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Abstract. Program errors are hard to find because of the cause-effect gap between the time when an error occurs and
the time when the error becomes apparent to the programmer. Although debugging techniques such as conditional and
data breakpoints help to find error causes in simple cases, they fail to effectively bridge the cause-effect gap in many
situations. Dynamic query-based debuggers offer programmers an effective tool that provides instant error alert by
continuously checking inter-object relationships while the debugged program is running. To speed up dynamic query
evaluation, our debugger (implemented in portable Java) uses a combination of program instrumentation, load-time
code generation, query optimization, and incremental reevaluation. Experiments and a query cost model show that
selection queries are efficient in most cases, while more costly join queries are practical when query evaluations are
infrequent or query domains are small.

1. Introduction

Many program errors are hard to find because of a cause-effect gap between the time when the error occurs and the
time when it becomes apparent to the programmer by terminating the program or by producing incorrect results
[Eis97]. The situation is further complicated in modern object-oriented systems which use large class libraries and
create complicated pointer-linked data structures. If one of these references is incorrect and violates an abstract
relationship between objects, the resulting error may remain undiscovered until much later in the program’s
execution.

For example, consider the javac Java compiler, a part of Sun’s JDK distribution. During a compilation, this compiler
builds an abstract syntax tree (AST) of the compiled program. Assume that this AST is corrupted by an operation that
assigns the same expression node to the field right of two different parent nodes (Figure 1). The parent nodes may be

instances of any subclass of BinaryExpression; for example, the parent may be an AssignAddExpression object or a
DivideExpression object, while the child could be an IdentifierExpression. The compiler traverses the AST many
times, performing type checks and inlining transformations. During these traversals, the child expression will receive
contradictory information from its two parents. These contradictions may eventually become apparent as the compiler
indicates errors in correct Java programs or when it generates incorrect code. But even after discovering the existence
of the error, the programmer still has to determine which part of the program originally caused the problem. How can
we help programmers to find such errors as soon as they occur?

The programmer could try to use data breakpoints [WLG93], i.e., breakpoints that stop the program when the value of
a particular field changes. However, data breakpoints (even if conditional) do not help to debug this error because they

Figure 1. Error in javac AST
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are specific to a particular instance. With hundreds or even thousands of BinaryExpression instances, and in the
presence of asynchronous events and garbage collection, the effectiveness of data breakpoints is greatly diminished.
In addition, it is hard to express the above error as a simple boolean expression. The error occurs only if the
expression is shared by another parent node—a relationship difficult to observe from the other parent or from the
child itself. In other words, by looking just at the field right of some BinaryExpression object we cannot determine
whether this object and its new field value are erroneous.

A programmer could also try to use another conventional tool, conditional breakpoints [Kes90]. Conditional
breakpoints check a condition at a particular program location and stop the program if this condition is true.
Conditional breakpoints fail to find our bug for the same reason: the condition cannot easily reference objects which
are not reachable from the scope containing the breakpoint. Yet we must find exactly such an object—the
BinaryExpression containing a duplicate reference to the child Expression object. To accomplish this task, the
programmer could write custom testing code for use by conditional breakpoints. For example, the javac compiler
could keep a list of all BinaryExpression objects and include methods that iterate over the list and check the
correctness of the AST. However, writing such code is tedious, and the testing code may be used only once, so the
effort of writing it is not easily recaptured. Finally, even with the test code at hand, the programmer still has to find all
assignments to the field right and place a breakpoint there; in javac, there are dozens of such statements. In summary,
the tool (conditional breakpoints) provides minimal support and the programmer ends up doing all the work “by
hand”.

A more effective way to check an inter-object constraint would be to combine conditional breakpoints with a query-
based debugger [LHS97]. Similar to an SQL database query tool, a query-based debugger (QBD) finds all object
tuples satisfying a given boolean constraint expression. For example, the query

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

would find the objects involved in the above javac error. The breakpoints would then carry the condition that the
above query return a non-empty result. Unfortunately, even well-optimized QBD executions would be inefficient for
this task. With hundreds or thousands of BinaryExpression objects, each query becomes quite expensive to evaluate,
and since the query is reevaluated every time a conditional breakpoint is reached, the program being debugged may
slow down by several orders of magnitude. (We will substantiate this claim in section 4.3.1.)

We propose a new solution, dynamic query-based debugging, which can overcome these problems. In addition to
implementing the regular QBD query model, a dynamic query-based debugger continually updates the results of
queries as the program runs, and can stop the program as soon as the query result changes. To provide this
functionality, the debugger finds all places where the debugged program changes a field that could affect the result of
the query and uses sophisticated algorithms to incrementally reevaluate the query. Therefore, a dynamic query-based
debugger finds the javac AST bug as soon as the faulty assignment occurs, and it does so with minimal programmer
effort and low program execution overhead.

We have implemented such a dynamic query-based debugger for Java. Our prototype is portable (written in 100%
pure Java), and surprisingly efficient. Experiments with large programs from the SPECjvm98 suite [SPEC98] show
that selection queries are very efficient for most programs, with a slowdown of less than a factor of two in most
experiments. Through measurements, we determined that 95% of all fields in the SPECjvm98 applications are
assigned less than 100,000 times per second. Using these numbers and individual evaluation times, our performance
model predicts that selection queries will have less than 43% overhead for 95% of all fields in the SPECjvm98
applications. More complicated join queries are less efficient but still practical for small query domains or programs
with infrequent queried field updates.

2. Query Model and Examples

Dynamic query-based debugging uses the query model proposed in QBD [LHS97]. The query syntax is as follows:



3

<Query> ::== <DomainDeclaration> { ; <DomainDeclaration> } .
<ConditionalExpression>

<DomainDeclaration> ::== <ClassName> [*] <DomainVariableName>
{ <DomainVariableName> }

The query has two parts: one or more DomainDeclarations that declare variables of class ClassName, and a
ConditionalExpression. The first part is called the domain part and the second the constraint part. Consider another
javac query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

The first part of the query defines the search domain of the query, using universal quantification. The domain part of
the above example should be read as “for all FieldExpressions fe and all FieldDefinitions fd...”. FieldExpression is a
class name and its domain contains all instances of the class. If a “*” symbol in a domain declaration follows the class
name (as in the javac query discussed in the introduction), the domain includes all objects of subclasses of the domain
class, otherwise the domain contains only objects of the indicated class itself.

The second part of the query specifies the constraint expression to be evaluated for each tuple of the search domain.
Constraints are arbitrary Java conditional expressions as defined in the Java specification §15.24 [GJS96] with certain
syntactic restrictions. We disallow variable increments which have no semantic meaning in a query. We currently also
disallow array accesses but plan to implement them in the future. Constraints can contain method invocations; we
assume that these methods are side effect free.

Semantically, the expression will be evaluated for each tuple in the Cartesian product of the query’s individual
domains, and the query result will include all tuples for which the expression evaluates to true (similarly to an SQL
select query). Conceptually, the dynamic debugger reevaluates a query after the execution of every bytecode, ensuring
that no result changes are unnoticed. The debugger stops the program whenever the result changes. In reality, the
debugger reevaluates the query as infrequently as possible without violating these semantics. In addition, the
debugger will reevaluate only the part of the query that changed since the last evaluation. We describe the incremental
reevaluation technique in detail in section 3.4.1.

We refer to queries with a single domain variable as selection queries; following common database terminology, we
call the rest of the queries join queries because they involve a join (Cartesian product) of two or more domain
variables. Join queries with equality constraints only (e.g., p1.x == p2.x) are hash joins because they can be evaluated
more efficiently using a hash table [LHS97].

2.1 Examples

We now discuss examples of queries that illustrate the need for dynamic query debuggers.

2.1.1 Javac Compiler

What are examples of inter-object constraint violations that may be difficult to trace back to their origins? We have
already discussed one possible error in the javac Java compiler in the introduction. Another error that could occur in
javac involves the relationship between FieldExpression and FieldDefinition objects. Consider a situation where a
FieldExpression object no longer refers to the FieldDefinition object that it should reference. Due to an error, the
program may create two FieldDefinition objects such that the FieldExpression object refers to one of them, while other
program objects reference the other FieldDefinition object (Figure 2). In other words, javac maintains a constraint that
a FieldExpression object that shares the type and the identifier name with a FieldDefinition object must reference the
latter through the field field. We can detect a violation of this constraint using the following query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd
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This complicated constraint can be specified and checked with a simple dynamic query, but it would be difficult to
verify using conditional breakpoints.

2.1.2 Ideal Gas Tank Example

Another program we examined is an applet simulating a tank with ideal gas molecules. Though this applet is a simple
simulation of gas molecules moving in the tank and colliding with the tank walls and each other, it has some
interesting inter-object constraints. First, all molecules have to remain within the tank, a constraint that can be
specified by a simple selection query:

Molecule* m. m.x < 0 || m.x > X_RANGE || m.y < 0 || m.y > Y_RANGE

Another constraint requires that molecules not occupy the same position as other molecules, and the following query
checks this constraint:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

This constraint is interesting because its violation is a transient failure. Transient failures disappear after some period
of time, so even though the program behaves differently than the programmer expected, queries will not be able to
detect failures if they are asked too late. The molecule collision error is such a transient failure—it will disappear as
the molecules continue to move. However, the applet will behave erroneously: for example, molecules that should
have collided with each other will pass through each other. Dynamic queries are necessary to find transient failures, as
a delayed query reevaluation may fail to detect the error entirely.

3. Implementation

We have implemented a Java dynamic query-based debugger in pure Java. Java contains a number of features that
simplified the implementation. We used the ability to write custom class loaders [LB98] to perform load-time code
instrumentation. Java’s bytecode class files proved simple to instrument. The debugger creates custom query
evaluation code by using load-time code generation. The debugger can be ported to other languages (e.g. Smalltalk)
that have an intermediate level format similar to bytecodes.

3.1 General Structure of the System

Figure 3 shows a data-flow diagram of the dynamic query-based debugger. To debug a program, the user runs a
standard Java virtual machine with a custom class loader. The custom class loader loads the user program and
instruments the bytecodes loaded, by adding debugger invocations for each domain object creation and relevant field
assignment. The class loader also generates and compiles custom debugger code. After loading, the Java virtual
machine executes the instrumented user program. Whenever the program reaches instrumentation points, it invokes
the custom debugger code, which calls other debugger runtime libraries to reevaluate the query and to generate query
results. The debugger currently does not handle multithreaded code.

The rest of this section discusses the most important parts of the debugger in more detail: how the debugger
instruments a Java program, what parts it instruments, and how it evaluates a query.

Figure 2. Another error in javac AST
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3.2 Java Program Instrumentation

To enable a dynamic query for a program, the user specifies a query string. The debugger then instruments class files
to invoke the debugger after all events that may change the result of the query. The debugger finds assignments to the
fields referenced in the query change set (section 3.3) and inserts debugger invocations after each one of them. The
system also inserts debugger invocations after each call to a constructor of a domain object.

Figure 4 shows an example of the instrumentation process for a Java method. To instrument class files, the loader
transforms them in memory into a malleable format using modified class file handling tools borrowed from the BCA
class library [KH98]. Then the loader finds all putfield bytecodes that assign to the fields of interest—like field x in
Figure 4—and replaces these putfield bytecodes with invokestatic bytecodes invoking debugger code. The system also
inserts such debugger invocations after each call to a constructor of a domain object. When the debugger replaces a
putfield bytecode with an invokestatic call, it also inserts the reference to the custom debug method of the
DebuggingCode class into the constant pool of the instrumented class. The custom method takes two arguments: the
object that the putfield would have updated—a Molecule object in the example—and the newValue value to be
assigned to the object field. These objects are already on the stack before execution of the putfield, so they will be
correctly passed as arguments to the debug method, and the debugger does no stack manipulation of the instrumented
method. Since the original putfield has been replaced by the invokestatic bytecode, the custom debug method
performs the assignment originally executed by the putfield. The debugger determines the name of the assigned field
and the correct types of objects and values from the class file’s constant pool. After instrumentation, the class loader
transforms the code back into the class file format and passes the image to the default defineClass method.

The class loader instruments assignments and object constructors that influence the query result. The next section
describes how the debugger determines which assignments and constructors to instrument.

3.3 Change Monitoring

The dynamic query debugger updates the query result every time the debugged program performs an operation that
may affect the query result. Thus, the program being debugged has to invoke the debugger after every event that could
change the query result. The query result may change because some object assigns a new value to one of its fields or
because a new object is constructed. However, not all field assignments and object creations affect the query. We call
the set of constructors and object field assignments affecting the results of a query the query’s change set. Though we
can use all assignments and all constructors as a conservative change set for any query, we are interested in a minimal
change set for efficient query evaluation. Such a change set contains only constructors of domain objects and
assignments to domain object fields referenced in a query.

Consider the Molecule query:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

Figure 3. Data-flow diagram of dynamic query-based debugger
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The change set of this query consists of the constructors of the Molecule class and its subclasses as well as
assignments to Molecule fields x and y. Assignments to other molecule fields such as color do not belong to the change
set.

The change set of a query tells the class loader what assignments and constructors it should instrument. The debugger
tracks all domain objects by maintaining domain object collections. Every time a domain object is created, the
program invokes the debugger which places the new domain object into its domain collection. The debugger uses the
domain collection in query evaluations to iterate through all domain objects. To maintain query correctness and to
facilitate garbage collection, the debugger should allow the garbage collector to delete dead objects from domain
collections. While such behavior can be implemented using weak pointers, we have not done so yet.

The change set of a query becomes complicated if constraints contain a chain of references. Consider a query for the
SPECjvm98 ray tracing program:

IntersectPt ip. ip.Intersection.z < 0

The Intersection field is a Point object, and the query result depends on its z value. The query result may change if the
z value changes, or if a new value is assigned to the Intersection field. Furthermore, the Point object referenced by the
Intersection field may be shared among multiple domain objects. In this case, a change in one Point object can affect
multiple domain objects. A chain of references also occurs when a domain instance method invokes methods on
objects referenced in its fields, and these methods in turn depend on the fields of the receiver. Tracking which objects
accessed through a chain of field references influence which domain objects becomes a complicated task; for
example, to do it efficiently, nested objects need to point back to the domain objects that reference them. To simplify
the prototype implementation, we support only the explicit chains of references in the query, and we do not handle
methods that access chains of references. Our debugger rewrites the query by splitting the chain into single-level
accesses and by adding additional domains and constraints. For example, the ray tracing query above is rewritten as:

IntersectPt ip; Point* __Intersection.
ip.Intersection == __Intersection && __Intersection.z < 0

Chain reference splitting adds overhead by introducing additional joins into the query but it also allows users to ask
more complex queries. The overhead can be an order of magnitude when a selection query is rewritten as a join query.
We do not handle native methods, because their debugging is outside the scope of a Java debugger.

To summarize, we use the change set of the query to instrument the Java program. The instrumented program calls the
debugger after every event that could change the result of the query, and the debugger reevaluates the query during
each call.

3.4 Overview of Query Execution

In this section we describe what happens after an instrumented event occurs in the debugged program. Whenever the
program invokes the debugger, it passes the object involved in the event. If the event is a field assignment, the

Figure 4. Java program instrumentation

...
x += ...;
...

...
22: iadd
23: putfield 37
26: aload_0
...

Compile

...
22: iadd
23: invokestatic debug
26: aload_0
...

public final class DebuggingCode implements RunTimeCode {
public static void debug(Molecule updatedObject, int newValue) {
... updatedObject.x = newValue; // replaces putfield 37

QueryTool.runTool(updatedObject); // invokes query evaluator
}

}

Load and instrument
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program also passes the new value to be assigned to the field. Figure 5 shows the control flow of the query execution.
First, the debugger checks whether the changed object is a domain object. Consider a query that finds Id objects with
a negative type code:

Id x. x.type < 0

Here, Id is a subclass of the Expression class, and the type field is defined in Expression. Thus, the program may
invoke the debugger when the type field inherited from the Expression class is assigned in an object of another
Expression subclass. For example, the program invokes the debugger after assigning the type field in an
ArithmeticExpression object. This object shares the type field with the domain class objects, but it does not belong to
the query domain, so the debugger immediately returns to the execution of the user program without reevaluating the
query.

If the object passes the domain test, the debugger checks whether the value being assigned to the object field is equal
to the value previously held by the field. For example, some molecules do not move in the ideal gas simulation, yet
their coordinates are updated at each simulation step. Such assignments do not change the result of the query and can
be ignored by the debugger1. The debugger does not perform this test if the invoking event is an object creation.

After these two tests, the debugger starts reevaluating the query. Our previous work on non-incremental query-based
debuggers [LHS97] contained a query evaluation algorithm similar to the evaluation of a relational database join
coupled with a selection. The dynamic query-based debugger improves upon the previous algorithm by using
incremental reevaluation as discussed below.

3.4.1 Incremental Reevaluation

When the program invokes the debugger, it passes the changed object to the debugger. From the properties of our
change sets, we know that this object is the only object that changed since the last query evaluation. Consequently, a
full reevaluation of the query for all domain objects is unnecessary. We use incremental reevaluation techniques
developed for updates of materialized views in databases [BC79, BLT86] to speed up query execution. Consider a
query, a join of three domains A * B * C, e.g.,

A a; B b; C c.  a.x == b.y && b.z < c.w

The “*” symbol denotes a Cartesian product with some selection constraint; the “+” symbol below denotes set union.
If an object of domain B changes, the new result of the query is

A * (B + ∆B) * C = (A * B * C ) + (A * ∆B * C)

The first part of the result is the result of the previous query evaluation. The debugger stores this result—usually
empty for assertion queries—and does not need to reevaluate it. The second part of the result contains only the
changed object (∆B) of domain B combined with objects of the other domains. The debugger evaluates the changed
part in the same way as it would evaluate the whole query. Figure 6 shows an incremental evaluation of changes in the
query result. The execution starts with the changed object ∆B passed from the user program. Because this is the only
object for which the debugger evaluates the first constraint, the intermediate result is likely to be empty. In general,
the size of intermediate results is much smaller in the incremental evaluation, speeding up the query evaluation. If
intermediate results are not empty, the debugger continues the evaluation in the usual manner and produces an
incremental result (A * ∆B * C). The system then merges the result with the previous result to form the complete query
result.

1 This test is just one example of tests that quickly verify whether the query result changed due to the assignment. We are currently
investigating more sophisticated tests that detect more query-invariant assignments.

Same value
assignment test

Instrumented
 event Domain test

Query
reevaluation

Result
update

Figure 5. Control flow of query execution



8

The query evaluation is further optimized by finding efficient join orders and by using hash joins as described in
[LHS97]. Because sizes of domains change during program runtime and we cannot efficiently determine the
selectivities of constraints, we use simple heuristics for join ordering: execute selections first, equality joins next, and
inequality constraints last.

3.4.2 Custom Code Generation for Selection Queries

Constraints of selection queries are usually very simple and can be evaluated very fast. Instead of performing the
general query execution algorithm described in section 3.4.1, which goes through numerous general steps and calls a
number of methods, the debugger can evaluate just the few tests necessary to check the selection constraints. Because
these tests depend on the query asked, the code for their evaluation has to be generated at program load time. During
the loading of the user program, the debugger generates a Java class with a debug method. We show such a method in
Figure 7 for the query

Molecule1 m. m.x > 350

The first three statements of the method contain the code common for both unoptimized and optimized versions. This
code performs the domain test and the same value assignment test described in section 3.4. The optimized code that
follows evaluates the selection constraint on the changed object and calls the debugger runtime only if the query has a

non-empty result. The debugger uses the debug method as an entry point that the user program calls when it reaches
instrumentation points. With custom code generated, the debug method contains all code needed to evaluate a
selection, so the reevaluation costs only one static method call. Furthermore, the debug method—a member of a final
class—may even be inlined into the instrumentation points by a JIT compiler. We could also inline the bytecodes into
the instrumented method.

4. Experimental Results

Ideally, a test of the efficiency of a dynamic query-based debugger would use real debugging queries asked by
programmers using the tool for their daily work. Though we tried to predict what queries programmers will use, each
debugging situation is unique and requires different queries. To perform a realistic test of the query-based debugger
without writing hundreds of possible queries, we selected a number of queries that in complexity and overhead cover
the range of queries asked in debugging situations. The selected queries contain selection queries with low and high
cost constraints. The test also includes hash-join and nested-join queries with different domain sizes. The queries

Collection A

Figure 6. Incremental query evaluation

Changed object ∆B Collection (A * ∆B)Instrumented
assignment

Collection (A * ∆B * C)

+
Collection (A * B * C)

Collection C

Figure 7. Selection evaluation using custom code

public final class DebuggingCode implements RunTimeCode {
public static void debug (Molecule updatedObject, int newValue) {

// Code common for both general and optimized versions
if (! (updatedObject instanceof Molecule1))

{ updatedObject.x = newValue; return; }
if (updatedObject.x == newValue)  return;
updatedObject.x = newValue;
// Instead of calling general query evaluation method,
// evaluate constraint here
if (updatedObject.x > 350) QueryTool.outputResult(updatedObject);

}



9

check programs that range from small applets to large applications and (for stress-tests) microbenchmarks. These
applications invoke the debugger with frequencies ranging from low to very high, where a query has to be evaluated
at every iteration of a tight loop. Consequently, the experimental results obtained for the test set should indicate the
range of performance to be expected in real debugging situations.

For our tests we used an otherwise idle Sun Ultra 2/2300 machine (with two 300 MHz UltraSPARC II processors)
running Solaris 2.6 and Solaris Java 1.2 with JIT compiler (Solaris VM (build Solaris_JDK_1.2_01, native threads,
sunwjit)) [Sun99]. Execution times are elapsed times and were measured with millisecond accuracy using the
System.currentTimeMillis() method.

4.1 Benchmark Queries

To test the dynamic query-based debugger, we selected a number of structurally different queries (Table 1) for a
number of different programs (Table 2):

• Queries 1 and 13 check a small ideal gas tank simulation applet that spends most of the time calculating molecule
positions and assigns object fields very infrequently. It has 100 molecules divided among Molecule1, Molecule2
and Molecule3 classes. The application performs 8,000 simulation steps.

• Queries 2 and 14 check the Decaf Java subset compiler, a medium size program developed for a compiler course
at UCSB. The Token domain contains up to 120,000 objects.

• Query 3 checks the Jess expert system, program from the SPECjvm98 suite [SPEC98].

Query

Sl
ow

do
w

n

Invocation
frequency
(events / s)

Molecule1 z. z.x > 350 1.02 15,000

Id x. x.type < 0 1.11 16,000

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 1.25 169,000

spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 1.18

1,900,000
spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 1.27

spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 1.37

spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 5.83

spec.benchmarks._201_compress.Compressor z. z.in_count < 0 1.18 933,000

spec.benchmarks._201_compress.Compressor z. z.out_count < 0 1.10
196,000

spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 1.83

spec.benchmarks._205_raytrace.Point p. p.x == 1 1.23 787,000

spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.98 2,300,000

Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join) 2.13 54,000

Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 3.43 25,000

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join) 229 350,000

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0 (1x1 hash join)

157 1,500,000

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count  (1x1 join)

77 2,600,000

Test5 z.  z.x < 0 6.4 42,000,000

TestHash5 th; TestHash1 th1.  th.i == th1.i (1x20 hash join) 228
40,000,000

TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 930

Table 1. Benchmark queries
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• Queries 4–10, and 16–17 check the compress program from the SPECjvm98 suite. Our queries reference
frequently updated fields of compress.

• Queries 11–12 and 15 check the ray tracing program from the SPECjvm98 suite. The Point domain contains up to
85,000 objects; the IntersectPt domain has up to 8,000 objects.

• Queries 18–20 check artificial microbenchmarks. These microbenchmarks stress test debugger performance by
executing tight loops that continuously update object fields.

Structurally, queries can be divided into the following classes:

• Queries 1–12 and 18 are simple one-constraint selection queries with a wide range of constraint complexities. For
example, query 4 has a very simple low-cost constraint that compares an object field to an integer. The more costly
constraint in query 5 invokes a method to retrieve an object field. Another costly alternative constraint (query 6)
invokes a comparison method that takes a value as a parameter. Finally, the most costly constraint in query 7
performs expensive mathematical operations before performing a comparison. Queries 8 and 9 have very similar
constraints, but differ 4.8 times in debugger invocation frequency. In this paper, by “debugger invocation
frequency” we mean the frequency of events in the original program that would trigger a debugger invocation, i.e.,
the invocation frequency for a debugger with no overhead. Query 12 compares the parameter of the method to the
distance of a point to the origin. This query combines costly mathematical operations with increased debugger
invocation frequency, because its result depends on all three coordinates of Point objects.

• Queries 13–17 and 19–20 are join queries. Queries 13–16 and 19 can be evaluated using hash joins. The evaluation
of queries 17 and 20 has to use nested-loop joins. For join queries, the slowdown depends both on the debugger
invocation frequency and sizes of the domains. Queries 13–14 have low invocation frequencies; queries 15–17,
19–20 have high invocation frequencies. Queries 14 and 15 have large domains.

In the next section, we discuss the performance of these queries. Section 4.3 then discusses the efficiency benefits of
incremental evaluation, custom selection code, and unnecessary assignment detection.

4.2 Execution Time

Figure 8 shows the program execution slowdown for application programs when queries are enabled. The slowdown
is the ratio of the running time with the query active to the running time without any queries. For example, the
slowdown of query 3 indicates that the Jess expert system ran 25% slower when the query was enabled.

Overall the results are encouraging. All selection queries except query 7 have overheads of less than a factor of 2. The
median slowdown is 1.24. We expect overheads of common practical selection queries to be in the same range as our
experimental queries; the performance model discussed in section 5 supports this prediction.

Join queries have overheads ranging from 2.13 to 229 for applications. Hash queries (which can be used for equality
joins) are efficient for queries 13–14, and other joins are practical for query 13 in which the domains contain only 33
objects each. Queries 15–17 have large overheads because of frequent invocations (e.g., 2.6 million times per second
for query 16) and large domains. Join query performance is acceptable if join domains are small, and the program
invokes the debugger infrequently. For large domains and frequently invoked queries, the overhead is significant.

Microbenchmark stress-test queries 18–20 show the limits of the dynamic query-based debugger. The benchmark
updates a single field in a loop 40 million times per second. When queries depend on this field, the program

Application Size (Kbytes) Execution time (s)

Compress  17.4 50

Jess 387.2 22

Ray tracer 55.7 17

Decaf 55 15

Ideal gas tank 14.3 57

Table 2. Application sizes and execution times
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slowdown is significant. Selection query 18 has a slowdown factor of 6.4, the hash-join evaluation has a slowdown of
228 times, and the slower nested-loop join that checks twenty object combinations in each evaluation has a slowdown
of 930 times.

Though the microbenchmark results indicate that in the worst case the debugger can incur a large slowdown, these
programs represent a hypothetical case. Such frequent field updates are possible only with a single assignment in a
loop. Adding a few additional operations inside the loop drops the field update frequency to 3 million times per
second which is more in line with the highest update frequencies in real programs. For such update frequencies, the
slowdown is much lower as indicated by query 4. We discuss the likelihood of high update frequencies in section 5.

Figure 9 shows the components of the overhead:

• Loading time, the difference between the time it takes to load and instrument classes using a custom class loader,
and the time it takes to load a program during normal execution.

• Garbage collection time, the difference between the time spent for garbage collection in the queried program and
the GC time in the original program.

• First evaluation time, the time it takes to evaluate the query for the first time. For join queries, the first query is the
most expensive, because it sets up data structures needed for future query reevaluations. We separate this time
from the rest of the query evaluation time, because it is a fixed overhead incurred only once.
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Figure 8. Program slowdown (queries 15—20 not shown)

5.83

The slowdown is the ratio of the running time with the query active to the running time without any queries. For example,
the slowdown of query 3 indicates that the Jess expert system ran 25% slower when the query was enabled.
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Figure 9. Breakdown of query overhead as a percentage of total overhead
For example, 3% of query 14 overhead is spent on instrumentation, 34% on garbage collection,
3% in the first evaluation, and 60% in subsequent reevaluations.
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• Evaluation time, the time spent evaluating the query. This component does not include the first evaluation time.
The first evaluation time and the evaluation time together compose the total evaluation time.

Figure 9 shows the components of the overhead. For example, 3% of the overhead of query 14 is spent on
instrumentation, and 34% on garbage collection. The total evaluation time is 63% of the overhead, with 3% spent in
the first evaluation, and 60% spent in subsequent reevaluations. On average, the largest part of the overhead is the
evaluation time (75.5%), while loading takes only 17% and garbage collection has a negligible overhead (less than
7%) in most cases1. The loading overhead becomes a significant factor when the loaded class hierarchy is large, as in
query 3 on the Jess system. The loading overhead also takes a larger proportion of time when query reevaluations are
infrequent or fast as in queries 1, 2, 9, and 11. Garbage collection was not a significant factor except in query 14
which creates 120,000 token objects, and in query 1 which has such a small absolute overhead that even a slight
increase in GC and loading time becomes a large part of the overhead. Since the evaluation component dominates the
overhead, especially in high-overhead, long-running queries, evaluation optimizations are very important for good
performance. We discuss some optimizations already reflected in this graph in the next section.

4.3 Optimizations

To evaluate the benefit of optimizations implemented in the dynamic query-based debugger, we performed a number
of experiments by turning off selected optimizations.

1 Experiments were run with 128M heap, a factor that decreased the GC overhead.

Query
Slowdown
versus non-

instrumented

Slowdown
versus

optimized

Molecule1 z. z.x > 350 1.19 1.16

Id x. x.type < 0 613 554

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 7135 5,725

spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 475 402

spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 474 373

spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 587 428

spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 513 88

spec.benchmarks._201_compress.Compressor z. z.in_count < 0 275 233

spec.benchmarks._201_compress.Compressor z. z.out_count < 0 37 33.8

spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 40 21.8

spec.benchmarks._205_raytrace.Point p. p.x == 1 10,500 8,496

spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 17,800 8,972

Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join) 21.96 10.3

Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 1,973 576

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join) 12,400 54

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0  (1x1 hash join)

1,708 11

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count (1x1 join)

697 9

Test5 z.  z.x < 0 5,213 821

TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join) 1,491 6.6

TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 5,602 6.02

Table 3. Overhead of non-incremental evaluation
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4.3.1 Incremental Reevaluation

The dynamic query debugger benefits considerably from the incremental evaluation of queries. We disabled
incremental query evaluation and reran all queries. Table 3 shows the results of this experiment. The first column of
numbers in the table shows the ratio of non-incremental query running time to the running time of the original
program. The second column shows the ratio of non-incremental query running time to the running time of fully
optimized incremental query evaluation. For example, query 2 had a factor of 613 overhead and ran for 2.5 hours. In
contrast, the same query ran 554 times faster using the incremental reevaluation, had only 11% overhead and finished
in 16.4 seconds. Query 1 was the only query that the non-incremental debugger could evaluate in a reasonable time.
The overheads of all other queries were enormous; some programs would have run for more than a day. (For queries
3–12 and 14–17, we stopped query reevaluation after the first 100,000 evaluations and estimated the total overhead.)
Despite the large overall overhead, the individual non-incremental query evaluations are reasonably fast. For
example, even for large join queries 14 and 15, a single query evaluation only took about 50 ms.

The join queries on compress have an overhead of only 9–11 compared to the incremental optimized version. These
joins did not benefit much from incremental evaluation and its optimizations because the domains of these joins
contain only a single object.

Overall, the experiments with non-incremental evaluation of queries show that incremental evaluation is imperative,
greatly reducing the overhead and making a much larger class of dynamic queries practical for debugging.

4.3.2 Custom Generated Selection Code

To estimate the benefit of generating custom code as discussed in section 3.4.2, we ran all selection queries with the
optimization disabled. The results of the experiment are shown in Table 4. The first column of numbers shows the
slowdown of the unoptimized version compared to the original program. The second column indicates the slowdown
of the unoptimized version compared to the optimized version. For example, query 4 ran 68.5 times slower than the
original program and 58 times slower than the optimized query.

The ideal gas tank applet and Decaf compiler queries did not benefit from this optimization, because these programs
reevaluate the query infrequently, and the optimization benefit is masked by variations in start-up overhead. All other
queries show significant speedups with the optimization enabled. The benefit of the optimization increases with the
frequency of debugger invocations; overall, custom generated selection code produces a median speedup of 15.

Query
Slowdown
versus non-

instrumented

Slowdown
versus

optimized

Molecule1 z. z.x > 350 1.05 1.03

Id x. x.type < 0 1.46 1.34

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 11.70 9.26

spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 68.5 58

spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 64 51

spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 65 47

spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0) 69.6 12

spec.benchmarks._201_compress.Compressor z. z.in_count < 0 43.6 37

spec.benchmarks._201_compress.Compressor z. z.out_count < 0 10.5 9.6

spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0) 11 6

spec.benchmarks._205_raytrace.Point p. p.x == 1 21 15

spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 61 31

Test5 z.  z.x < 0 1,952 307

Table 4. Benefit of custom selection code (selection queries only)
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4.3.3 Same Value Assignment Test

Before evaluating a query after a field assignment, the debugger checks whether the value being assigned to the object
field is equal to the value previously held by the field. Such assignments do not change the result of the query and can
be ignored by the debugger.

Table 5 shows that the number of unnecessary assignments differs highly depending on the programs or fields. While
some programs and fields do not have them at all, others have from 7% to 95% of such assignments. Only the ideal
gas tank simulation, the Jess expert system, and the ray tracing application have unnecessary assignments to the
queried fields.

To check the efficiency of the same-value test, we disabled it while leaving all other optimizations enabled. The
results show that the test does not make much of a difference in query evaluation for most queries. For selections that
can be evaluated fast, the cost of the same-value test is similar to the cost of the full selection evaluation. Only when
the selection constraint is costly (as in query 4), does the same-value test reduce the overhead. For joins, the cost
reduction is significant for the ideal gas tank query that contains 54% unnecessary assignments. For other joins, the
percentage of unnecessary assignments is too low to make a difference.

To summarize, the test whether an assignment changes a value of a field costs only one extra comparison per
debugger invocation. It does not change the overhead for most programs, but saves time when the number of
unnecessary assignments is large or the query expression is expensive.

5. Performance Model

To better predict debugger performance for a wide class of queries, we constructed a query performance model. The
slowdown depends on the frequency of debugger invocations and on the individual query reevaluation time. This
relationship can be expressed as follows:

T = Toriginal (1 + Tnochange * Fnochange + Tevaluate * Fevaluate)

This formula relates the total execution time of the program being debugged T and the execution time of the original
program Toriginal using frequencies of field assignments in the program and individual reevaluation times. The model
divides field assignments into two classes:

• Assignments that do not change the value of a field. These assignments do not change the result of the query. The
debugger has to perform only two comparisons in this case—a domain test and the value equality test, so it spends
a fixed amount of time (Tnochange) in such invocations independent of the query. We calculated Tnochange by
running a query on a program that repeatedly assigned the same value to the queried field; for the machine/JVM
combination we used, Tnochange = 66 ns.

• Assignments that lead to the reevaluation of a query. The time to reevaluate a query Tevaluate for such an assignment
depends on the query structure and on the cost of the query constraint expression. For each query, we calculate

Query
Slowdown

versus
optimized

%
unnecessary
assignments

Molecule1 z. z.x > 350 0.99 95%

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 0.997 7%

spec.benchmarks._205_raytrace.Point p. p.x == 1 0.988 15%

spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.16 40%

Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join) 1.61 54%

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join) 1.02 15%

Table 5. Unnecessary assignment test optimization
(excluding queries with no unnecessary assignments)
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Tevaluate by dividing the additional time it takes to run a program with a query into the number of debugger
invocations. This calculation gives an exact result for programs that have no unnecessary assignments
(Fnochange = 0). For example, for query 18 Tevaluate is 131ns. Tevaluate for query 4 is 140 ns, which is close to the
time to evaluate a similar query in a microbenchmark. When constraints are more costly, Tevaluate increases; for
example, for the highest cost selection query (query 10) it is 4.26 µs. It is even higher for join queries where it
depends on the size of domains in joins; for example, for query 16 it is 60 µs, and for query 15 which has large
domains, it is 546 µs.

Using the values of reevaluation times and the frequency of assignments to the fields of the change set, we can
estimate the debugging overhead. First, we determine the typical field assignment frequency.

5.1 Debugger Invocation Frequency

Debugger invocation frequency is an important factor in the slowdown of programs during debugging. The program
invokes the debugger after object creation and after field assignments. For most queries, the field assignment
component dominates the debugger invocation frequency. To find the range of field assignment frequencies in
programs, we examined the microbenchmarks and the SPECjvm98 application suite. We instrumented the
applications to record every assignment to a field. Table 7 shows results of these measurements.

Query
Fevaluate

(assignments

per second)

Tevaluate
(µs)

Molecule1 z. z.x > 350 N/A N/A

Id x. x.type < 0 16,000 3.73

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 169,000 3

spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0

1,900,000

0.140

spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 0.208

spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 0.286

spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 3.7

spec.benchmarks._201_compress.Compressor z. z.in_count < 0 933,000 0.193

spec.benchmarks._201_compress.Compressor z. z.out_count < 0
196,000

0.488

spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 4.26

spec.benchmarks._205_raytrace.Point p. p.x == 1 787,000 0.486

spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 2,300,000 0.461

Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join) N/A N/A

Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 25,000 56.8

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join) 350,000 546

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0 (1x1 hash join)

1,500,000 60

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count (1x1 join)

2,600,000 51

Test5 z.  z.x < 0 42,000,000 0.131

TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join)
40,000,000

5.7

TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 23

Table 6. Frequencies and individual evaluation times
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The maximum field assignment frequency in microbenchmarks is 40 million assignments per second, but that would
be difficult to reach in an application because the microbenchmarks contain a single assignment inside a loop. The
compress program has the highest field assignment frequency in the SPECjvm98 application suite, 1.9 million
assignments per second. Other SPEC applications, as well as the Decaf compiler and the ideal gas tank applet, have
much lower maximum field assignment frequencies.

Figure 10 shows the frequency distribution of field assignments in the SPECjvm98 applications. The left graph
indicates how many fields have an assignment frequency in the range indicated on the x axis. For example, only four
fields are assigned between one million and two million times per second. The right graph shows the cumulative
percentage of fields that have assignment frequencies lower than indicated on the x axis; 95% of all fields have fewer
than 100,000 assignments per second.

To predict the overhead of a typical selection query, we can now calculate the overhead as a function of invocation
frequency. Figure 11 uses the minimum (130 ns) and maximum (4.26 µs) values of Tevaluate from Table 6 to plot the
estimated selection query overhead for a range of invocation frequencies. For example, a selection query on a field
updated 500,000 times per second would have an overhead of 6.5% if its reevaluation time was 130 ns. If the
reevaluation time was 4.26 µs, the overhead will be a factor of 3.13. The graph reveals that selection queries on fields
assigned less than 100,000 times a second—95% of fields—have a predicted overhead of less than 43% even for the
most costly selection constraint. For less costly selections, the query overhead is acceptable for all fields.

In the current model, the evaluation time Tevaluate models all sources of query overhead. This time includes the actual
reevaluation time as well as the additional garbage collection time, the class instrumentation cost, and the first
evaluation cost. It would be more exact to model each of these overheads separately. However, for long running
programs the evaluation time dominates the total cost, so the values of Tevaluate are likely to fall in the range we have
covered.

Application Maximum frequency
(field assignments per second)

Original program
execution time (s)

Compress 1,900,000 50.4

Jess 169,000 22.45

Db 254 75

Javac 217,000 38

Mpegaudio 495,000 57.4

Jack 27,000 27

Ray tracer 787,000 17

Decaf 56,000 15

Ideal gas tank 23,150 57

Microbenchmark 40,000,000 2.4

Table 7. Maximum field assignment frequencies
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Figure 10. Field assignment frequency in SPECjvm98
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In summary, the performance model predicts that most selection queries will have less than 43% overhead. The model
can be used as a framework for concrete overhead predictions and future model refinements.

6. Queries with Changing Results

So far we discussed using dynamic queries for debugging, where the program stops as soon as the query returns a
non-empty result. However, programmers can also use queries to monitor program behavior. For example, in the ideal
gas tank simulation, users may want to monitor all molecule near-collisions with a query:

Molecule* m1 m2. m1.closeTo(m2) && m1 != m2

Programmers may use this information to check the frequency of near-collisions, to find out if near-collisions are
handled in a special way by the program, or to check the correspondence of program objects with the visual display of
the simulation. In this case, the debugger should not stop after the result becomes non-empty, but instead should
continue executing the program and updating the query result as it changes. Such monitoring, perhaps coupled with
visualization of the changing result, can help users understand abstract object relationships in large programs written
by other people. How can a debugger support continuous updating of query results while the program executes?

Query Slowdown

Molecule1 z. z.x < 200 1.05

Id x. x.type == 0 1.23

spec.benchmarks._202_jess.jess.Token z. z.sortcode == 0 1.3

spec.benchmarks._201_compress.Compressor z. z.OutCnt == 0 1.19

spec.benchmarks._201_compress.Compressor z. z.out_count == 0 1.09

Molecule1 z; Molecule2 z1. z.x < z1.x && z.y < z1.y (33x33 join) 1.47

Lexer l; Token t. l.token == t && t.type == 0 (120,000x600 hash join) 4.09

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
(p.z == ip.t) && (p.z > 100) (85,000x8,000 hash join) 212.4

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt == z.out_count (1x1 hash join) 9.07

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt < z.InCnt (1x1 join) 127

Test5 z. z.x % 2 == 0 45

Table 8. Benchmark queries with non-empty results
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Figure 11. Predicted slowdown
The graph shows the predicted overhead as a function of update frequency. For example, the predicted overhead of a low-cost
selection query on a field updated 500,000 times per second is 6.5%; the predicted overhead of a high-cost query with the same
frequency is a factor of 3.13.
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The dynamic query-based debugger described above needs only a few changes to support monitoring queries. The
basic scheme and the implementation of the dynamic query-based debugger discussed in section 3 remain the same.
The only new component of the debugger is a module that maintains the current query result. As discussed in
section 3.4.1, the debugger reevaluates only the changed part of the query. Consequently, the result handling module
must store the query result from the previous evaluation and then merge it with the new partial result. To achieve that,
after query execution the debugger deletes all tuples from the previous result that contain the changed domain object
and inserts the new tuples generated by the incremental reevaluation.

Experiments with queries similar to the ones in Table 1 show that adding the query result update functionality does
not significantly change the query evaluation overhead (Table 8). The only exception is the microbenchmark selection
query 11 which updates the query result during each reevaluation. Consequently, the overhead of the selection
increases from 6.4 times to 45 times, although part of this increase can be attributed to the more costly selection
constraint. However, such frequent result updates are unlikely for most monitoring queries: programmers can only
absorb infrequent result changes, so, if results change rapidly, the display will be unintelligible unless it is artificially
slowed down or used off-line.

To summarize, monitoring queries are useful for understanding and visualizing program behavior. With slight
modifications our debugger supports monitoring queries. Unless the result changes very rapidly, the additional
overhead of monitoring query execution is insignificant when compared to similar debugging queries.

7. Related Work

We are unaware of other work that directly corresponds to dynamic query-based debugging. The query-based
debugging model and its non-dynamic implementation are presented in a previous paper [LHS97].

Extensions of object-oriented languages with rules as in R++ [LMP97] provide a framework that allows users to
execute code when a given condition is true. However, R++ rules can only reference objects reachable from the root
object, so R++ would not help to find the javac error we discussed. Due to restrictions on objects in the rule, R++ also
does not handle join queries.

Sefika et al. [SSC96] implemented a system allowing limited, unoptimized selection queries about high-level objects
in the Choices operating system. The system dynamically shows program state and run-time statistics at various
levels of abstraction. Unlike our dynamic query-based debugger, the tool uses instrumentation specific to the
application (Choices).

While no one has investigated the query-based debugging specifically, various researchers have proposed a variety of
enhancements to conventional debugging [And95, Cop94, DHKV93, GH93, GWM89, KRR94, Laf97, LM94, LN97,
WG94]. The debuggers most closely related to dynamic query-based debugging visualize object relationships—
usually references or an object call graph. Duel [GH93] displays data structures by using user script code. HotWire
[LM94] allows users to specify custom object visualizations in constraint language. Look! [And95], Object
Visualizer [DHKV93], PV [KRR94], and Program Explorer [LN97] provide numerous graphical and statistical run-
time views with class-dependent filtering but do not allow general queries. Our debugger can gather statistical data
through queries with non-empty results (“How many lists of size greater than 500 exist in the program?”) but does not
display animated statistical views.

Visualizing debuggers gather information by either instrumenting the source code [DHKV93, LM94] or by using
program traces [KRR94, LN97]. A port of our debugger to C++ would have to use one of these techniques. Laffra
[Laf97] discusses visual debugging in Java using source code instrumentation or JVM changes. We opted for the third
method—class file instrumentation at load time. Consens et al. [CHM94, CMR92] use the Hy+ visualization system
to find errors using post-mortem event traces. De Pauw et al. [DLVW98] and Walker et al. [WM+98] use program
event traces to visualize program execution patterns and event-based object relationships, such as method invocations
and object creation. This work is complementary to ours because it focuses on querying and visualizing run-time
events while we query object relationships.
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Dynamic query-based debugging extends work on data breakpoints [WLG93]—breakpoints that stop a program
whenever an object field is assigned a certain value. Pre-/postconditions and class invariants as provided in Eiffel
[Mey88] can be thought of as language-supported dynamic queries that are checked at the beginning or end of
methods. Unlike dynamic queries, they are not continuously checked, they cannot access objects unreachable by
references from the checked class, nor can they invoke arbitrary methods. Dynamic queries could be used to
implement class assertions for languages that do not provide them. The current implementation of dynamic queries
cannot use the “old” value of a variable, as can be done in postconditions. We view the two mechanisms as
complementary, with queries being more suitable for program exploration as well as specific debugging problems.

Software visualization systems such as BALSA [Bro88], Zeus [Bro91], TANGO/XTANGO/POLKA [Sta90], Pavane
[Rom92], and others [HKWJ95, Mos97, RC93] offer high-level views of algorithms and associated data structures.
Software visualization systems aim to explain or illustrate the algorithm, so their view creation process emphasizes
vivid representation. Hart et al. [HKR97] use Pavane for query-based visualization of distributed programs. However,
their system only displays selected attributes of different processes and does not allow more complicated queries.

Dynamic queries are related to incremental join result recalculation in databases [BC79, BLT86]. We use the basic
insights of this work to implement the incremental query evaluation scheme. Coping with inter-object constraints in
the extended ODMG model [BG98] may require methods similar to dynamic query-based debugging.

Slicing [Wei81, Tip95] determines the program statements that affect a certain program point. It could be modified to
determine the change sets of queries.

8. Conclusions

The cause-effect gap between the time when a program error occurs and the time when it becomes apparent to the
programmer makes many program errors hard to find. The situation is further complicated by the increasing use of
large class libraries and complicated pointer-linked data structures in modern object-oriented systems. A misdirected
reference that violates an abstract relationship between objects may remain undiscovered until much later in the
program’s execution. Conventional debugging methods offer only limited help in finding such errors. Data
breakpoints and conditional breakpoints cannot check constraints that use objects unreachable from the statement
containing the breakpoint.

We have described a dynamic query-based debugger that allows programmers to ask queries about the program state
and updates query results whenever the program changes an object relevant to the query, helping programmers to
discover object relationship failures as soon as they happen. This system combines the following novel features:

• An extension of query-based debugging to include dynamic queries. Not only does the debugger check object
relationships, but it determines exactly when these relationships fail while the program is running. This technique
closes the cause-effect gap between the error’s occurrence and its discovery.

• Implementation of monitoring queries. The debugger helps users to watch the changes in object configurations
through the program’s lifetime. This functionality can be used to better understand program behavior.

The implementation of the query based debugger has good performance. Selection queries are efficient with less than
a factor of two slowdown for most queries measured. We also measured field assignment frequencies in the
SPECjvm98 suite, and showed that 95% of all fields in these applications are assigned less than 100,000 times per
second. Using these numbers and individual evaluation time estimates, our debugger performance model predicts that
selection queries will have less than 43% overhead for 95% of all fields in the SPECjvm98 applications. Join queries
are practical when domain sizes are small and queried field changes are infrequent.

Good performance is achieved through a combination of two optimizations:

• Incremental query evaluation decreases query evaluation overhead by a median factor of 160, greatly expanding
the class of dynamic queries that are practical for everyday debugging.

• Custom code generation for selection queries produces a median speedup of 15, further improving efficiency for
commonly occurring selection queries.
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We believe that dynamic query-based debugging adds another powerful tool to the programmer’s tool chest for
tackling the complex task of debugging. Our implementation of the dynamic query-based debugger demonstrates that
dynamic queries can be expressed simply and evaluated efficiently. We hope that future mainstream debuggers will
integrate a similar functionality, simplifying the difficult task of debugging and facilitating the development of more
robust object-oriented systems.
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