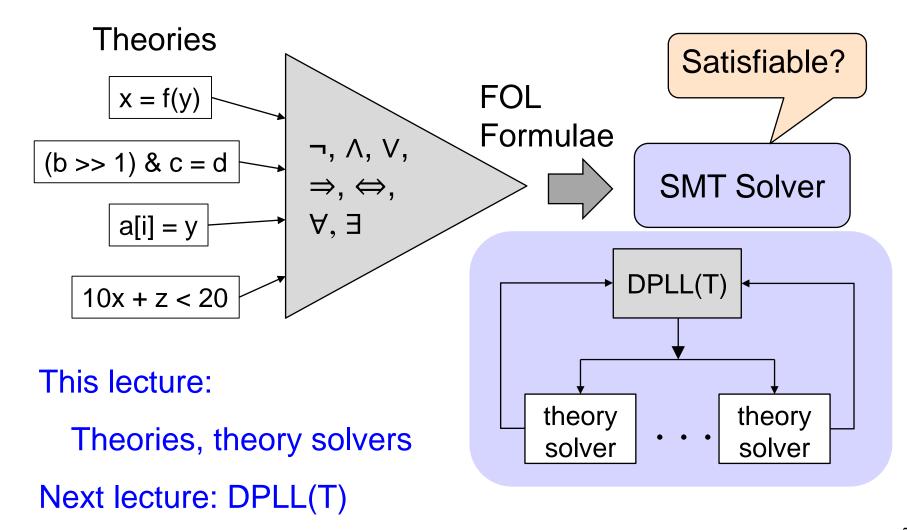
CS510 Software Engineering Satisfiability Modulo Theories (SMT)

Slides modified from those by Aarti Gupta

Textbook: The Calculus of Computation by A. Bradley and Z. Manna

Satisfiability Modulo Theory (SMT)



First-Order Theories

Software manipulates structures

• Numbers, arrays, lists, bitvectors,...

Software (and hardware) verification

Involve reasoning about such structures

First-order theories

- Formalize structures to enable reasoning about them
- Validity is sometimes decidable
- Note: Validity of FOL is undecidable

First-order theories

Recall: FOL

- Logical symbols
 - Connectives: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
 - Quantifiers: ∀, ∃
- Non-logical symbols
 - Variables: x, y, z
 - N-ary functions: f, g
 - N-ary predicates: p, q
 - Constants: a, b, c

First-order theory *T* is defined by:

- Signature Σ_{τ}
 - set of constant, function, and predicate symbols
- Set of *T-Models*
 - models that fix the interpretation of symbols of $\Sigma_{\mathcal{T}}$
 - alternately, can use Axioms A_T (closed Σ_T formulae) to provide meaning to symbols of Σ_T

-Every dog has its day

- -Some dogs have more days than others
- -All cats have more days than dogs
- -Triangle length theory

Interpretation of a FOL formula: $\forall x \forall y x > 0 \land y > 0 \Rightarrow add(x,y) > 0$

Examples of FO theories

Equality (and uninterpreted functions)

- = stands for the usual equality
- f is not interpreted in T-model

(b >> 1) & c = d

x = f(y)

Fixed-width bitvectors

- >> is shift operator (function)
- & is bit-wise-and operator (function)
- 1 is a constant

10x + z < 20

Linear arithmetic (over R and Z)

- + is arithmetic plus (function)
- < is less-than (predicate)
- 10 and 20 are constants

a[I] = y

Arrays

• a[i] can be viewed as *select(a, i)* that selects the i-th element in array a

Satisfiability Modulo Theory

First-order theory *T* is defined by:

- Signature Σ_{T}
 - set of constant, function, and predicate symbols
- Set of *T-Models*
 - models that fix the interpretation of symbols of $\Sigma_{\mathcal{T}}$
 - alternately, can use Axioms A_T (closed Σ_T formulae) to provide meaning to symbols of Σ_T

A formula F is **T-satisfiable** (satisfiable modulo T) iff $M \models F$ for some T-model M.

A formula F is **T-valid** (valid modulo T) iff $M \models F$ for all T-models M. Theory *T* is decidable if *validity modulo T* is decidable for every Σ_T -formula *F*.

There is an algorithm that always terminates with "yes" if *F* is *T*-valid, and "no" if *F* is *T*-invalid.

Fragment of a Theory

Fragment of a theory T

is a syntactically restricted subset of formulae of the theory

Example

- *Quantifier-free fragment* (QFF) of theory *T* is the set of formulae without quantifiers
- Quantifier-free *conjunctive* fragment of theory T is the set of formulae without quantifiers and *disjunction*

Fragments

- can be decidable, even if the full theory isn't
- can have a decision procedure of lower complexity than for full theory

Theory of Equality T_E

Signature

Σ_E : {=, a, b, c,...,f, g, h,...,p, q, r,...}

consists of

- a binary predicate "=" that is interpreted using axioms
- constant, function, and predicate symbols

Axioms of T_E

- 1. ∀*x*. *x*=*x*
- 2. $\forall x, y$. $x = y \rightarrow y = x$
- 3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- 4. for each n-ary function symbol *f*, $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $\bigwedge_i (x_i = y_i) \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$

(reflexivity) (symmetry) (transitivity)

(function congruence)

5. for each n-ary predicate symbol p, $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $\bigwedge_i (x_i = y_i) \rightarrow$ $(p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$ (predicate congruence)

Decidability of T_E

Bad news

- T_E is undecidable
- Good news
 - Quantifier-free fragment of T_E is decidable
 - Very efficient algorithms for QFF conjunctive fragment
 - Based on congruence closure

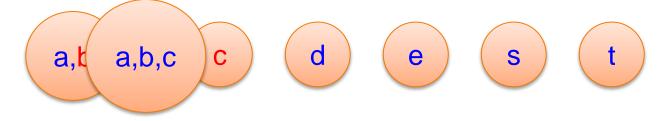
Theory solver for T_E

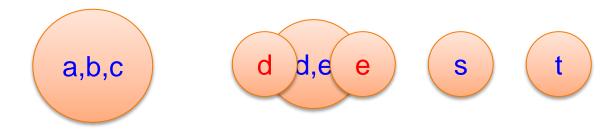
- In 1954 Ackermann showed that the theory of equality and uninterpreted functions is decidable.
- In 1976 Nelson and Oppen implemented an O(m²) algorithm based on congruence closure computation.

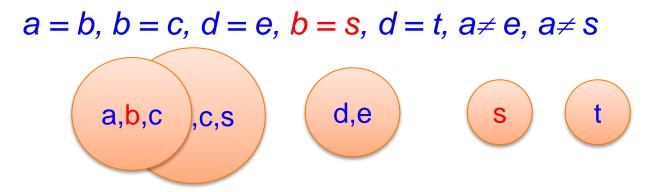
- Modern implementations are based on the union-find data structure (*data structures again!*)
- Efficient: O(*n* log *n*)

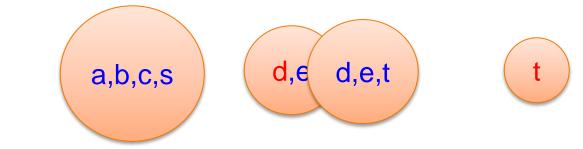
a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s a b c d e s t

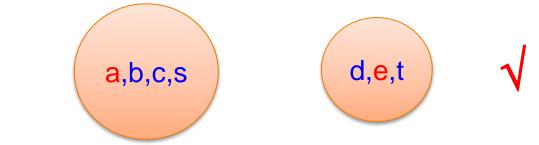
Note: Quantifier-free, Conjunctive

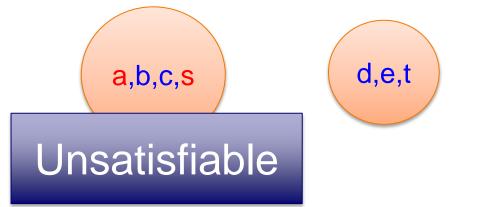




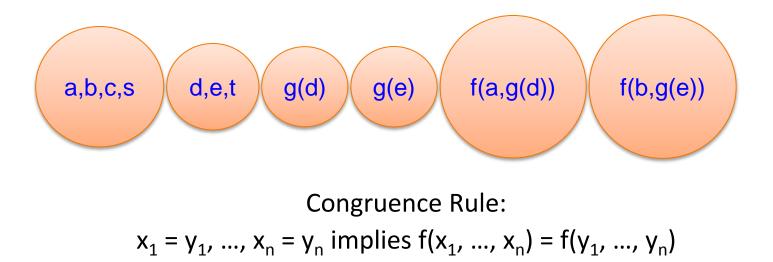




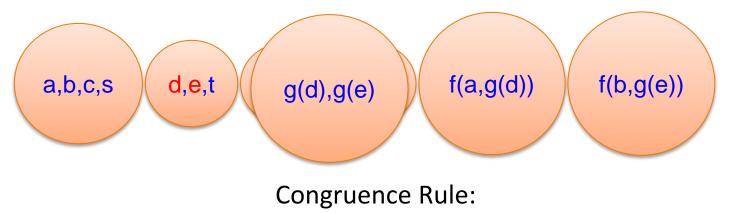




 $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$

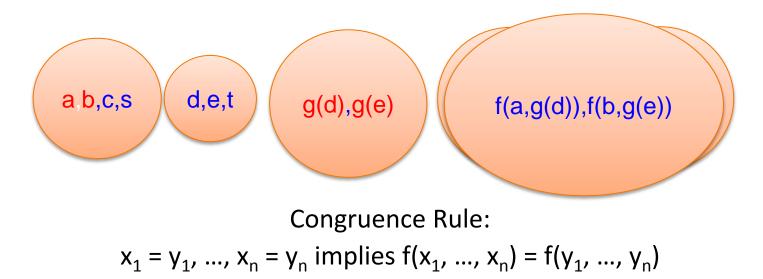


 $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$

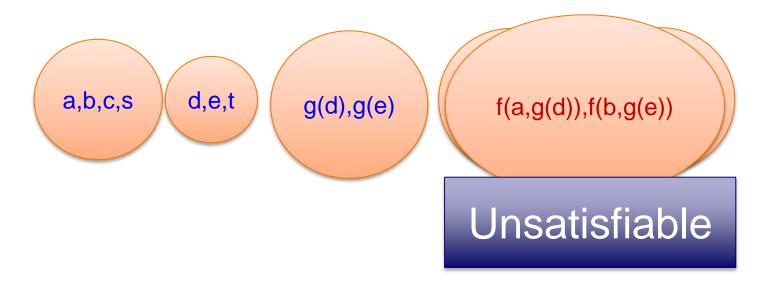


 $x_1 = y_1, ..., x_n = y_n$ implies $f(x_1, ..., x_n) = f(y_1, ..., y_n)$

 $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$



 $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$



Efficient implementation using Union-Find data structure

Example: program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
int fun2(int y) {
```

return y*y;

}

 T_E formula that is satisfiable iff programs are not equivalent:

 $(z1 = y0 \land y1 = x0 \land x1 = z1 \land r1 = x1*x1) \land$ (r2 = y0* y0) \lambda \gamma(r2 = r1) quantifier-free conjunctive fragment

Using 32-bit integers, and interpreting * as multiplication, a SAT solver fails to return an answer in 1 minute.

Example: program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
int fun2(int y) {
```

return y*y;

}

 T_E formula that is satisfiable iff programs are not equivalent:

 $(z1 = y0 \land y1 = x0 \land x1 = z1 \land r1 = sq(x1) \land$ (r2 = sq(y0)) \lambda \gamma(r2 = r1) (uninterpreted function symbol sq (abstraction of *)

Using T_E (with uninterpreted functions), SMT solver proves unsat in a fraction of a second.

Example: program equivalence

int fun1(int y) {
 int x, z;
 x = x ^ y;
 y = x ^ y;
 x = x ^ y;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Is the uninterpreted function abstraction going to work in this case?

No, we need the theory of fixed-width bitvectors to reason about ^ (xor).

Theory of fixed-width bitvectors T_{BV}

Signature

- constants
- fixed-width words (bitvectors) for modeling machine ints, longs, etc.
- arithmetic operations (+, -, *, /, etc.) (functions)
- bitwise operations (&, |, ^, etc.) (functions)
- comparison operators (<, >, etc.) (predicates)
- equality (=)

Theory of fixed-width bitvectors is decidable

• Bit-flattening to SAT: NP-complete complexity

- $formula : formula \lor formula \mid \neg formula \mid atom$
 - atom : term rel term | Boolean-Identifier | term[constant]

$$rel$$
 : = $|$ <

- - $op \hspace{.1in}:\hspace{.1in} + \mid \mid \cdot \mid / \mid <\!\!< \mid >\!\!> \mid \& \mid \mid \mid \mid \oplus \mid \circ$

- $formula \hspace{0.1 in}:\hspace{0.1 in} formula \hspace{0.1 in} |\hspace{0.1 in} \neg formula \hspace{0.1 in} |\hspace{0.1 in} atom$
 - atom : term rel term | Boolean-Identifier | term[constant]

$$rel$$
 : = $|$ <

 $\begin{array}{rcl}term &: & term \ op \ term \ | \ identifier \ | \ \sim \ term \ | \ constant \ | \\ & atom?term:term \ | \\ & term[\ constant : \ constant \] \ | \ ext(\ term \) \\ & op \ : \ + \ | \ - \ | \ \cdot \ | \ / \ | \ << \ | \ >> \ | \ \& \ | \ | \ \oplus \ | \ \circ \end{array}$

 $\sim x$: bit-wise negation of x ext(x): sign- or zero-extension of x $x \ll d$: left shift with distance d $x \circ y$: concatenation of x and y

Transform Bit-Vector Logic to Propositional Logic Most commonly used decision procedure Also called '*bit-blasting*'

Transform Bit-Vector Logic to Propositional Logic Most commonly used decision procedure Also called '*bit-blasting*'

Bit-Vector Flattening

- Convert propositional part as before
- Add a Boolean variable for each bit of each sub-expression (term)
- Add constraint for each sub-expression

We denote the new Boolean variable for *i* of term *t* by t_i

What constraints do we generate for a given term?

What constraints do we generate for a given atom

This is easy for the bit-wise operators.

Example for *t=a* | *b*

$$\bigwedge_{i=0}^{l-1} \mathbf{t}_i = (a_i \vee b_i))$$

What about x=y

How to flatten s=a+b

æ

How to flatten S=a+b

 \longrightarrow we can build a *circuit* that adds them!

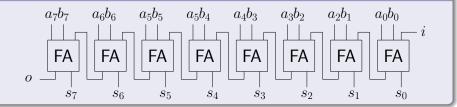
$$\begin{bmatrix} a & b & i \\ FA \\ \hline \\ 0 & s \end{bmatrix} = \begin{bmatrix} Full & Adder \\ s & \equiv & (a+b+i) \mod 2 & \equiv & a \oplus b \oplus i \\ o & \equiv & (a+b+i) \dim 2 & \equiv & a \cdot b + a \cdot i + b \cdot i \end{bmatrix}$$

The full adder in CNF:

$$\begin{array}{l} (a \lor b \lor \neg o) \land (a \lor \neg b \lor i \lor \neg o) \land (a \lor \neg b \lor \neg i \lor o) \land \\ (\neg a \lor b \lor i \lor \neg o) \land (\neg a \lor b \lor \neg i \lor o) \land (\neg a \lor \neg b \lor o) \end{array}$$

Ok, this is good for one bit! How about more?

Ok, this is good for one bit! How about more?



Also called *carry chain adder* Adds l variables Add:10* l clauses 6 for 0, 4 for s Multipliers result in very hard formulas Example:

$$a \cdot b = c \land b \cdot a \neq c \land x < y \land x > y$$

CNF: About 11000 variables, unsolvable for current SAT solvers

Similar problems with division, modulo

Multipliers result in very hard formulas Example:

$$a \cdot b = c \land b \cdot a \neq c \land x < y \land x > y$$

CNF: About 11000 variables, unsolvable for current SAT solvers

Similar problems with division, modulo

Theories for Arithmetic

Natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$

Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Three theories:

(Axioms in [BM Ch. 3])

Peano arithmetic T_{PA}

- Natural numbers with addition (+), multiplication (*), equality (=)
- T_{PA} -satisfiability and T_{PA} -validity are undecidable
- Presburger arithmetic $T_{\mathbb{N}}$
 - Natural numbers with addition (+), equality (=)
 - $T_{\mathbb{N}}$ -satisfiability and $T_{\mathbb{N}}$ -validity are decidable

Theory of integers $T_{\mathbb{Z}}$

- Integers with addition (+), subtraction (-), comparison (>), equality (=), multiplication by constants
- $T_{\mathbb{Z}}$ -satisfiability and $T_{\mathbb{Z}}$ -validity are decidable

Theory of Integers $T_{\mathbb{Z}}$

$\Sigma_{\mathbb{Z}}$: {...,-2,-1,0,1,2,...,-3*,-2*,2*,3*,...,+,-,=,>}

where

- ...,-2,-1,0,1,2,... are constants
- ...,-3*,-2*,2*,3*,... are unary functions
 (intended meaning: 2*x is x+x, -3*x is -x-x-x)
- +,-,>,= have the usual meaning
- $T_{\mathbb{N}}$ and $T_{\mathbb{Z}}$ have the same expressiveness
 - Every $\Sigma_{\mathbb{Z}}\text{-}\text{formula}$ can be reduced to $\Sigma_{\mathbb{N}}\text{-}\text{formula}$
 - Every $\Sigma_{\mathbb{N}}\text{-}\text{formula}$ can be reduced to $\Sigma_{\mathbb{Z}}\text{-}\text{formula}$

Example: compiler optimization

```
for (i=1; i<=10; i++) {
    a[j+i] = a[j];
}</pre>
```

```
int v = a[j];
for (i=1; i<=10; i++) {
    a[j+i] = v;
}</pre>
```

A $T_{\mathbb{Z}}$ formula that is satisfiable iff this transformation is invalid:

$$(i \ge 1) \land (i \le 10) \land (j + i = j)$$

quantifier-free conjunctive fragment

Theory of Reals $T_{\mathbb{R}}$ and Theory of Rationals $T_{\mathbb{Q}}$

 $\Sigma_{\mathbb{R}} : \{0, 1, +, -, *, =, \ge \}$ $\Sigma_{\mathbb{O}} : \{0, 1, +, -, =, \ge \}$ with multiplication without multiplication

Both are decidable

• High time complexity

Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Theory of Arrays T_A

 Σ_A : {select, store, =}

where

- *select*(*a*,*i*) is a binary function:
 - read array a at index i
- *store*(*a*,*i*,*v*) is a ternary function:
 - write value v to index i of array a

Axioms of T_A

 $1.\forall a, i, j. i = j \rightarrow select(a, i) = select(a, j)$ (a)

(array congruence)

(select-store 2)

 $2.\forall a, v, i, j. i = j \rightarrow select(store(a, i, v), j) = v \qquad (select-store 1)$

 $3.\forall a, v, i, j. i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

T_A is undecidable

Quantifier-free fragment of T_A is decidable

Note about T_A

Equality (=) is only defined for array elements...

- Example: select(a,i) = e → ∀j. select(store(a,i,e), j) = select(a,j) is T_A-valid
- ...and not for whole arrays
 - Example:

 $select(a,i)=e \rightarrow store(a,i,e)=a$ is not T_A -valid

A program:

A[1]=-1; A[2]=1; k=unknown(); if (A[k]==1) ...

Summary of Decidability Results

[BM Ch. 3, Page 90]

Theory		Quantifiers Decidable		QFF Decidable	
T_E	Equality	NO	*	YES	
T_{PA}	Peano Arithmetic	NO	*	NO	*
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	YES		YES	
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	YES		YES	
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	YES		YES	
$T_{\mathbb{Q}}$	Linear Rationals	YES		YES	
T_A	Arrays	NO	*	YES	

QFF: Quantifier Free Fragment

Summary of Complexity Results

[BM Ch. 3, Pages 90, 91]

Theory		Quantifiers	QF Conjunctive	
T_E	Equality	_	O(<i>n</i> log <i>n</i>)	
$T_{\mathbb{N}}$	Presburger Arithmetic	O(2^2^2^(kn))	NP-complete	
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	O(2^2^2^(kn))	NP-complete	
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	O(2^2^(kn))	O(2^2^(kn))	
$T_{\mathbb{Q}}$	Linear Rationals	O(2^2^(kn))	PTIME	
T_A	Arrays	_	NP-complete	

n – input formula size; k – some positive integer

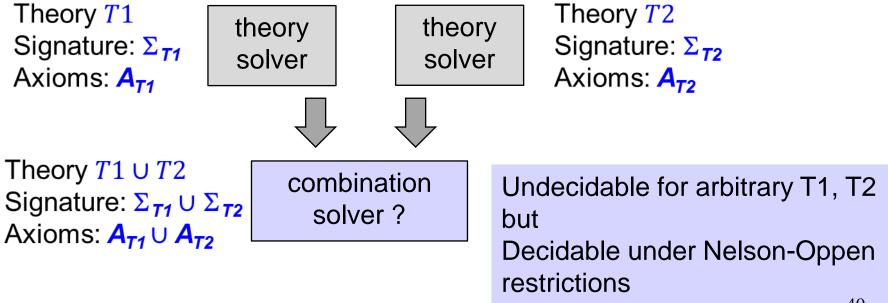
Note: Quantifier-free Conjunctive fragments look good!

Combination of Theories

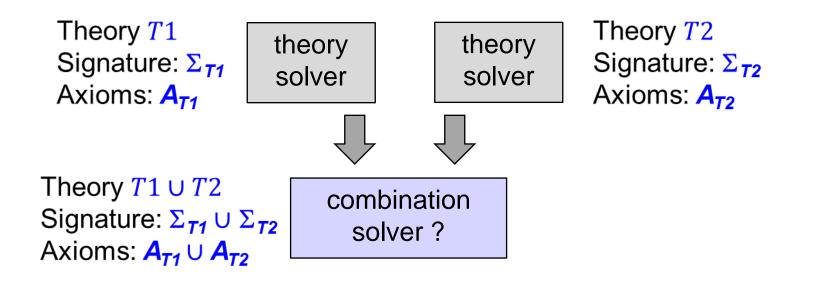
Many applications require reasoning over a combination of theories

• Example: f(x) + 10 = g(y) belongs to $T_E \cup T_Z$

Given decision procedures for theories T1 and T2, can we decide satisfiability of formulae in $T1 \cup T2$?



Decision Procedure for Combination of Theories



Nelson-Oppen Procedure for deciding satisfiability

- If both T1 and T2 are *quantifier-free (conjunctive) fragments*
- If "=" is the only symbol common to their signatures
- If T1 and T2 meet certain other technical restrictions

Note: Quantifier-free Conjunctive fragments look good!

Theories in SMT Solvers

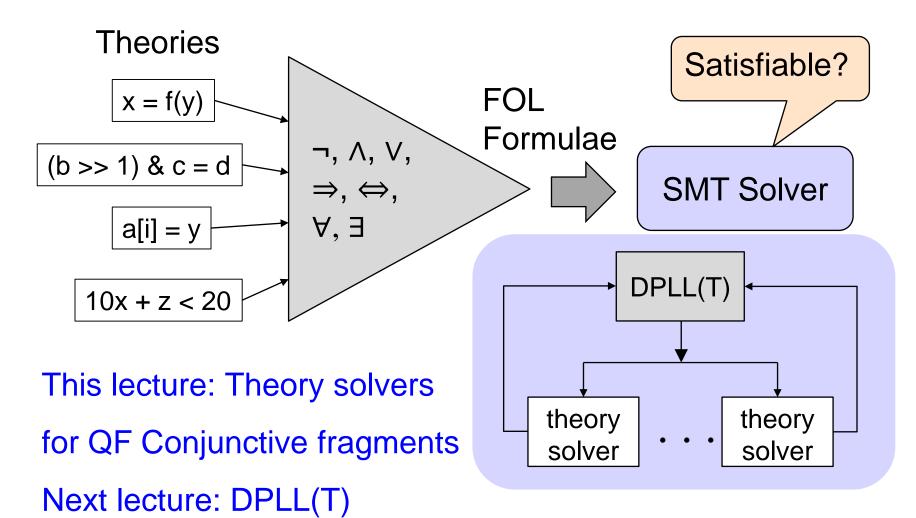
Modern SMT solvers support many useful theories

- QF_UF: Quantifier-free Equality with Uninterpreted Functions
- QF_LIA: Quantifier-free Linear Integer Arithmetic
- QF_LRA: Quantifier-free Linear Real Arithmetic
- QF_BV: Quantifier-free Bit Vectors (fixed-width)
- QF_A: Quantifier-free Arrays

... and many combinations

Check out more info at

http://smtlib.cs.uiowa.edu/index.shtml http://smtlib.cs.uiowa.edu/logics.shtml



Z3 SMT Solver

http://rise4fun.com/z3/

Input format is an extension of SMT-LIB standard

Commands

- declare-const declare a constant of a given type
- declare-fun declare a function of a given type
- assert add a formula to Z3's internal stack
- check-sat determine if formulas currently on stack are satisfiable
- get-model retrieve an interpretation
- exit

SMT solvers: DPLL(T)

Main idea: combine DPLL SAT solving with theory solvers

- DPLL-based SAT over the Boolean structure of the formula
- theory solver handles the *conjunctive fragment*
- Recall: SAT solvers use many techniques to prune the exponential search space

This is called DPLL(T)

• T could also be a combination of theories (using Nelson-Oppen)

DPLL(T): main idea

SAT solver handles Boolean structure of the formula

- Treats each atomic formula as a propositional variable
- Resulting formula is called a Boolean abstraction (B)

Example

• B(F): b1 ∧ ((b2 ∧ b3) ∨ ¬b1)

- Boolean abstraction (B) defined inductively over formulas
- B is a bijective function, B⁻¹ also exists
 - B⁻¹ (b1 ^ b2 ^ b3): (x=z) ^ (y=z) ^ (x=z+1)
 - B⁻¹ (b1 ∨ b2'): (x=z) ∨ ¬(y=z)

DPLL(T): main idea

Example

b1

 $F: (x=z) \land ((y=z \land x = z+1) \lor \neg (x=z))$

• Use DPLL SAT solver to decide satisfiability of B(F)

b1

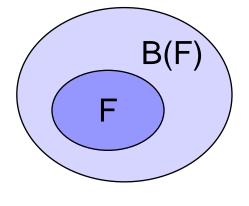
b3

• If B(F) is Unsat, then F is Unsat

• B(F): b1 ∧ ((b2 ∧ b3) ∨ ¬b1) ─

b2

- If B(F) has a satisfying assignment A, F may still be Unsat
- Example
 - SAT solver finds a satisfying assignment A: b1 ^ b2 ^ b3
 - But, B⁻¹(A) is unsatisfiable modulo theory
 - $(x=z) \land (y=z) \land (x=z+1)$ is not satisfiable



B(F) is an *over-approximation* of F

DPLL(T): main idea

Example

b1

 $F: (x=z) \land ((y=z \land x = z+1) \lor \neg (x=z))$

• Use DPLL SAT solver to decide satisfiability of B(F)

b3

• If B(F) is Unsat, then F is Unsat

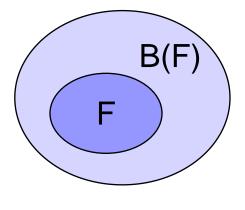
• B(F): b1 ∧ ((b2 ∧ b3) ∨ ¬b1) 🧹

h2

- If B(F) has a satisfying assignment A
- Use theory solver to check if B⁻¹(A) is satisfiable modulo T

b1

- Note B⁻¹(A) is in conjunctive fragment
- If B⁻¹(A) is satisfiable modulo theory T, then F is satisfiable

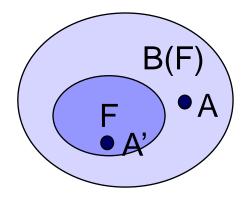


B(F) is an over-approximation of F

DPLL(T): simple version

- Generate a Boolean abstraction B(F)
- Use DPLL SAT solver to decide satisfiability of B(F)
 - If B(F) is Unsat, then F is Unsat
 - If B(F) has a satisfying assignment A
- Use theory solver to check B⁻¹(A) is satisfiable modulo T
 - If B⁻¹(A) is satisfiable modulo theory T, then F is satisfiable
 - Because A satisfies the Boolean structure, and is consistent with T
- What if B⁻¹(A) is unsatisfiable modulo T? Is F Unsat?
- No!
 - There may be other assignments A' that satisfy the Boolean structure and are consistent with T
- Add $\neg A$ to B(F), and backtrack in DPLL SAT to find other assignments
 - Until there are no more satisfying assignments of B(F)

Like a conflict clause (due to a theory conflict)

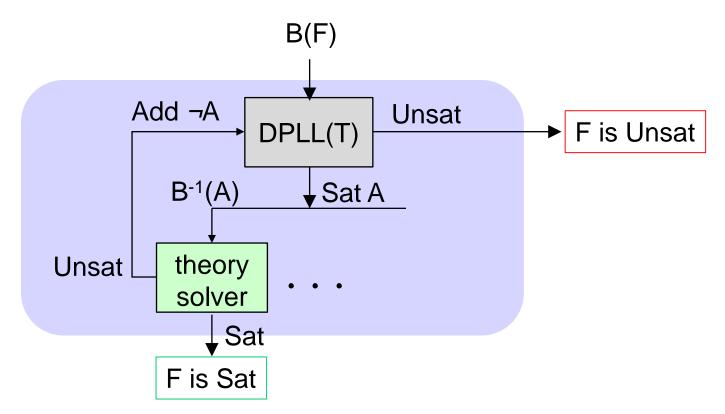


DPLL(T): simple version recap

- 1. Generate a Boolean abstraction B(F)
- 2. Use DPLL SAT solver to decide satisfiability of B(F)
 - If B(F) is Unsat, then F is Unsat
 - Otherwise, find a satisfying assignment A
- 3. Use theory solver to check if $B^{-1}(A)$ is satisfiable modulo T
 - If B⁻¹(A) is satisfiable modulo theory T, then F is satisfiable
 - Otherwise, B⁻¹(A) is unsatisfiable modulo T
 Add ¬A to B(F), and backtrack in DPLL SAT

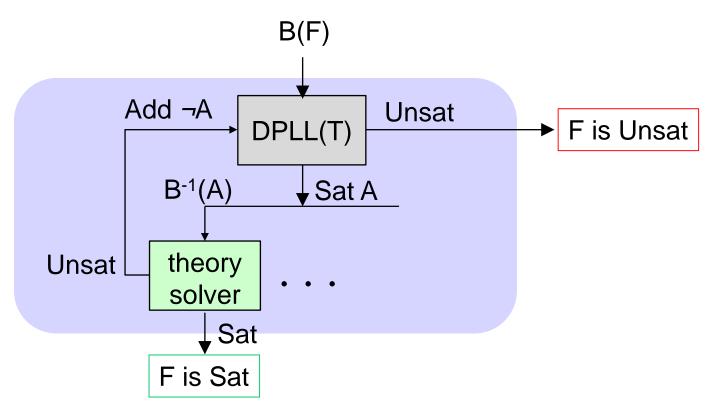
Repeat (2, 3) until there are no more satisfying assignments

DPLL(T): simple version example



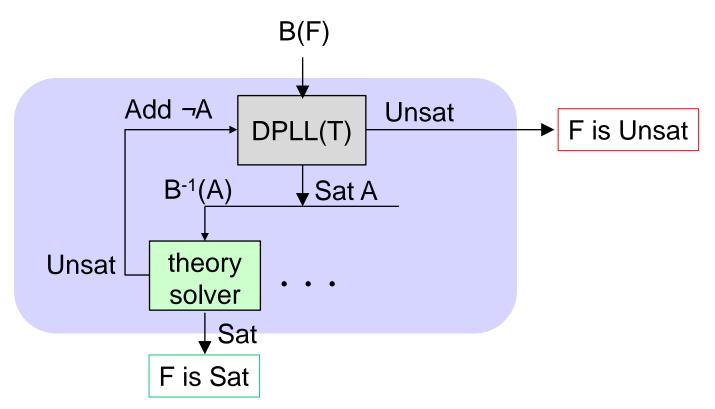
- Example F: (x=z) ∧ ((y=z ∧ x = z+1) ∨ ¬ (x=z))
 - B(F): b1 ∧ ((b2 ∧ b3) ∨ ¬b1)
 - DPLL finds A: b1 ^ b2 ^ b3, B⁻¹(A): (x=z) ^ (y=z) ^ (x=z+1)
 - Theory solver checks $B^{-1}(A)$, this is unsat modulo T, therefore add $\neg A$
 - DPLL finds B(F) ∧ ¬A: b1 ∧ ((b2 ∧ b3) ∨ ¬b1) ∧ (b1' + b2' + b3') is Unsat
 - Therefore, F is Unsat

DPLL(T): simple version



- Correctness
 - When it says "F is Sat", there is an assignment that satisfies the Boolean structure *and* is consistent with theory
 - When it says "F is Unsat", the formula is unsatisfiable because B(F) ^ ¬A is also an over-approximation of F
 - $B^{-1}(A)$ is not consistent with T, i.e., $B^{-1}(\neg A)$ is T-valid

DPLL(T): simple version



- Termination
 - B(F) has only a finite number of satisfying assignments
 - When $\neg A$ is added to B(F), the assignment A will never be generated again
 - Either some satisfying assignment of B(F) is also T-satisfiable (F is SAT), or all satisfying assignments of B(F) are not T-satisfiable (F is Unsat)

An Example of Symbolic Analysis and DPLL(T)

- 1. m=getstr();
- 2. n=getstr();
- 3. i=getint();
- 4. x=strcat("abc",m)
- 5. if (strlen(m)+i>5)
- 6. y="abcd"
- 7. else
- y=strcat("efg",n);
- 9. if (x==y) ...

 $Path1: assert(e_1 \land !e_2)$ $e_1: x = concat("abc", m)$ $e_2: strlen(m) + i > 5$ $e_3: y = concat("efg", n)$ $e_4: y = "abcd"$ $e_5: x = y$

An Example of Symbolic Analysis and DPLL(T)

