
© 2006 Carnegie Mellon University

Introduction to CBMC: Part 1

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

2
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

3
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Programs and Claims

•Arbitrary ANSI-C programs

• With bitvector arithmetic, dynamic memory, pointers, …

•Simple Safety Claims

• Array bound checks (i.e., buffer overflow)

• Division by zero

• Pointer checks (i.e., NULL pointer dereference)

• Arithmetic overflow

• User supplied assertions (i.e., assert (i > j))

• etc

4
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Why use a SAT Solver?

•SAT Solvers are very efficient

•Analysis is completely automated

•Analysis as good as the underlying SAT solver

•Allows support for many features of a programming language

• bitwise operations, pointer arithmetic, dynamic memory, type casts

5
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Decision Procedures
An algorithmic point of

5

SAT made some progress…

1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010

Year

Va
rs

6
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

A (very) simple example (1)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!

7
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

A (very) simple example (2)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7

8
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

What about loops?!

•SAT Solver can only explore finite length executions!

•Loops must be bounded (i.e., the analysis is incomplete)

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample of

bound n is found)

SAT

(counterexample exists)

CNF

Bound (n)

9
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

CBMC: C Bounded Model Checker

•Developed at CMU by Daniel Kroening et al.

•Available at: http://www.cs.cmu.edu/~modelcheck/cbmc/

•Supported platfoms: Windows (requires VisualStudio’s` CL), Linux

•Provides a command line and Eclipse-based interfaces

•Known to scale to programs with over 30K LOC

•Was used to find previously unknown bugs in MS Windows device
drivers

10
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as
• Bit vector operators (shifting, and, or,…)

• Pointers, pointer arithmetic

• Dynamic memory allocation: malloc/free

• Dynamic data types: char s[n]

• Side effects

• float / double

• Non-determinism

© 2006 Carnegie Mellon University

Introduction to CBMC: Part 2

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

12
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

How does it work

1. Simplify control flow

2. Convert into Single Static Assignment (SSA)

3. Convert into equations

4. Unwind loops

5. Bit-blast

6. Solve with a SAT Solver

7. Convert SAT assignment into a counterexample

13
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Control Flow Simplifications

All side effect are removed
• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit
• continue, break replaced by goto

• All loops are simplified into one form
• for, do while replaced by while

14
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

x = a;x = a;

y = x + 1;y = x + 1;

z = y z = y –– 1;1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&

x = a &&

y = x + 1 &&

z = y – 1 &&

15
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,

use a new variable for the RHS of each assignment

Program SSA Program

16
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

What about conditionals?

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v)if (v)

x = y;x = y;

elseelse

x = z;x = z;

w = x;w = x;

if (v0)

x0 = y0;

else

x1 = z0;

w1 = x??;

if (vif (v00))

xx00 = y= y00;;

elseelse

xx11 = z= z00;;

ww11 = x??= x??;;

What should ‘x’
be?

17
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v)if (v)

x = y;x = y;

elseelse

x = z;x = z;

w = x;w = x;

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2

if (vif (v00))

xx00 = y= y0;0;

elseelse

xx11 = z= z0;0;

xx22 = v= v00 ? x? x00 : x: x11;;

ww11 = x= x22

18
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == ?? A2[1]==?? A2[3] == ??

y=A3[2] =>??

19
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Example

20
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information

• Separate for each pointer

• Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)

• Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic

• Consists of pair <object, offset>

21
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Pointer Typecast Example

void *p;

int i;

int c;

int main (void) {

int input1, intput2, z;

p = input1 ? (void*)&i : (void*) &c;

if (input2)

z = *(int*)p;

else

z = *(char*)p; }

void *p;void *p;

intint i;i;

intint c;c;

intint main (void) {main (void) {

intint input1, intput2, z;input1, intput2, z;

p = input1 ? (void*)&i : (void*) &c;p = input1 ? (void*)&i : (void*) &c;

if (input2)if (input2)

z = *(z = *(intint*)p;*)p;

elseelse

z = *(char*)p; }z = *(char*)p; }

22
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Dynamic Objects

Dynamic Objects:
• malloc / free

• Local variables of functions

Auxiliary variables for each dynamically allocated object:

• Size (number of elements)

• Active bit

• Type

malloc sets size (from parameter) and sets active bit

free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

23
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Loop Unwinding

• All loops are unwound
• can use different unwinding bounds for different loops

• to check whether unwinding is sufficient special “unwinding
assertion” claims are added

• If a program satisfies all of its claims and all unwinding
assertions then it is correct!

• Same for backward goto jumps and recursive functions

24
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
while(cond) {
Body;

}
Remainder;

}

void f(...) {
...
while(condcond) {

Body;Body;
}
Remainder;

}

25
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
while(cond) {
Body;

}
}
Remainder;

}

void f(...) {
...
if(condcond) {

Body;Body;
while(condcond) {

Body;Body;
}

}
Remainder;

}

26
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
Remainder;

}

void f(...) {
...
if(condcond) {

Body;Body;
if(condcond) {

Body;Body;
while(condcond) {

Body;Body;
}

}
}
Remainder;

}

27
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
}
Remainder;

}

void f(...) {
...
if(condcond) {

Body;Body;
if(condcond) {

Body;Body;
if(condcond) {

Body;Body;
while(condcond) {

Body;Body;
}

}
}

}
Remainder;

}

28
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

}
}

}
}
Remainder;

}

void f(...) {
...
if(condcond) {

Body;Body;
if(condcond) {

Body;Body;
if(condcond) {

Body;Body;
assert(!condcond);

}
}

}
}
Remainder;

}

Unwinding
assertion

Unwinding
assertion

29
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Example: Sufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
assert(!(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
if(j <= 2j <= 2) {

j = j + 1j = j + 1;;
if(j <= 2j <= 2) {

j = j + 1j = j + 1;;
if(j <= 2j <= 2) {

j = j + 1j = j + 1;;
assert(!(j <= 2)(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)
j = j + 1;

Remainder;
}

void f(...) {
j = 1
while (j <= 2j <= 2)

j = j + 1;j = j + 1;
Remainder;

}

unwind = 3

30
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Example: Insufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
assert(!(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
if(j <= 10j <= 10) {

j = j + 1j = j + 1;;
if(j <= 10j <= 10) {

j = j + 1j = j + 1;;
if(j <= 10j <= 10) {

j = j + 1j = j + 1;;
assert(!(j <= 10)(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)
j = j + 1;

Remainder;
}

void f(...) {
j = 1
while (j <= 10j <= 10)

j = j + 1;j = j + 1;
Remainder;

}

unwind = 3

31
Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007
© 2006 Carnegie Mellon University

Convert Bit Vector Logic Into Propositional Logic

