[constant]

rel : = | <

term : term op term | identifier | ∼ term | constant |
atom?term:term |
term[constant : constant] | ext(term)

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

∼ x: bit-wise negation of x

ext(x): sign- or zero-extension of x

x << d: left shift with distance d

x ◦ y: concatenation of x and y

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 24

Bit-Vector Logic: Syntax

formula : formula ∨ formula | ¬formula | atom
atom : term rel term | Boolean-Identifier | term[constant]

rel : = | <

term : term op term | identifier | ∼ term | constant |
atom?term:term |
term[constant : constant] | ext(term)

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

∼ x: bit-wise negation of x

ext(x): sign- or zero-extension of x

x << d: left shift with distance d

x ◦ y: concatenation of x and y

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 24

A simple decision procedure

Transform Bit-Vector Logic to Propositional Logic

Most commonly used decision procedure

Also called ’bit-blasting’

Bit-Vector Flattening

1 Convert propositional part as before

2 Add a Boolean variable for each bit of each sub-expression (term)

3 Add constraint for each sub-expression

We denote the new Boolean variable for i of term t by µ(t)i.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 18 / 24

A simple decision procedure

Transform Bit-Vector Logic to Propositional Logic

Most commonly used decision procedure

Also called ’bit-blasting’

Bit-Vector Flattening

1 Convert propositional part as before

2 Add a Boolean variable for each bit of each sub-expression (term)

3 Add constraint for each sub-expression

We denote the new Boolean variable for i of term t by µ(t)i.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 18 / 24

XYZHANG
Text Box
ti

Bit-vector flattening

What constraints do we generate for a given term?

This is easy for the bit-wise operators.

Example for a|[l]b:
l−1∧
i=0

(µ(t)i = (ai ∨ bi))

(read x = y over bits as x ⇐⇒ y)

We can transform this into CNF using Tseitin’s method.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 19 / 24

Bit-vector flattening

What constraints do we generate for a given term?

This is easy for the bit-wise operators.

Example for a|[l]b:
l−1∧
i=0

(µ(t)i = (ai ∨ bi))

(read x = y over bits as x ⇐⇒ y)

We can transform this into CNF using Tseitin’s method.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 19 / 24

XYZHANG
Text Box
atom

XYZHANG
Text Box
 ti

XYZHANG
Text Box
t=a | b

XYZHANG
Text Box
What about x=y

Flattening bit-vector arithmetic

How to flatten a + b?

−→ we can build a circuit that adds them!

FA

iba

so

Full Adder

s ≡ (a + b + i) mod 2 ≡ a⊕ b⊕ i

o ≡ (a + b + i) div 2 ≡ a · b + a · i + b · i

The full adder in CNF:

(a ∨ b ∨ ¬o) ∧ (a ∨ ¬b ∨ i ∨ ¬o) ∧ (a ∨ ¬b ∨ ¬i ∨ o)∧
(¬a ∨ b ∨ i ∨ ¬o) ∧ (¬a ∨ b ∨ ¬i ∨ o) ∧ (¬a ∨ ¬b ∨ o)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 20 / 24

XYZHANG
Text Box
s=a+b

Flattening bit-vector arithmetic

How to flatten a + b?

−→ we can build a circuit that adds them!

FA

iba

so

Full Adder

s ≡ (a + b + i) mod 2 ≡ a⊕ b⊕ i

o ≡ (a + b + i) div 2 ≡ a · b + a · i + b · i

The full adder in CNF:

(a ∨ b ∨ ¬o) ∧ (a ∨ ¬b ∨ i ∨ ¬o) ∧ (a ∨ ¬b ∨ ¬i ∨ o)∧
(¬a ∨ b ∨ i ∨ ¬o) ∧ (¬a ∨ b ∨ ¬i ∨ o) ∧ (¬a ∨ ¬b ∨ o)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 20 / 24

XYZHANG
Text Box
s=a+b

Flattening bit-vector arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

i

FA FA FA FA FA FA FA FA

a7b7 a6b6 a5b5 a5b4 a4b3 a3b2 a2b1 a0b0

o
s7 s6 s5 s4 s3 s2 s1 s0

Also called carry chain adder

Adds l variables

Adds 6 · l clauses

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 21 / 24

Flattening bit-vector arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

i

FA FA FA FA FA FA FA FA

a7b7 a6b6 a5b5 a5b4 a4b3 a3b2 a2b1 a0b0

o
s7 s6 s5 s4 s3 s2 s1 s0

Also called carry chain adder

Adds l variables

Adds 6 · l clauses

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 21 / 24

XYZHANG
Text Box
10*

XYZHANG
Text Box
6 for o , 4 for s

Multipliers

Multipliers result in very hard formulas

Example:
a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y

CNF: About 11000 variables, unsolvable for current SAT solvers

Similar problems with division, modulo

Q: Why is this hard?

Q: How do we fix this?

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 22 / 24

XYZHANG
Text Box

Multipliers

Multipliers result in very hard formulas

Example:
a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y

CNF: About 11000 variables, unsolvable for current SAT solvers

Similar problems with division, modulo
Q: Why is this hard?

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 22 / 24

XYZHANG
Text Box

Theories for Arithmetic

Natural numbers ℕ = {0,1,2,…}

Integers ℤ = {…,-2,-1,0,1,2,…}

Three theories: (Axioms in [BM Ch. 3])

Peano arithmetic TPA

• Natural numbers with addition (+), multiplication (*), equality (=)

• TPA-satisfiability and TPA-validity are undecidable

Presburger arithmetic Tℕ
• Natural numbers with addition (+), equality (=)

• Tℕ-satisfiability and Tℕ-validity are decidable

Theory of integers Tℤ
• Integers with addition (+), subtraction (-), comparison (>),

equality (=), multiplication by constants

• Tℤ-satisfiability and Tℤ-validity are decidable

18

Theory of Integers Tℤ

ℤ : {…,-2,-1,0,1,2,…,-3*,-2*,2*,3*,…,+,-,=,>}

where
• …,-2,-1,0,1,2,… are constants

• …,-3*,-2*,2*,3*,… are unary functions

(intended meaning: 2*x is x+x, -3*x is -x-x-x)

• +,-,>,= have the usual meaning

Tℕ and Tℤ have the same expressiveness
• Every ℤ-formula can be reduced to ℕ-formula

• Every ℕ-formula can be reduced to ℤ-formula

19

Example: compiler optimization

for (i=1; i<=10; i++) {
a[j+i] = a[j];

}

int v = a[j];
for (i=1; i<=10; i++) {

a[j+i] = v;
}

A Tℤ formula that is satisfiable

iff this transformation is invalid:

(i ≥ 1) ∧ (i ≤ 10) ∧
(j + i = j)

20

quantifier-free

conjunctive fragment

Theory of Reals Tℝ and

Theory of Rationals Tℚ

ℝ : {0, 1, +, –, *, =, ≥ } with multiplication

ℚ : {0, 1, +, –, =, ≥ } without multiplication

Both are decidable

• High time complexity

Quantifier-free fragment of Tℚ is efficiently decidable

21

Theory of Arrays TA

A : {select, store, =}

where
• select(a,i) is a binary function:

• read array a at index i

• store(a,i,v) is a ternary function:

• write value v to index i of array a

Axioms of TA

1.∀a,i,j. i = j select(a,i) = select(a,j) (array congruence)

2.∀a,v,i,j. i = j select(store(a,i,v),j) = v (select-store 1)

3.∀a,v,i,j. i j select(store(a,i,v),j) = select(a,j) (select-store 2)

TA is undecidable

Quantifier-free fragment of TA is decidable
22

Note about TA

Equality (=) is only defined for array elements…
• Example:

select(a,i) = e ∀j. select(store(a,i,e), j) = select(a,j)

is TA-valid

…and not for whole arrays
• Example:

select(a,i)=e store(a,i,e)=a

is not TA-valid

23

A program:
A[1]=-1;
A[2]=1;
k=unknown();
if (A[k]==1) ...

Summary of Decidability Results

Theory Quantifiers

Decidable

QFF

Decidable

TE Equality NO YES

TPA Peano Arithmetic NO NO

Tℕ Presburger Arithmetic YES YES

Tℤ Linear Integer Arithmetic YES YES

Tℝ Real Arithmetic YES YES

Tℚ Linear Rationals YES YES

TA Arrays NO YES

QFF: Quantifier Free Fragment

25

[BM Ch. 3, Page 90]

Summary of Complexity Results

Theory Quantifiers QF

Conjunctive

TE Equality – O(n log n)

Tℕ Presburger Arithmetic O(2^2^2^(kn)) NP-complete

Tℤ Linear Integer Arithmetic O(2^2^2^(kn)) NP-complete

Tℝ Real Arithmetic O(2^2^(kn)) O(2^2^(kn))

Tℚ Linear Rationals O(2^2^(kn)) PTIME

TA Arrays – NP-complete

n – input formula size; k – some positive integer

Note: Quantifier-free Conjunctive fragments look good!
26

[BM Ch. 3, Pages 90, 91]

Combination of Theories

theory

solver

combination

solver ?

theory

solver

Undecidable for arbitrary T1, T2

but

Decidable under Nelson-Oppen

restrictions
40

Nelson-Oppen Procedure for deciding satisfiability
• If both T1 and T2 are quantifier-free (conjunctive) fragments

• If “=“ is the only symbol common to their signatures

• If T1 and T2 meet certain other technical restrictions

Decision Procedure for

Combination of Theories

theory

solver

combination

solver ?

theory

solver

Note: Quantifier-free Conjunctive fragments look good!
41

Theories in SMT Solvers

Modern SMT solvers support many useful theories
• QF_UF: Quantifier-free Equality with Uninterpreted Functions

• QF_LIA: Quantifier-free Linear Integer Arithmetic

• QF_LRA: Quantifier-free Linear Real Arithmetic

• QF_BV: Quantifier-free Bit Vectors (fixed-width)

• QF_A: Quantifier-free Arrays

… and many combinations

Check out more info at

http://smtlib.cs.uiowa.edu/index.shtml

http://smtlib.cs.uiowa.edu/logics.shtml

42

summary

This lecture: Theory solvers

for QF Conjunctive fragments

Next lecture: DPLL(T)

x = f(y)

(b >> 1) & c = d

10x + z < 20

a[i] = y

SMT Solver

FOL

Formulae

Theories

¬, ∧, ∨,

⇒, ⇔,

∀, ∃

Satisfiable?

theory

solver

theory

solver

DPLL(T)

. . .

43

Z3 SMT Solver

http://rise4fun.com/z3/

Input format is an extension of SMT-LIB standard

Commands
• declare-const – declare a constant of a given type

• declare-fun – declare a function of a given type

• assert – add a formula to Z3’s internal stack

• check-sat – determine if formulas currently on stack are

satisfiable

• get-model – retrieve an interpretation

• exit

45

http://rise4fun.com/z3/

SMT solvers: DPLL(T)

Main idea: combine DPLL SAT solving with theory solvers
• DPLL-based SAT over the Boolean structure of the formula

• theory solver handles the conjunctive fragment

• Recall: SAT solvers use many techniques to prune the exponential

search space

This is called DPLL(T)
• T could also be a combination of theories (using Nelson-Oppen)

8

DPLL(T): main idea

SAT solver handles Boolean structure of the formula
• Treats each atomic formula as a propositional variable

• Resulting formula is called a Boolean abstraction (B)

Example

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

• B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

• Boolean abstraction (B) defined inductively over formulas

• B is a bijective function, B-1 also exists

• B-1 (b1 ˄ b2 ˄ b3): (x=z) ˄ (y=z) ˄ (x=z+1)

• B-1 (b1 ˅ b2’): (x=z) ˅ ¬(y=z)

9

b1 b2 b3 b1

DPLL(T): main idea

Example

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

• B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

• Use DPLL SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat

• If B(F) has a satisfying assignment A, F may still be Unsat

Example
• SAT solver finds a satisfying assignment A: b1 ˄ b2 ˄ b3

• But, B-1(A) is unsatisfiable modulo theory

• (x=z) ˄ (y=z) ˄ (x=z+1) is not satisfiable
10

b1 b2 b3 b1

B(F) is an over-approximation of F

F

B(F)

DPLL(T): main idea

Example

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

• B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

• Use DPLL SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat

• If B(F) has a satisfying assignment A

• Use theory solver to check if B-1(A) is satisfiable modulo T
• Note B-1(A) is in conjunctive fragment

• If B-1(A) is satisfiable modulo theory T, then F is satisfiable

12

b1 b2 b3 b1

B(F) is an over-approximation of F

F

B(F)

Like a conflict clause (due to a theory conflict)

DPLL(T): simple version

• Generate a Boolean abstraction B(F)

• Use DPLL SAT solver to decide satisfiability of B(F)

• If B(F) is Unsat, then F is Unsat

• If B(F) has a satisfying assignment A

• Use theory solver to check B-1(A) is satisfiable modulo T

• If B-1(A) is satisfiable modulo theory T, then F is satisfiable

• Because A satisfies the Boolean structure, and is consistent with T

• What if B-1(A) is unsatisfiable modulo T? Is F Unsat?

• No!

• There may be other assignments A’ that satisfy the Boolean structure and

are consistent with T

• Add ¬A to B(F), and backtrack in DPLL SAT to find other assignments

• Until there are no more satisfying assignments of B(F)

13

F

B(F)

A

A’

DPLL(T): simple version recap

1. Generate a Boolean abstraction B(F)

2. Use DPLL SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat

• Otherwise, find a satisfying assignment A

3. Use theory solver to check if B-1(A) is satisfiable modulo T
• If B-1(A) is satisfiable modulo theory T, then F is satisfiable

• Otherwise, B-1(A) is unsatisfiable modulo T

Add ¬A to B(F), and backtrack in DPLL SAT

Repeat (2, 3) until there are no more satisfying assignments

14

DPLL(T): simple version example

• Example F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))
• B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

• DPLL finds A: b1 ˄ b2 ˄ b3, B-1(A): (x=z) ˄ (y=z) ˄ (x=z+1)

• Theory solver checks B-1(A), this is unsat modulo T, therefore add ¬A

• DPLL finds B(F) ˄ ¬A: b1 ˄ ((b2 ˄ b3) ˅ ¬b1) ˄ (b1’ + b2’ + b3’) is Unsat

• Therefore, F is Unsat

15

theory

solver

DPLL(T)

. . .

B(F)

Sat AB-1(A)

Add ¬A Unsat
F is Unsat

Sat

Unsat

F is Sat

DPLL(T): simple version

• Correctness

• When it says “F is Sat”, there is an assignment that satisfies the Boolean

structure and is consistent with theory

• When it says “F is Unsat”, the formula is unsatisfiable because B(F) ˄ ¬A

is also an over-approximation of F

• B-1(A) is not consistent with T, i.e., B-1(¬A) is T-valid 16

theory

solver

DPLL(T)

. . .

B(F)

Sat AB-1(A)

Add ¬A Unsat
F is Unsat

Sat

Unsat

F is Sat

DPLL(T): simple version

• Termination

• B(F) has only a finite number of satisfying assignments

• When ¬A is added to B(F), the assignment A will never be generated again

• Either some satisfying assignment of B(F) is also T-satisfiable (F is SAT),

or all satisfying assignments of B(F) are not T-satisfiable (F is Unsat)

17

theory

solver

DPLL(T)

. . .

B(F)

Sat AB-1(A)

Add ¬A Unsat
F is Unsat

Sat

Unsat

F is Sat

An Example of Symbolic Analysis and
DPLL(T)

1. m=getstr();
2. n=getstr();
3. i=getint();
4. x=strcat(“abc”,m)
5. if (strlen(m)+i>5)
6. y=“abcd”
7. else
8. y=strcat(“efg”,n);
9. if (x==y) …

)!(:1 21 eeassertPath

),"(":1 mabcconcatxe

),"(":3 nefgconcatye
"":4 abcdye

yxe :5

5)(:2 imstrlene

An Example of Symbolic Analysis and
DPLL(T)

{}

{e1=T}
{e1=T, e2=T}

S0

S1

{e1=T, e2=T,
e5=T, e4=T}

{e1=T, e2=T,
e4=T}

S2

S3 S5

state
∙∙∙ facts
∙∙∙ new axiom

try

backtrack

interaction with
string pluginAdd:

{e1=T, e2=T,
e3=T, e4=T,

e5=T}

S6"":5 dme

1)(
""),"("

5

5

mstrlene
eabcdmabcconcat

)(:2 5421 eeeeassertPath

),"(":1 mabcconcatxe

),"(":3 nefgconcatye
"":4 abcdye

yxe :5

5)(:2 imstrlene

	11-cbmc-2.pdf
	Bit-Vectors
	Introduction to Bit-Vector Logic
	Syntax
	Semantics
	Decision procedures for Bit-Vector Logic
	Flattening Bit-Vector Logic
	Incremental flattening

