
CS510 Midterm Solutions (2012 Spring)

April 5, 2012

Name:

1

1 Testing (25p)
(a) (Combinatorial Testing) (15p)

Assume a program has three factors: A, B, and C. The levels of
these

factors are {a1, a2}, {b1, b2, b3}, and {c1, c2}.
Compute the pair wise cover array using the IPO algorithm.

Answer:

Consider parameters in order A, B, C:
a1b1c1
a1b2c2
a1b3c1
a2b1c2
a2b2c1
a2b3c2

(b) (Mutation testing) (10p)

1. input (i);

2. if (i<10) {

3. if (i>5)

4. print ("5<i<10");

5. else

6. print ("i<=5");

7 } else

8. print ("i>=10");

Assume we have three mutants. One is ”i<10” at line 2 is mutated
to ”i<=10”, the second is that ”i<10” is mutated

to ”i>10”, and the third is that ”i>5” is mutated to ”i>=5”.

Assume the test suite is {i=6, i=10} and the oracle is purely based
on the program

output. What is the mutation coverage?

Answer:

2

Mutant i = 6 i = 10
1 i < 10⇒ i ≤ 10 X(pass) 8 (fail)
2 i < 10⇒ i > 10 8 X
3 i > 5⇒ i ≥ 5 X X

Mutation coverage = 2/3

2 Statistical Debugging (25p)
Assume the following program and eight executions, including both passing and
failing.

(a) Please compute the suspiciousness of the statements based on the
Tarantula algorithm (15p).

Answer:

F (s) and P (s): Number of failing and passing runs that execute s
|P | and |F |: Total number of passing and failing runs

Suspiciousness(s) =
F (s)
|F |

F (s)
|F | +

P (s)
|P |

|F | = 2
|P | = 6

s Suspiciousness(s)
1 1/2
2 1/2
3 1/2
4 3/4
5 1/2
6 3/5
7 0

(b) Assume the two predicates at lines 3 and 5 are monitored. Please
compute the suspiciousness of

them according to the Scalable Remote Bug Isolation algorithm
(10p).

Please briefly present the formula you use in case you miscalculate.

1. x=1;

2. i=input();

3

3. if (i%2==0)

4. x=x+i/2;

5. if (x%2==1)

6. print ("Odd.");

7. else print ("Even.");

i= Statement Output Passing/
1 2 3 4 5 6 7 Failing

1 * * * * * Odd P
2 * * * * * * Even P
3 * * * * * Odd P
4 * * * * * * Odd F
5 * * * * * Odd P
6 * * * * * * Even P
7 * * * * * Odd P
8 * * * * * * Odd F

Answer:
failure(p) = F (p)

F (p)+P (p)

context(p) = F ′(p)
F ′(p)+P ′(p)

Suspiciousness(p) = failure(p)− context(p)

Suspiciousness(i%2 == 0) = 1/4
Suspiciousness(x%2 == 1) = 1/12

4

3 CFG and Path Encoding (30p)

1. input(a,b,c);

2. z=0;

3. while (a>0) {

4. if (a%b!=0) {

5. c=c-1;

6. if (c>a)

7. z=z+1;

8. else

9. break;

10. }

11. a--;

12.}

13.print z;

Please present the CFG (10p) and the path encoding graph of the above
program (10p). List the encodings for individual paths (10p).

Answer:

5

Control Flow Graph

1

2

3

4

5

11

6

7

13

9

Counter[r]++
R=4

Counter[r]++

R+=3

R+=2

R+=1

Figure 1: Control Flow Graph

6

1

2

3

4

5

11

6

7

13

9

Counter[r]++

+3

+2

R+=1

Start

End

1

2

1

1

3

2

4

4

4

8

+4

1

Figure 2: Path Encoding Graph

7

4 Slicing, 16 points
(a) What is the static slice of z at 13 (5p)?

Answer:
{1, 2, 3, 4, 5, 6, 7, 11, 13}

(b) What is the staic slice of a at 11 (5p)?

Answer:

{1, 3, 4, 5, 6, 11}

(c) Leverage the program in Problem 3 to explain the differences (at
least one aspect) between static and dynamic slicing

(6p). You may want to use an execution and its corresponding dy-
namic slice to illustrate the comparison.

Answer:

Dynamic slicing only includes the executed statements that actually
contributed to the value. Consider a = −1, then the while loop does
not execute. So, the dynamic slice of z@13 is {2, 13}.

8

5 Misc. (4p)
Sketch a dynamic analysis that can detect heap buffer overflows.

Answer:
Use shadow memory to identify allocated heap from unallocated heap. For

heap addresses inside malloc region set SM [addr] = 1 and for the others set
SM [addr] = 0.
Shadow memory will be updated when heap is allocated and released when a
read.write is performed, check whether the address is in allocated memory (i.e.
SM [addr] = 1).

9

