
CS510 Final 2010 Fall

December 16, 2010

Name:

Qual Exam: (Yes/No)

1



1 Proof and Verification (20p)
(a) Prove the following

` (p → q) ∨ (q → r)

(b) Use Hoare Logic to prove

{n = n0 ∧ sum = 0} Sum {sum = (n0 + 1)n0/2}

,in which Sum is defined is as follows.

while (n!=0) {

sum=sum+n;

n=n-1;

}

2



2 Validity, 10 points
Decide validity of the following theorem USING SAT SOLVING.

(p → q) → ((¬p → q) → q)

3



3 Slicing (10p)
1. input(a);

2. c=10;

3. d=2;

4. if (a<0) /* should be a<=0 */

5. x=c+d;

6. else

7. x=c-d;

8. print (x);

Given input a=0, a wrong output is observed. The dynamic backward slice
of the failure contains statements 1 and 2 that are not relevant with the failure.
The observation that the failure only occurs under certain input implies that it
is input relevant. Devise an algorithm to preclude statements 1 and 2 in the
slice, you can leverage other analysis you have learned in the class and use them
as primitives.

4



4 Abstraction (10p)
Assume we perform abstraction on the statement “x=x+1” regarding predicates
“p: x is an odd number” and “q: x==5”.

Please identify if the following abstractions are over-approximation, under-
approximation, both, or neither.

(a) p=*

(b) if (q) p=false

(c) p=¬p

(d) p= ¬q

(e) p=q? false: *

5



5 Model Checking and Test Generation (15p)
1. input(a,b,c);

2. z=0;

3. while (a>0) {

4. if (a%b==0) {

5. c=c-1;

6. if (c>a)

7. z=z+2;

8. }

9. a--;

10. z++;

11.}

(a) Consider the above program. Unroll the loop once and translate it
to SSA form.

(b) Design a test generation algorithm that generates test cases to cover
each possible path of the tranformed program. The algorithm should
not rely on concrete execution.

6



6 Testing (10p)
Assume a program has 4 factors A, B, C and D. Each has two levels. How many
test cases do you need to achieve pair-wise full coverage. Writing down those
test cases is encouraged but not required.

7



7 Project (5p)
Consider the following simplied IR, present your instrumentation to detect data
dependence.

t1 = GET(6)

t2 = LOAD (t1)

t2 = t2+1

ST(0x35086) = t2

8



8 Concurrency (20p)
Thread T1

1 x=0;

2 spawn(T2);

3 acquire (L);

4 x=input();

5 release (L)

6 join (T2);

7 y=x+1;

Thread T2

10 acquire (L);

11 x=x+1;

12 release (L)

13 spawn (T3)

14 join (T3)

Thread T3

20 x=x+15;

Design a STATIC hybrid data race detection algorithm that analyses the
CFGs of the threads and determines if there are data races about variable x.
Assume the program is loop free and there is only one lock L. You are provided
with the following primitive functions. path(l1, l2) returns the set of statements
in between l1 and l2 (in the same thread). For example, path(1,3)={1,2,3}. You
can use “foreach n in path(l1, l2)” to traverse the nodes in a path. isAcq(l),
isRel(l), isSpawn(l), isJoin(l) decide if l is an acquisition, release, spawn or
join, respectively. currentThread(l) decides the current thread of a statement.
spawnedThread(l) decides the thread that is spawned at l. joinedThread(l)
decides the thread that gets joined at l, e.g. joinedThread (6)=T2. If you
assume additional primitives, please state them.

(a) define a function that decides if x is protected by lock L (5p).

(b) define a function that determines if a statement can happen before
another statement (5p).

(c) present your algorithm. You can make use of the functions defined
in first two steps (5p).

(d) present the result of applying it to the above program (5p).

9



1.2 Natural deduction 27

The basic rules of natural deduction:

introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥
¬φ ¬i

φ ¬φ
⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥
φ

PBC
φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.



270 4 Program verification(
φ
)
C1

(
η
) (

η
)
C2

(
ψ
)(

φ
)
C1;C2

(
ψ
) Composition

(
ψ[E/x]

)
x = E

(
ψ
) Assignment

(
φ ∧B)C1

(
ψ
) (

φ ∧ ¬B)C2

(
ψ
)(

φ
)
if B {C1} else {C2}

(
ψ
) If-statement

(
ψ ∧B)C (ψ)(

ψ
)
while B {C} (ψ ∧ ¬B) Partial-while

�AR φ
′ → φ

(
φ
)
C
(
ψ
) �AR ψ → ψ′(

φ′
)
C
(
ψ′) Implied

Figure 4.1. Proof rules for partial correctness of Hoare triples.

Thus, if we know that C1 takes φ-states to η-states and C2 takes η-states
to ψ-states, then running C1 and C2 in that sequence will take φ-states to
ψ-states.

Using the proof rules of Figure 4.1 in program verification, we have to
read them bottom-up: e.g. in order to prove

(
φ
)
C1;C2

(
ψ
)
, we need to find

an appropriate η and prove
(
φ
)
C1

(
η
)

and
(
η
)
C2

(
ψ

XYZHANG
Rectangle




