Introduction to CBMC: Part 1

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

=== Software Engineering Institute | CarnegieMellon 2006 Carnegie Mellon riversiy

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program > Analysis CNF SAT
—
Claim Engine Solver
SAT UNSAT
(counterexample exists) (no counterexample found)

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Programs and Claims

-Arbitrary ANSI-C programs

With bitvector arithmetic, dynamic memory, pointers, ...

-Simple Safety Claims

Array bound checks (i.e., buffer overflow)

Division by zero

Pointer checks (i.e., NULL pointer dereference)
Arithmetic overflow

User supplied assertions (i.e., assert (1 > j))

etc

Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Why use a SAT Solver?

-SAT Solvers are very efficient

-Analysis is completely automated

-Analysis as good as the underlying SAT solver

-Allows support for many features of a programming language

« Dbitwise operations, pointer arithmetic, dynamic memory, type casts

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

SAT made some progress...

/
100000 -

10000 -

1000 -

Vars

100 -

10

1960 1970 1980 1990 2000 2010

Year

A (very) simple example (1)

Program Constraints
int x; y =8,
_ UNSAT
int y=8,z=0,w=0; z=x?y-1:0,
_ no counterexample
It (%) w=x?0:y+1, _
assertion always holds!

z =y — 1; z1=7,
else w'!=9

w=y+ 1; V
assert (z == 7 ||

w == 9)

Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

A (very) simple example (2)

Program Constraints
int x; y =8,
_ SAT
int y=8,z=0,w=0; z=x?y-1:0,
_ counterexample found!
It (%) w=x?0:y+1,
- — 1; 1=

2= ’ 2=, y=8x=1,w=0,z=7
else wl=9

w=y+ 1; V
assert (z == 5 ||

w == 9)

Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

What about loops?!

-SAT Solver can only explore finite length executions!

-.Loops must be bounded (i.e., the analysis is incomplete)

Program > Analysis CNF SAT
—

Claim Engine Solver

Bound (n) —T /\

SAT UNSAT

(counterexample exists) (no counterexample of

bound n is found)

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

CBMC: C Bounded Model Checker

-Developed at CMU by Daniel Kroening et al.

-Available at: http://www.cs.cmu.edu/~modelcheck/cbmc/
-Supported platfoms: Windows (requires VisualStudio’s™ CL), Linux

-Provides a command line and Eclipse-based interfaces

-Known to scale to programs with over 30K LOC

‘Was used to find previously unknown bugs in MS Windows device
drivers

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as

« Bit vector operators (shifting, and, or,...)
« Pointers, pointer arithmetic

« Dynamic memory allocation: malloc/free
« Dynamic data types: char s[n}

« Side effects

« Tloat/double

« Non-determinism

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Introduction to CBMC: Part 2

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

=== Software Engineering Institute | CarnegieMellon 2006 Carnegie Mellon riversiy

How does it work

1. Simplify control flow

2. Convert into Single Static Assignment (SSA)
3. Convert into equations

4. Unwind loops

5. Bit-blast

6. Solve with a SAT Solver

7. Convert SAT assignment into a counterexample

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Control Flow Simplifications

e All side effect are removed

e €.g., J=1++Dbecomes j=1;1=1+1

. Control Flow is made explicit

« continue, break replaced by goto

. All loops are simplified into one form

« Tor,do whilereplaced by while

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program Constraints

X = a; X=a&&
y = X + 1; y=x+18&&
z =y —1; j> z=y-1&&
S .

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,

use a new variable for the RHS of each assignment

Program SSA Program
X=X+y; X1=Xo%*yo:
X=X*2; p X0=X1%2;
al[i]=100; a1 [ip]=100;

7 7

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

What about conditionals?

Program SSA Program
it (v) 1t (vy)
X =Y, Xo = Yo
else else
X = Z: 10 X, = Z; What should ‘x’
be?
W = X; V w, = x’?’?;V

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

What about conditionals?

Program SSA Program
it (v) it (v)
X =Y; Xo = Yo;
else else
X = Z; A X, = Zp.
Xo = Vg ? Xg I Xq3
W = X; W, = X,

For each join point, add new variables with selectors

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Adding Unbounded Arrays

N {p(e) i = p(a)

vala] =e P Vo = a—1li] : otherwise

Arrays are updated “whole array” at a time

A[l] = 5; A=Ai:i==125: A
A[2] = 10; A=A i:1==27?10: A
AK] = 20; A=A ii==k?20: A
Examples: ap]==22 AJfl]==77 A3]== 7?7
y=A2] =>7?

Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

=== Software Engineering Institute | CarnegieMellon

Example

int main() { int main() {
int x, y; int X, ¥;
y=8; y1=8; (=28
if (x) if (xg)
y=i yo=y1-1; AN =y —1
else 9, > else > A .
y++; ' y3=y1+1i; Vi =untl
y4= %0 7y2:¥3; A ya=x07¥y2 . y3)
assert assert
=7 || (ya==T || = (ya=7Vys=29)
y==9) ; y4==9);
} V } V 4

Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information

« Separate for each pointer

« Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)

« Generate assertions on offset and on type
Pointer data type assumed to be part of bit-vector logic

- Consists of pair <object, offset>

Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Pointer Typecast Example

void *p;
int 1;
int c;
int main (void) {
int 1nputl, Intput2, z;
p = Inputl ? (void*)&r : (void*) &c;
1T (input2)
z = *(Int*™)p;

(char)p; } ZC;77

Introduction to CBMC: Part 1

else

Z

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Dynamic Objects

Dynamic Objects:
- malloc/ free
« Local variables of functions
Auxiliary variables for each dynamically allocated object:
« Size (number of elements)
« Active bit
- Type
mal loc sets size (from parameter) and sets active bit
free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Loop Unwinding

. All loops are unwound

e can use different unwinding bounds for different loops

« to check whether unwinding is sufficient special “unwinding
assertion” claims are added

. If a program satisfies all of its claims and all unwinding
assertions then it is correct!

. Same for backward goto jumps and recursive functions

Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

Loop Unwinding

void F(...) {

while(cond) {
Body;
+

Remainder;

}

while() loops are unwound
iteratively

Break / continue replaced by
goto

Introduction to CBMC: Part 1

Sortware £ngineering nstitute | CarnegieMellon curfinkel, chaii, oct 2, 2007

© 2006 Carnegie Mellon University

Loop Unwinding

void f(...) { while() loops are unwound
iteratively

iT(cond) { Break / continue replaced by
Body; goto
while(cond) {
Body;
ks
+

Remainder;

‘ Introduction to CBMC: Part 1

Sortware Engineering stitute | CarnegieMellon curfinkel, chaii, oct 2, 2007

© 2006 Carnegie Mellon University

Loop Unwinding

void F(...) {

1T(cond) {
Body;
iT(cond) {
Body;
while(cond) {
Body;
>
+
+

Remainder;

y

while() loops are unwound
iteratively

Break / continue replaced by
goto

Introduction to CBMC: Part 1

Sortware Engineering nstitute | CarnegieMellon curfinkel, chaii, oct 2, 2007

© 2006 Carnegie Mellon University

Unwinding assertion

void F(...) {

i1fT(cond) {
Body;
iT(cond) {
Body;
i1T(cond) {
Body;
while(cond) {
Body;

}

}

Remainder;

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Introduction to CBMC: Part 1

Sortware Engineering nstitute | CarnegieMellon curfinkel, chaii, oct 2, 2007

© 2006 Carnegie Mellon University

Unwinding assertion

}

void F(...) {

i %&cond) {

Body;
iT(cond) {
Body;
i1T(cond) {
Body;
assert(!cond);

Unwinding
assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Introduction to CBMC: Part 1

Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Example: Sufficient Loop Unwinding

c

}

- A

<= 2)
1

| B
Remainder;

unwind = 3

void F(...) {

}

Ihl
=

=2) {

:_J"“_l

fa <= 2) {

=13 +1;

if(<= 2) {
J=0 0+ 1;
assert(1(j <= 2));
¥

}

}

- _18

}

Remainder;

— Software Engineering Institut® T CATICZICIVICTION GUTTINKEL, ChaKl, OCt2, 2007

© 2006 Carnegie Mellon Universi

Example: Insufficient Loop Unwinding

void f(...) { void f(...) {
i=1 i=1
while (j 10) iIf(J <= 10) {
i=3+ 1 5=+
Remainder; 1T <= 10) {
} J =1 +1;
if(J <= 10) {
J =13 +1;
unwind = 3 assert(1(j <= 10));
}
¥
}
¥
Remainder;
¥

— Software Engineering Institut® G TICZICIVICTION GUTTINKEL, ChaKl, OCt2, 2007

© 2006 Carnegie Mellon Universi

Convert Bit Vector Logic Into Propositional Logic

e Introduction to CBMC: Part 1

——= Software Engineering Institute | CarnegieMellon Gurfinkel, chaki, oct2, 2007

© 2006 Carnegie Mellon University

