
CS510 Midterm (2010 Fall)

October 19, 2010

1



1 Testing (15p)
(a) (Combinatorial Testing) Assume a program has three factors: A,

B, and C. The levels of these factors are {a1, a2}, {b1, b2}, and
{c1, c2, c3}. Compute the pair wise cover array using the IPO algo-
rithm.

(b) (Mutation testing)

1. input (a, b);

2. if (a>10)

3. print ("1");

4. x=b/3;

5. if (x>0)

6. print ("2");

Assume we have three mutants. One is ”a>10” at line 2 is mutated
to ”a>=10”, the second is that ”x=b/3” is mutated to ”x=b/2”,
and the third is that ”x>0” is mutated to ”x>=0”.

Assume the test suite is {(a=11, b=1), (a=3, b=10)} and the ora-
cle is purely based on the program output. What is the mutation
coverage? Details are encouraged.

2



2 Execution Indexing (15p)
1. input(a,b,c);

2. z=0;

3. while (a>0) {

4. if (a%b==0) {

5. c=c-1;

6. if (c>a)

7. z=z+1;

8. else

9. z=z+2;

10. }

11. a--;

12.}

Recall that execution indexing can be used to locate a particular execution
point. Present an algorithm in instrumentation rules that can locate the exe-
cution point specified by an index. For instance, given the index [3T , 4T , 5], the
execution point 5 in the trace “1 2 3 4 5 ...” is identified. If the point specified
by the index is not reachable, the algorithm should clearly indicate so at the
earliest possible point. For instance, the point specified by [3T , 4T , 5] is never
reached in an execution with the prefix “1 2 3 4 11 ...”. The algorithm should
be able to tell at 11 that the execution point is not reachable.

Given the input a=3, b=2, c=1, show how your algorithm identifies the
execution point with index [3T , 3T , 4T , 6F , 9].

3



3 Delta Debugging, 10 points
Assume the program fails when the input has equal numbers of a, b and c. Find
the minimal inducing input for “ababcccc” using delta debugging.

4



4 Dynamic Analysis (25p)
1. void (* F) ();

2. char A[1];

3. char B[10];

4. int i,j;

5. i=j=0;

6. read(B, 10); //read 10 bytes

7. F= &foo();

8. while (j<10) {

9. if (B[j]==’b’)

10. break;

11. j=j++;

12. if (j>0)

13. i++;

14. (*F) ();

15. }

16. A[i]=B[j];

17. (*F) ();

Data provenance is a technique that tracks the set of INPUT VALUES that
a variable or an executed statement is dependent on. For example, assume a
program execution is

1. read (buf, 2) with input 10 and 20;

2. x=buf[0];

3. y=x+buf[1];

.
The provenance of x and y are {10} and {10, 20}, respectively. Data prove-

nance can be used to defend code injection attacks by not allowing a function
call to have a non-empty provenance.

(a) (15 points) Sketch a forward online algorithm that computes data
provenance forwards along program execution, considering both data
and control dependences.

(b) (10 points) Assume the input is ”cb”, apply your algorithm to the
program at the beginning to detect code injection vulnerabilities.
Note that function pointer F and array A are next to each other
on the stack so that A[1] shares the same memory location with the
first byte of F .

5



5 Compression (10p)
A last n predictor has a buffer for the last n unique values that occured, and
then predicts the next value to be one of those values. For example, at the end
of a string of 1 2 2 3 4, the buffer of a last-3 predictor contains the values of 2
3 4. Sketch a last-3 predictor decompression algorithm. Please first compress
the execution trace 6 16 16 16 17 10 10 13 and then apply your algorithm to
decompress it.

6



6 Dynamic Slicing (10p)
1. x=0; //error, should be x=1

2. y=10;

3. if (x>0)

4. y=y+x;

5 print (y);

There is a bug in the above program at line 1. The output 10 is faulty and
the correct output should be 11.

(a) What is the dynamic slice of variable y at 5? Does it capture the
root cause? Why? (10p)

(b) Propose a new dynamic slicing that is able to capture the root cause.
You can assume you can transform the program or conduct any
program analysis such as identifying the set of variables used and
defined in a code region. (5p)

7



7 Misc. (10p)
A limitation of delta debugging is that it generates a lot of ill-formed inputs,
meaning inputs do not follow their syntax. We know in random test genera-
tion, input grammars can be used to guide the generation of well-formed inputs.
Sketch an enhanced version of delta debugging such that it only runs the pro-
gram on inputs that are always well formed. In other words, the algorithm is
supposed to carry out syntatically well-formed reduction. Use an example to
explain your idea if necessary.

8


