
JavaScript Instrumentation for Browser Security

Dachuan Yu Ajay Chander Nayeem Islam Igor Serikov
DoCoMo Communications Laboratories USA, Inc.

{yu,chander,nayeem,iserikov}@docomolabs-usa.com

Abstract
It is well recognized that JavaScript can be exploited to launch
browser-based security attacks. We propose to battle such attacks
using program instrumentation. Untrusted JavaScript code goes
through a rewriting process which identifies relevant operations,
modifies questionable behaviors, and prompts the user (a web page
viewer) for decisions on how to proceed when appropriate. Our so-
lution is parametric with respect to the security policy—the policy
is implemented separately from the rewriting, and the same rewrit-
ing process is carried out regardless of which policy is in use. Be-
sides providing a rigorous account of the correctness of our solu-
tion, we also discuss practical issues including policy management
and prototype experiments. A useful by-product of our work is an
operational semantics of a core subset of JavaScript, where code
embedded in (HTML) documents may generate further document
pieces (with new code embedded) at runtime, yielding a form of
self-modifying code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Operational Semantics

General Terms Languages, Security, Theory

Keywords JavaScript, program instrumentation, edit automata,
web browser

1. Introduction
JavaScript [4] is a scripting language designed for enhancing web
pages. JavaScript programs are deployed in HTML documents and
are interpreted by all major web browsers. They provide useful
client-side computation facilities and access to the client system,
making web pages more engaging, interactive, and responsive.

Unfortunately, the power and ubiquity of JavaScript has also
been exploited to launch various browser-based attacks. On the one
hand, there have been criminally serious attacks that steal sensitive
user information, using, for example, techniques such as cross-site
scripting (XSS) [11] and phishing [3]. On the other hand, there have
been relatively benign annoyances which degrade the web-surfing
experience, such as popping up advertising windows and altering
browser configurations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’07 January 17–19, 2007, Nice, France
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

Aiming to thwart various attacks launched through JavaScript,
we propose to regulate the behavior of untrusted JavaScript code
using program instrumentation. Incoming script goes through a
rewriting process which identifies and modifies questionable op-
erations. At runtime, the modified script will perform necessary
security checks and potentially generate user prompts, which are
guided by a customizable security policy. Script that violates the
policy will either be rewritten to respect the policy or stopped at
runtime before the violation occurs unless the user decides to allow
it. Compared with existing browser-security tools, which typically
target specific attacks only, our approach enables a unified frame-
work that enforces various security policies with the same underly-
ing mechanism.

Although program instrumentation has been studied before, its
application to JavaScript and browser security raises some interest-
ing issues.

First, JavaScript has an interesting execution model where code,
embedded in HTML documents, produces further HTML docu-
ments when executed. The produced HTML documents may also
have code embedded in them. This gives rise to a form of self-
modifying code which we refer to as higher-order script (as in
script that generates other script). Higher-order script provides
much expressiveness and is commonly used in many major web-
sites. Unfortunately, it can also be exploited to circumvent a naı̈ve
rewriting mechanism. Previous work [20, 1] on the formal se-
mantics of JavaScript subsets did not consider higher-order script,
which limits its applicability. This work provides a rigorous charac-
terization of higher-order script using an operational semantics of a
subset of JavaScript that we call CoreScript. It is therefore a useful
step toward understanding some tricky behaviors of JavaScript and
preventing sophisticated exploits that employ higher-order script.

Next, we present the instrumentation of CoreScript programs as
a set of formal rewriting rules. The rewriting is performed fully syn-
tactically, even in the presence of higher-order script whose content
is unknown statically. The runtime behavior of the instrumented
code is confined by a security policy, in the sense that it calls a
policy interface for bookkeeping and security checking for relevant
operations. We show that our instrumentation is sound by proving
that the observable security events in the execution of instrumented
code respect the security policy.

We encode security policies using edit automata [10]. In partic-
ular, we make use of a policy interface for achieving a separation
between policy management and the rewriting mechanism, iden-
tify what it takes for an edit automaton to reflect a sensible policy,
and give a simple definition of policy combination that provably
satisfies some basic requirements so as to be meaningful for our
instrumentation.

The presentation and formal reasoning in this paper is based
on an idealistic language CoreScript, which reflects the core fea-
tures of JavaScript. Nonetheless, our techniques are applicable to
the actual JavaScript language. There are some interesting issues
when extending CoreScript instrumentation to support the com-



plete JavaScript language. We discuss how we have addressed those
issues, thus bridging the gap between the CoreScript theory and its
embodiment as a realistic security tool. We also describe a proto-
type implementation and some deployment experiments, which are
based on the actual HTML and JavaScript.

We point out that the goal of this work is to explore provably
safe protection against malicious client-side JavaScript code, as-
suming a correct browser implementation. This work is potentially
also useful as a protection mechanism for temporarily patching se-
curity holes. However, no strong guarantee can be made without
assuming that the browser interprets JavaScript code correctly.

The remainder of this paper is organized as follows. Section 2
provides background on JavaScript and browser security, outlines
the difficulties and our approach, and compares with related work.
Section 3 models CoreScript. Sections 4 and 5 present our policy
framework and instrumentation method for regulating CoreScript.
Section 6 bridges the gap between CoreScript and JavaScript. We
describe our implementation and experiments in Sections 7 and 8,
and conclude in Section 9.

2. Background
2.1 JavaScript Basics and Attacks
JavaScript is a popular tool for building web pages. JavaScript pro-
grams are essentially a form of mobile code embedded in HTML
documents and executed on client machines. With help of the
Document Object Model (DOM) [9] and other browser features,
JavaScript programs can obtain restricted access to the client sys-
tem and improve the functionality and appearance of web pages.

As is the case with other forms of mobile code, JavaScript
programs introduce potential security vulnerabilities and loopholes
for malicious parties to exploit. As a simple example, JavaScript
is often used to open a new window on the client. This feature
provides a degree of control beyond that offered by plain HTML
alone, allowing the new window to have customized size, position,
and chromes (e.g., menu, tool bar, status bar). Unfortunately, this
feature has been heavily exploited to generate annoying pop-ups
of undesirable contents, some of which are difficult to “control”
manually from a web user’s point of view (e.g., window-control
buttons out of screen boundary, instant respawning when a window
is closed). More seriously, this feature has also been exploited for
launching phishing attacks [3], where key information about the
origin of the web page is hidden from users (e.g., a hidden location
bar), and false information assembled to trick users into believing
malicious contents (e.g., a fake location bar).

As another example, JavaScript is often used to store and
retrieve useful information (e.g., a password to a web service)
on the client machine as a “cookie.” Such information is some-
times sensitive, therefore the browser restricts access to cook-
ies based on the origin of web pages. For instance, JavaScript
code from attacker.com will not be able to read a cookie set
by mybank.com. Unfortunately, many web applications exhibit
cross-site scripting (XSS) [11] vulnerabilities, where a malicious
piece of script can be injected into a web page produced by a
vulnerable server application. The browser interprets the injected
script as if it were truly intended by the server application as benign
code. As a result, the browser’s origin-based protection is circum-
vented, and the malicious script may obtain access to the cookie set
by the vulnerable application.

In general, JavaScript has been exploited to launch a wide range
of attacks. A simple web search will reveal more details on this. The
situation is potentially worse than for other forms of mobile code,
e.g., application downloading, because the user may not realize that
loading web pages entails the execution of untrusted code.

<html>

<head>...</head>

<body>

<p>

<script>

var name=parseName(document.cookie);

document.write("Greetings, " + name + "!");

</script>

It is <em>great</em> to see you!

</p>

</body>

</html>

html

head body

script “It is” em “to see you!”

p

“great”var name=...

document.write...

...

Figure 1. Script embedded in an HTML document

2.2 Difficulties and our Approach
We observe that many JavaScript vulnerabilities and threats can be
addressed using program instrumentation. Properly inserted secu-
rity checks and dialogue warnings can be used to identify and re-
veal to users potentially malicious behaviors. The extra computa-
tion overhead is usually acceptable, because JavaScript additions
to web pages are typically small in size, and performance is not a
major concern for most web pages in the context of user interac-
tivity. Although the execution of JavaScript programs may follow
complex control flows due to the interaction with users as well as
with other documents (e.g., in another window or frame), this is
less of a concern for program instrumentation, because only very
local analysis of the code is required.

Nonetheless, there remain some difficulties when applying ex-
isting program instrumentation techniques directly to JavaScript.

Execution model The execution model of JavaScript is quite dif-
ferent from that of other programming languages. A typical pro-
gramming language takes input and produces output, possibly with
some side effects produced during the execution. In the case of
JavaScript, the program itself is embedded inside the “output” be-
ing computed. Figure 1 shows an example of a piece of script
embedded in an HTML document. This script uses a function
parseName (definition not shown) to obtain a user name from
the cookie (document.cookie), and then calls a DOM API
document.write to update the script node with some text.

Our CoreScript reflects this execution model. CoreScript pro-
grams are embedded in some tree-structured documents corre-
sponding to HTML documents. In the operational semantics of
CoreScript, script pieces are interpreted and replaced with the pro-
duced document pieces. The interpretation stops when no active
script is present in the entire document.

Higher-order script The document pieces produced by JavaScript
code at runtime could contain further JavaScript code. For example,



var i = 1;

document.write("<script> i=2; document.write(i); </scr" + "ipt>" + i);

var i = 1;

document.write("<script> i=2; document.write(i); </scr" + "ipt>");

document.write(i);

Script fragment:

Output: 21

Script fragment:

Output: 22

Figure 2. Execution order of higher-order script

load(url)...;

doc=...obfuscated script...;

document.write(doc);

script “Some text.”

p

...

...

Instrumentation
(at load time)

safe-load(url);

doc=...obfuscated script...;

instr(doc);

script “Some text.”

p

...

...

Execution

...;

...;

instr("load(url)");

script “Some text.”

p

...

...

Instrumentation
(at run time)

...;

...;

safe-load(url);

script “Some text.”

p

...

...

Execution

... ...

Figure 3. Instrumentation of higher-order script

the above DOM API document.write allows not only plain-
text arguments, but also arbitrary HTML-document arguments
that could possibly contain script nodes. These runtime-generated
script nodes, when interpreted, may in turn produce more runtime-
generated script nodes. In fact, infinite rounds of script generation
can be programmed.

The behavior of an HTML document with higher-order script is
sometimes hard to understand. For instance, the code fragments in
Figure 2 appear to be similar, but produce different results. In this
example, there are implicit conversions from integers to strings,
+ is string concatenation, and the closing tag </script> of the
embedded script is intentionally separated so that the parser will not
misunderstand it as a delimiter for the outer script fragment. The
evaluation and execution order of higher-order script is not clearly
specified in the language specification [4]. It is therefore useful to
have a rigorous account as in CoreScript.

More importantly, higher-order script complicates instrumenta-
tion, because the instrumentation process cannot effectively iden-
tify all security events before the execution of the code—some
events are embedded in string arguments which may not be ap-
parent until runtime, such as computation results, user input, and
documents loaded from a URL. In addition, there are many ways
to obfuscate such embedded script against analyses and filters, e.g.,
by a special encoding of some tag characters [8].

We handle the instrumentation of higher-order script through
an extra level of indirection, as demonstrated in Figure 3. During
the instrumentation, explicit security events such as load(url)
will be directly rewritten with code that performs pertinent secu-
rity checks and user warnings (abstracted as safe-load(url)).
However, further events may be hidden in the generated script doc.
Without inspecting the content of doc, which is a hardship stat-
ically, we feed doc verbatim to some special code instr. This



special code, when executed at runtime, will call back to the in-
strumentation process to perform the necessary inspection on the
evaluation result of doc.

Such a treatment essentially delays some of the instrumentation
tasks until runtime, making it happen on demand. We point out that
the special code and other components of the instrumentation can
be implemented either by changing the JavaScript interpreter in the
browser or by using carefully written (but regular) JavaScript code
which cannot be circumvented.

Policies and usability issues Some previous work [5] on program
instrumentation for safety and security considers policies in the
form of security automata [17], which stop program execution at
runtime when a violation is detected. In the case of JavaScript pro-
grams, it is sometimes difficult to exactly characterize violations.
For instance, suppose a web page tries to load a document from a
different domain. This may be either an expected redirection or a
symptom of an XSS attack. In such a situation, it is usually desir-
able to present pertinent information to the user for their discretion.

Our approach often modifies script to prompt the user about
suspicious behaviors, as opposed to stopping the execution right
away. When appropriate (e.g., for out-of-boundary windows), we
also carefully change the semantics of the code (e.g., by “wrap-
ping” the position arguments). We use edit automata [10], which
are more expressive than security automata, to represent such poli-
cies. Naturally, our theorems for the correctness of the instrumen-
tation are formulated with respect to edit automata.

Due to the wide use of JavaScript, it is difficult to provide a
fixed set of policies for all situations. Thus, the ability to support
customized policies is much desirable—there should be no change
to the rewriting mechanisms when accommodating a new policy.
We perform the same kind of rewriting regardless of the specifics
of the policy; the rewriting produces code that refers to the policy
through a fixed policy interface.

Furthermore, JavaScript and browser security is a mixture of
many loosely coupled questions. A useful policy is hence typically
a combination of multiple component policies. We take a simplified
approach to policy combination, which is less expressive than some
previous work [2], but effective for our desired protections.

The implementation of policy management can be carried out in
a manner similar to the case of the special code for handling higher-
order script, either by changing the JavaScript interpreter or by
using regular JavaScript code. In the latter case, special care must
be taken to ensure that the implementation cannot be circumvented.

Finally, we note that CoreScript is only a subset of JavaScript.
This is necessary for better understanding the formal aspects and
correctness of the approach. The generic treatment is also useful
for potential application to other problem domains. Extending the
solution to the entire JavaScript language or other implementations
of ECMAScript [4] is mostly straightforward, but there are a few
nontrivial aspects that deserve attention. We will discuss extensions
and further issues in a later section.

2.3 Related Work
Browser security solutions JavaScript, DOM, and web browsers
provide some basic security protections. Amongst the commonly
used are sandboxing, same-origin policy, and signed scripting. Ad-
ditional security extensions and coding styles are sometimes ap-
plied, such as the XPCNativeWrapper [12] that confines the access
to certain methods and properties of untrusted objects. These only
provide limited (coarse-grained) protections. There remain many
opportunities for attacks, even if these protections are perfectly im-
plemented. Representative example attacks that are not prevented
by these include XSS, phishing, and resource abuse.

There have been also many separate browser security tools de-
veloped, such as pop-up blockers and SpoofGuard [3]. These sep-

arate solutions only provide protection against specific categories
of attacks. In practice, it is sometimes difficult to deploy multiple
solutions all together. In addition, there are many attacks that are
outside of the range of protection of existing tools. Nonetheless,
ideas and heuristics used in these tools are likely to be helpful for
constructing useful security policies for instrumentation.

The above protection mechanisms are all deployed on the client
side. Server-side protection has also been studied, especially in the
context of command injection attacks [11, 18, 24]. The goal is to
help well-intended programmers build web applications that are
free of certain vulnerabilities, rather than to protect clients from
malicious code.

Formal studies on JavaScript Existing work on formalizing
JavaScript [20, 1] has focused on helping programmers write good
code, as opposed to thwarting malicious exploits. On the technical
front, the treatment of JavaScript programs used the conventional
model, rather than as separate fragments embedded in HTML doc-
uments. Previous work also does not address the challenges posed
by higher-order script.

Program instrumentation Program instrumentation has been
much studied [22, 6, 5, 23, 15]. As detailed in the previous sec-
tion, we extend program instrumentation in several ways to handle
JavaScript, higher-order script, and some pragmatic policy issues.
In addition, we provide end-to-end proofs on the correctness of
our method: (1) instrumented programs will satisfy the security
policy; (2) behavior of programs which satisfy the security policy
will not be changed by the instrumentation. In constract, previous
study [17, 10] on automata-based security policies did not address
the integration of automata with programming languages.

3. CoreScript
We now model our subset of JavaScript—CoreScript. In particu-
lar, we give an operational semantics for CoreScript, focusing on
higher-order script and its embedding in documents. Objects are
omitted from this model, because they are orthogonal and have
been carefully studied [20, 1]. Adding objects presents no addi-
tional difficulties for instrumentation.

3.1 Syntax
The syntax of CoreScript is given in Figure 4. In this figure, the
symbols [ ] are used as meta-parentheses, rather than as part of the
CoreScript syntax.

A complete “world” W is a 4-tuple (Σ, χ, B, C). The first ele-
ment Σ, a document bank, is a mapping from URLs l to documents
D; this corresponds to the Internet. The second element χ, a vari-
able bank, maps global variables x to documents D, and functions
f to script programs P with formal parameters ~x. The third ele-
ment B, a browser, consists of possibly multiple windows; each
window has a handle h for ease of reference, a document D as the
content, and a domain name d marking the origin of the document.
The fourth element C, a cookie bank, maps domain names to cook-
ies in the form of documents (each domain has its own cookie). We
use strings to model domain names d, paths p, and handles h. A
URL l is a pair of a domain name d and a path p. We assume an
implicit conversion between URLs and strings.

Documents D correspond to HTML documents. In JavaScript,
all kinds of documents are embedded as strings using HTML tags
such as <script> and <em>. They are treated uniformly as
strings by all program constructs, but are parsed differently than
plain strings when interpreted. Documents in CoreScript reflect
this, except that we make different kinds of documents syntactically
different, rendering the parsing implicit. A document is in either
one of three syntactic forms: a plain string (string), a piece of



(World) W ::= (Σ, χ, B, C)

(Document Bank) Σ ::= {[l = D]∗}
(Variable Bank) χ ::= {[x = D]∗, [f = (~x)P ]∗}

(Browser) B ::= {[h = D ∈ d]∗}
(Cookie Bank) C ::= {[d = D]∗}

(URL) l ::= d.p
(Domain) d ::= string

(Path) p ::= string
(Handle) h ::= string

(Document) D ::= string | js P | F ~D

(V alueDocument) Dv ::= string | F ~Dv

(Format) F ::= jux | p | em | b | i | h1 | h2 | . . .

(Script) P ::= skip | x=E | P ; P

| if E then P else P

| while E do P | f( ~E) | act(A)

| write(E)
(Expression) E ::= x |D | op( ~E)

(Action) A ::= ε | newWin(x, E) | closeWin(E)

| loadURL(E) | readCki(x)

| writeCki(E) | secOp( ~E)
(V alue Action) Av ::= ε | newWin( , D) | closeWin(D)

| loadURL(D) | readCki( )

| writeCki(D) | secOp( ~D)

Figure 4. CoreScript syntax

script (js P ), or a formatted document made up of a vector of sub-
documents (F ~D). Value documents Dv are documents that contain
no script. We list a few common HTML format tags in the syntax
as F , and introduce a new tag jux for the juxtaposition of multiple
documents (this simplifies the presentation of the semantics).

The script programs P are mostly made up of common con-
trol constructs, including no-op, assignment, sequencing, condi-
tional, while-loop, and function call. In addition, actions act(A)
are security-relevant operations that our instrumentation identifies
and rewrites. Furthermore, higher-order script is supported using
write(E), where E evaluates at runtime to a document that may
contain further script.

Expressions E include variables x, documents D, and other op-
erations op( ~E). Here we use op to abstract over all operations that
are free of side-effects, such as string concatenation and compari-
son. We do not explicitly model booleans, instead simulating them
with special documents (strings) false and true.

A few actions A are modeled explicitly for demonstration pur-
poses. newWin(x, E) creates a new window with E as the con-
tent document; a fresh handle is assigned to the new window and
stored in x. closeWin(E) closes the window which has handle
E. loadURL(E) directs the current window to load a new docu-
ment from the URL E. readCki(x) reads the cookie of the current
domain into x. writeCki(E) writes E into the cookie of the cur-
rent domain. All other potential actions are abstracted as a generic
secOp( ~E). Value actions Av are actions with document arguments
only. Some arguments to actions are variables for storing results
such as window handles or cookie contents. They are replaced with

in value actions, because they do not affect the instrumentation.

3.2 Operational Semantics
We present the semantics of expressions in a big-step style in Fig-
ure 5. At runtime, expressions evaluate to documents, but not nec-

χ ` E ⇓ D

χ ` x ⇓ χ(x)
(1)

χ ` D ⇓ D
(2)

χ ` ~E ⇓ ~D

χ ` op( ~E) ⇓ ôp( ~D)
(3)

χ ` A ⇓ Av

χ ` ε ⇓ ε
(4)

χ ` E ⇓ D

χ ` newWin(x, E) ⇓ newWin( , D)
(5)

χ ` E ⇓ D

χ ` closeWin(E) ⇓ closeWin(D)
(6)

χ ` E ⇓ D

χ ` loadURL(E) ⇓ loadURL(D)
(7)

χ ` readCki(x) ⇓ readCki( )
(8)

χ ` E ⇓ D

χ ` writeCki(E) ⇓ writeCki(D)
(9)

χ ` ~E ⇓ ~D

χ ` secOp( ~E) ⇓ secOp( ~D)
(10)

Figure 5. Expression and action evaluation in CoreScript

essarily “value documents.” As Rule (2) shows, D is not inspected
for embedded script during expression evaluation. In Rule (3), we
use ôp to refer to the corresponding meta-level computation of op.

Actions are evaluated to value actions as shown in the same
figure. This process only computes the arguments of the actions, but
does not actually perform the actions. Take Rule (9) as an example.
The argument E is evaluated to D, but the cookie bank is not
yet updated. It is also worth noting that, as indicated by the same
rule, a cookie may be written using any document D, including a
document with script embedded. Therefore, a program may store
embedded script in a cookie for later use. Our instrumentation will
be sound under this behavior.

We present the execution of a world in a small-step style in Fig-
ure 6. This is more intuitive when considering the security actions
performed along with the execution, as well as their instrumenta-
tion.

Rules (11) and (12) define a multi-step relation. They refer to a
single step relation as defined by Rule (13). This single step relation
is non-deterministic, reflecting that any window could advance
its content document at any time. Finally, Rule (14) uniformly
advances the document in the window of handle h, with help of
some macros defined in Figure 7.

The macro focus identifies the focus of the execution. It tra-
verses a document and locates the left-most script component. The
macro stepDoc computes an appropriate document for the next
step, assuming that the focus of the argument document will be
executed. The focus and stepDoc cases on value documents (e.g.,
strings) are undefined. This indicates that nothing in value docu-
ments can be executed. If nothing can be executed in the entire
document, then the execution terminates.



focus(D) = P
stepDoc(D, χ) = D′

If D = then focus(D) = and stepDoc(D, χ) =

js P where P ∈ {skip, x=E,
act(A)}

P ε (empty string)

js write(E) write(E) D where χ ` E ⇓ D
js P1; P2 focus(js P1) jux D (js P2) where D = stepDoc(js P1, χ)
js if E then P1 else P2 if E then P1 else P2 js P1 if χ ` E ⇓ true

js P2 if χ ` E ⇓ false
js while E do P while E do P js if E then (P ; while E do P ) else skip

js f( ~E) f( ~E) js P [ ~D/~x] where χ ` ~E ⇓ ~D and χ(f) = (~x)P

F ~DvD′ ~D
where D′ is not a value document

focus(D′) F ~DvD′′ ~D
where D′′ = stepDoc(D′, χ)

step(P, h, W ) = W ′

If P = then step(P, h, (Σ, χ, B, C)) =

act(ε) (Σ, χ, adv(B, h, χ), C)
act(newWin(x, E)) (Σ, χ{x = h′}, B′{h′ = D ∈ d}, C) where χ ` E ⇓ d.p

B′ = adv(B, h, χ)
Σ(d.p) = D
h′ is fresh

act(closeWin(E)) (Σ, χ, B′ − {h′}, C) where χ ` E ⇓ h′

B′ = adv(B, h, χ)
act(loadURL(E)) (Σ, χ, B{h = D ∈ d}, C) where χ ` E ⇓ d.p

Σ(d.p) = D
act(readCki(x)) (Σ, χ{x = C(d)}, adv(B, h, χ), C) where B(h) = D ∈ d
act(writeCki(E)) (Σ, χ, adv(B, h, χ), C{d = D}) where χ ` E ⇓ D

B(h) = D ∈ d

act(secOp( ~E)) . . .
x=E (Σ, χ{x = D}, adv(B, h, χ), C) where χ ` E ⇓ D
other P (Σ, χ, adv(B, h, χ), C)

where adv(B, h, χ) = B{h = stepDoc(D, χ) ∈ d} if B(h) = D ∈ d

Figure 7. Helper functions of CoreScript semantics

W ;∗ W ′ : ~Av

W ;∗ W : ε
(11)

W ; W ′ : Av W ′ ;∗ W ′′ : ~Av

W ;∗ W ′′ : Av ~Av
(12)

W ; W ′ : Av

W = (Σ, χ, B, C) B = {hi = Di ∈ di}i={1...n}

Pick any j : hj ` W ; W ′ : Av

W ; W ′ : Av (13)

h ` W ; W ′ : Av

B(h) = D ∈ d focus(D) = P
step(P, h, (Σ, χ, B, C)) = W

Av =


Av

1 if P= act(A) and χ ` A ⇓ Av
1

ε if P 6= act(A)

h ` (Σ, χ, B, C) ; W : Av (14)

Figure 6. World execution in CoreScript

The macro step computes the step transition on worlds. Sup-
pose we wish to make a step transition on world W by advancing
the document in window h, and suppose the focus computation of
the document in window h is P . The result world after the step
transition would be step(P, h, W ). When defining step, the helper
adv(B, h, χ) makes use of stepDoc to advance the document in
window h.

It is worth noting that the semantics dictates the evaluation
order for higher-order script, thus the two examples in Figure 2
are naturally explained. Take write(op( ~E)); P as an example.
CoreScript evaluates all Ei before executing the script embedded in
any of them, explaining the behavior of the first script fragment in
Figure 2. P is executed after the script generated by write(op( ~E))
has finished execution, explaining the second.

4. Security Policies
The simple set of actions in CoreScript can already be exploited to
launch browser-based attacks. For instance, one can open an unlim-
ited number of windows (think pop-ups) and send sensitive cookie
information to untrusted parties (think XSS). Various security poli-
cies can be designed to counter these attacks.

In our solution, policy management and code rewriting are two
separate modules. Policies can be designed without knowledge of
the rewriting process. A policy designer must ensure that the poli-
cies adequately reflect the desired protections. On the enforcement
side, the rewriting process accesses the policy through a policy in-
terface. The same rewriting mechanism is used for all policies.

This section describes the policy framework and presents the
policy interface that the code rewriting of the next section uses.



Π ` ~A
q ∈ {accept state}

(Q, q, δ) ` ε
(15)

δ(q, A) = (q′, A) (Q, q′, δ) ` ~A

(Q, q, δ) ` A ~A
(16)

Π ` ~A ⇒ ~A′

Π ` ε ⇒ ε
(17)

δ(q, A) = (q′, A′) (Q, q′, δ) ` ~A ⇒ ~A′

(Q, q, δ) ` A ~A ⇒ A′ ~A′
(18)

Figure 8. Policy satisfaction and action editing

4.1 Policy Representation
Policies Π are expressed as edit automata [10]. An edit automaton
is a triple (Q, q0, δ), where Q is a finite or countably infinite set
of states, q0 ∈ Q is the initial state (or current state), and δ is
the complete transition function that has the form δ : Q ∗ A →
Q ∗ A (the symbol A is reused here to denote the set of actions
in CoreScript). Note that δ may specify insertion, replacement, and
suppression of actions, where suppression is handled by discarding
the input action and producing an output action of ε. We require
δ(q, ε) = (q, ε) so that policies are deterministic.

Figure 8 defines the meaning of a policy in terms of policy
satisfaction (whether an action sequence is allowed) and action
editing (how to rewrite an action sequence). Rules (15) and (16)
define the satisfaction of a policy Π on an action sequence ~A.
Intuitively, Π ` ~A if and only if when feeding ~A into the automaton
of Π, the automaton performs no modification to the actions, and
stops at the end of the action sequence in a state that signals
acceptance. In the remainder of this paper, we assume that every
state is an “accept” state for simplicity, although it is trivial to relax
this assumption.

Rules (17) and (18) define how a policy Π transforms an action
sequence ~A into another action sequence ~A′. Intuitively, Π ` ~A ⇒
~A′ if and only if when feeding ~A into the automaton of Π, the
automaton produces ~A′.

Not all edit automata represent sensible policies. For instance,
an edit automaton may convert action A1 into A2 and A2 into A1. It
is unclear how an instrumentation mechanism should act under this
policy, because even the recommended replacement action does not
satisfy the policy. Therefore, it is useful to define the consistency
of policies.

Definition 1 (Policy Consistency) A policy Π = (Q, q0, δ) is
consistent if and only if δ(q, A) = (q′, A′) implies
δ(q, A′) = (q′, A′) for any q, q′, A and A′.

Theorem 1 (Sound Advice) Suppose Π is consistent. If
Π ` ~A ⇒ ~A′, then Π ` ~A′.

An inconsistent policy reflects an error in policy design. Syntac-
tically, it is easy to convert an inconsistent policy into a consistent
one: when the policy suggests a replacement action A′ for an input
action A under state q, we update the policy to also accept action A′

under state q. More accurately, if δ(q, A) = (q′, A′), then we make
sure δ(q, A′) = (q′, A′). However, semantically, it is up to the pol-
icy designer to decide whether the updated policy is the intended
one, especially in the case of conflicting updates. For instance, in

q q’
A/A’

δδδδ(q,A)=(q’,A’)

q q’
A

δδδδ(q,A)=(q’,A)

q

A

δδδδ(q,A)=(q,A)

Figure 9. Edit automata as diagrams

pop0 pop1

open

pop2

close

open

close

open/εεεε

Figure 10. Automaton for a pop-up policy

the above example, the inconsistent policy may have already de-
fined δ(q, A′) = (q′′, A′′).

We use consistent policies to guide our instrumentation, and
policy consistency will serve as an assumption of our correctness
theorems. Internally, a policy module maintains all states relevant
to the edit automaton of the policy, including a current state and
a complete transition function. Externally, the same policy module
exposes the following interface to the rewriting process:

• Action review: check(A).

This action review interface takes an input action as argument,
advances the internal state of the automaton, and carries out a
replacement action according to the transition function.

4.2 Policy Examples
The above policy framework is effective in identifying realistic
JavaScript attacks and providing useful feedback to the user. We
now demonstrate this with examples.

For ease of reading, we present edit automata as diagrams (Fig-
ure 9). To build a diagram from an edit automaton, we first create
a node for every element of the state set. The node representing the
starting state is marked with a special edge into the node. If the state
transition function maps (q, A) into (q′, A′), we add an edge from
the node of q to the node of q′, and mark the edge with A/A′. For
conciseness, we use A to serve as a shorthand of A/A. If the state
transition is trivial (performing no change to an input pair of state
and action), we may omit that edge. Conversely, if a diagram does
not explicitly specify an edge from state q with action A, there is
an implicit A/A edge from the node of q to itself.

Figure 10 presents a policy for restricting the number of popup
windows. The start state is pop0. State transition on (pop0, close)
is trivial (implicit). State transitions from the states with actions
other than open and close are also trivial (implicit). This policy
essentially ignores new window opening actions when there are
already two pop-ups.

Figure 11 presents a policy for restricting the (potential) trans-
mission of cookie information. The start state is send-to-any. In
state send-to-origin, network requests are handled with a safe ver-
sion of the loading action called safe-loadURL. In this policy,
state transitions on (send-to-any, loadURL(l)), (send-to-any, safe-
loadURL), (send-to-origin, readCookie), (send-to-origin, safe-
loadURL) are trivial (implicit). State transitions from the states with
actions other than reading, loading, and safe loading are also triv-
ial (implicit). Essentially, this policy puts no restriction on loading
before the cookie is read, but permits only safe loading afterwards.



send-to-any
send-to-

origin

readCookie

loadURL(l)/safe-loadURL(l)

Figure 11. Automaton for a cookie policy

The implementation of the safe loading safe-loadURL performs
necessary checks on the domain of the URL and asks the user
whether to proceed with the loading if the domain of the URL
does not match the origin of the document. We point out that, if
desirable, a replacement action such as safe-loadURL may obtain
information from the current state of the automaton and perform
specialized security checks and user prompts. Its implementation is
part of the policy module, and therefore does not affect the rewrit-
ing process. For now, it suffices to understand the implementation
of safe actions as trusted and uncircumventable—safe actions are
implemented correctly, and malicious script cannot overwrite their
implementation.

4.3 Policy Combination
In practice, there are many different kinds of attacks. Naturally,
there can be many different policies, each protecting against one
kind of attack. Therefore, it is useful to combine multiple (without
loss of generality, two) policies into one, which in turn guides the
rewriting process.

For a policy combination (Π1 ⊕ Π2 = Π) to be meaningful, it
is sensible to require the following two conditions.

1. Safe combination: Suppose Π1 and Π2 are consistent. For all
~A, Π1 ⊕Π2 ` ~A if and only if Π1 ` ~A and Π2 ` ~A.

2. Consistent combination: If Π1 and Π2 are consistent, then
Π1 ⊕Π2 is consistent.

We give a definition of policy combination which respects these
requirements. Given two edit automata Π1 = ({pi|i = 0 . . . n}, p0, δ1)
and Π2 = ({qj |j = 0 . . . m}, q0, δ2), we define:

Π1 ⊕Π2 = ({piqj |i = 0 . . . n, j = 0 . . . m}, p0q0, δ)

where δ(piqj , A) =

8>>><>>>:
(plqk, A′) if δ1(pi, A) = (pl, A

′)
and δ2(qj , A

′) = (qk, A′)
(plqk, A′) else if δ2(qj , A) = (qk, A′)

and δ1(pi, A
′) = (pl, A

′)
(piqj , ε) otherwise

Intuitively, the combined policy simulates both component poli-
cies at the same time. When the first policy suggests an action that
is agreed by the second policy, the combined policy takes that ac-
tion. If not, it tries to see if the suggestion of the second policy is
agreed by the first policy. In the worst case that neither of the above
two holds, the combined policy suppresses the action. There is a
combinatorial growth in the number of states after the combina-
tion. This does not pose a problem for an implementation, because
a policy module may maintain separate state variables and transi-
tion functions for the component policies, yielding a linear growth
in the policy representation. Based on the same reason, the above
definition extends naturally to support countably finite-state com-
ponent policies.

It is easy to check that this definition of combination satisfies the
above safety and consistency requirements. Nonetheless, we point
out that there exist other sensible definitions of combination that
also satisfy the same requirements. For example, the above defi-

nition “prefers” the first policy over the seond. A similar definition
that prefers the second is also sensible. Furthermore, a more sophis-
ticated combination may attempt to resolve conflicts by recursively
feeding suggested actions into the automata, whereas the above
simply gives up after the first try. Note that the requirement of
“safe combination” only talks about acceptable action sequences,
not about replacement actions. In general, related study on policy
combination [16, 2] may provide some alternatives.

Based on our experience, the above definition of combination
seems to work well in practice. Many policies in our experiments,
such as the two examples shown earlier, are orthogonal to each
other in the sense that they deal with separate sets of actions.
Their combination using the above definition is straightforward as
expected. Our “unorthogonal” policies do not suggest contradicting
replacement actions. We suspect that if two policies are conflicting
(i.e., the “otherwise” case in the above definition), it is likely a
design error, and “divine intervention” from the policy designer
would be best.

5. CoreScript Instrumentation
Given the policy module and its interface in the previous sec-
tion, the instrumentation of CoreScript becomes a straightforward
syntax-directed rewriting process. We now present the rewriting
and its correctness.

The task of the rewriting process is to traverse the document
tree and redirect all actions through the policy module. Whenever
an action act(A) is identified, we redirect it to the action inter-
face check(A), trusting that the policy module will carry out an
appropriate replacement action at runtime. For higher-order script
write(E), we feed the document argument E verbatim to a spe-
cial interface instr(E), whose implementation will call back to
the rewriting process at runtime after E is evaluated.

In this section, we organize the above two interfaces as two
new CoreScript instructions for the rewriting process to use. In
particular, we extend the syntax of CoreScript as follows.

(Script) P ::= . . . | instr(E) | check(A)

The details of the rewriting are given in Figure 12. Its simplicity
is obvious—no knowledge is required on the meaning or the im-
plementation of the two new instructions. The nontrivial tasks are
performed by Rules (19) and (20), where the new instructions are
used to replace runtime code generation and actions. All other rules
simply propagate the rewriting results. We give the rewriting cases
for the two new instructions in Rule (24), which allows the rewrit-
ing to work on code that calls the two interfaces. We also define
the rewriting on world W and its four components. In an imple-
mentation, some components (e.g., the document bank Σ) will be
instrumented on demand (e.g., when loaded).

We give the semantics of the two new instructions so as to rea-
son about the correctness of the instrumentation. For instr(E),
the purpose is to mark script generation and delay the instrumenta-
tion until runtime. Therefore, its operational semantics should eval-
uate the argument expression and feed it through the rewriting pro-
cess. The following definitions capture exactly that.

focus(js instr(E)) = instr(E)
stepDoc(js instr(E), χ) = ι(D) where χ ` E ⇓ D
step(instr(E), h, (Σ, χ, B, C)) = (Σ, χ, adv(B, h, χ), C)

(33)

Recall that adv is defined in Figure 7. The operational semantics
rules for other language constructs remain the same under the
addition of instr. The focus and step function cases defined
above fit in well with Rule (14), which makes a step on a document
given a specific window handle.



ι(P ) = P ′
ι(write(E)) = instr(E)

(19)

ι(act(A)) = check(A)
(20)

ι(P1; P2) = ι(P1); ι(P2)
(21)

ι(if E then P1 else P2) = if E then ι(P1) else ι(P2)
(22)

ι(while E do P ) = while E do ι(P )
(23)

P ∈ {skip, x=E, f( ~E), instr(E), check(A)}
ι(P ) = P

(24)

ι(D) = D′
ι(string) = string

(25)

ι(js P ) = js ι(P )
(26)

ι( ~D) = ~D′

ι(F ~D) = F ~D′
(27)

ι(Σ) = Σ′
ι({(l = D)∗}) = {(l = ι(D))∗}

(28)

ι(χ) = χ′

ι({[x = D]∗, [f = (~x)P ]∗}) = {[x = ι(D)]∗, [f = (~x)ι(P )]∗}
(29)

ι(B) = B′

ι({(h = D ∈ d)∗}) = {(h = ι(D) ∈ d)∗}
(30)

ι(C) = C′
ι({[d = D]∗}) = {[d = ι(D)]∗}

(31)

ι(W ) = W ′

ι((Σ, χ, B, C)) = (ι(Σ), ι(χ), ι(B), ι(C))
(32)

Figure 12. Syntax-directed rewriting

An inspection of Rule (33) will show that the rewriting process
ι is called at run time after evaluting E to D. The execution of
ι always terminates, producing an instrumented document. In this
instrumented document, there is potentially further hidden script
marked by further instr. Such hidden script will be rewritten later
when it is generated.

We define the semantics of check(A) in a similar fashion using
the following definitions.

focus(js check(A)) = check(A)
stepDoc(js check(A), χ) = ε
step(check(A), h, (Σ, χ, B, C)) = undefined

(34)

The focus case for check(A) is trivially check(A) itself. The
execution of check(A) will consume check(A) entirely and leave
no further document piece for the next step, hence the stepDoc
case. The step case is undefined, because we will never refer to
this case in the updated operational semantics.

With the addition of check, the program execution is connected
to the policy module. Therefore, in the updated operational seman-
tics, we need to take into account the internal state of the pol-
icy module (the state of the edit automaton). We extend the pre-
vious reduction relations of CoreScript in Figure 13, where the
new formations of the reduction relations explicitly specify the au-

`δ (W, q) ;∗ (W ′, q′) : ~Av

`δ (W, q) ;∗ (W, q) : ε
(35)

`δ (W, q) ; (W ′, q′) : Av `δ (W ′, q′) ;∗ (W ′′, q′′) : ~Av

`δ (W, q) ;∗ (W ′′, q′′) : Av ~Av

(36)

`δ (W, q) ; (W ′, q′) : Av

W = (Σ, χ, B, C) B = {hi = Di ∈ di}i={1...n}

Pick any j : hj `δ (W, q) ; (W ′, q′) : Av

`δ (W, q) ; (W ′, q′) : Av (37)

h `δ (W, q) ; (W ′, q′) : Av

B(h) = D ∈ d focus(D) 6= check(A)
h ` (Σ, χ, B, C) ; W : Av

h `δ ((Σ, χ, B, C), q) ; (W, q) : Av (38)

B(h) = D ∈ d focus(D) = check(A)
χ ` A ⇓ Av

1 δ(q, Av
1) = (q′, Av)

step(act(Av), h, (Σ, χ, B, C)) = W

h `δ ((Σ, χ, B, C), q) ; (W, q′) : Av (39)

Figure 13. World execution in CoreScript with policy module

tomaton transition function (δ) and the automaton states (q and
q′). Similar to the previous semantics, the multi-step relation de-
fined by Rules (35) and (36) is a reflexive and trasitive closure of
a non-deterministic step relation defined by Rule (37). This non-
deterministic step relation is defined with help of a determinstic
step relation, which we call “document advance.”

Document advance is defined by Rules (38) and (39). When the
focus of the document is not a call to check, the old document
advance relation (defined in Rule (14)) is used, and the automaton
state remains unchanged. When the focus is a call to check, the
automaton state is updated and the replacement action is produced
according to the transition function, and the world components are
updated using the step case of act(Av) because the replacement
action Av is carried out instead of the original action A.

We have now completed the updated semantics. Essentially, a
policy instance is executed alongside the program execution—the
current state of the policy instance is updated in correspondence
with the actions of the program.

5.1 Correctness Theorems
We present the correctness of the instrumentation as two theorems—
soundness and transparency [10]. Soundness states that instru-
mented code will respect the policy. Transparency states that the
instrumentation will not affect the behavior of code that already re-
spects the policy. The intuition behind these correctness theorems is
straightforward, since our instrumentation feeds all actions through
the policy module for suggestions. Soundness holds because the
suggested actions always satisfy the policy due to policy consis-
tency. Transparency holds because the suggested actions would be
identical to the input actions if the input actions already satisfy the
policy. In what follows, we establish these two theorems with a
sequence of lemmas.

First, we introduce a notion of orthodoxy.

Definition 2 (Orthodoxy) W (or Σ, χ, B, C, D, P ) is orthodox
if it has no occurrence of act(A) or write(E).



It is easy to see that our instrumentation produces orthodox
results, as in the following lemma.

Lemma 1 (Instrumentation Orthodoxy) ι(P ), ι(D), ι(C),
ι(B), ι(χ), ι(Σ), and ι(W ) are orthodox.

Proof sketch: By simultaneous induction on the structures of P
and D. By case analysis on the structures of C, B, χ, Σ, and W . 2

We show that orthodoxy is preserved by the step relation, as
follows.

Lemma 2 (Orthodoxy Preservation) If W is orthodox and
`δ (W, q) ; (W ′, q′) : Av , then W ′ is orthodox.

Proof sketch: By definition of the step relation (;), with induction
on the structure of documents. The case of executing write(E)
is no possible because W is orthodox. In the case of executing
instr(E), the operational semantics produces an instrumented
document to replace the focus node. Orthodoxy thus follows from
Lemma 1. In all other cases, the operational semantics may obtain
document pieces from other program components, which are ortho-
dox by assumption. 2

The execution of an orthodox world always respects the policy,
as articulated below.

Lemma 3 (Policy Satisfaction) Suppose Π = (Q, q, δ) is
consistent. If W is orthodox and `δ (W, q) ; (W ′, q′) : Av , then
δ(q, Av) = (q′, Av).

Proof sketch: By case analysis on the step relation (;). In the case
of executing check(A), by inversion on Rule (39), δ(q, Av

1) =
(q′, Av). The expected result δ(q, Av) = (q′, Av) follows directly
from the definition of policy consistency. In all other cases, by in-
version on Rule (38), q = q′. By further inversion on Rule (14), we
get Av = ε (the case of executing act(A) is not possible because
W is orthodox). δ(q, ε) = (q, ε) because of the deterministic re-
quirement on policies. 2

The soundness theorem follows naturally from these lemmas.

Theorem 2 (Soundness) Suppose Π = (Q, q, δ) is consistent. If
W is orthodox and `δ (W, q) ;∗ (W ′, q′) : ~Av , then Π ` ~Av .

Proof sketch: By structural induction on the multi-step relation
(;∗). The base case of zero step and empty output action is trivial.
In the inductive case, there exists W1, q1 and Av

1 such that `δ

(W, q) ; (W1, q1) : Av
1 , `δ (W1, q1) ;∗ (W ′, q′) : ~Av ′, and

~Av = Av
1

~Av ′. By Lemma 3, δ(q, Av) = (q1, A
v). (Q, q1, δ) is

consistent by assumption and definition of policy consistency. W1

is orthodox by Lemma 2. By induction hypothesis, (Q, q1, δ) `
~Av ′. By definition of policy satisfaction, Π ` ~Av . 2

From the instrumentation’s perspective, it is desirable to estab-
lish that ι(W ) is safe given any W . This follows as a corollary of
Theorem 2, because ι(W ) is orthodox by Lemma 1.

To formulate the transparency theorem, we use the multi-step
relation defined in Section 3 before the instrumentation extension.
This reflects the intuition that incoming script should be a sensible
CoreScript (or JavaScript) program without knowledge about the
policy module. We first introduce a lock step lemma to relate the
single-step execution of instrumented code with the single-step
execution of the original code in the case where the original code
satisfies the policy.

Lemma 4 (Lock step) If W ; W ′ : Av and
δ(q, Av) = (q′, Av), then `δ (ι(W ), q) ; (ι(W ′), q′) : Av .

Proof sketch: By definition of the step relation (;), with induction
on the structure of documents. The focus of ι(W ) refers to a tree
node in correspondence with the focus of W .

In the case that write(E) is the focus of W , instr(E) will
be the focus of ι(W ). The operational semantics of write and
instr carry out a similar evaluation on the argument E, except that
instr(E) uses an instrumented variable environment and returns
an instrumented result document. The output action Av is ε in
both cases. We can construct the derivation of `δ (ι(W ), q) ;

(ι(W ′), q′) : Av by: (i) following Rule (37) and choosing the same
handle h as used for obtaining W ; W ′ : Av; (ii) following
Rule (38), which refers back to the old single-step relation h `
ι(W ) ; ι(W ′) : Av; then (iii) following the derivation of
h ` W ; W ′ : Av used for obtaining W ; W ′ : Av , with
various components replaced with the instrumented version.

In the case that act(A) is the focus of W , check(A) will
be the focus of ι(W ). act and check both produce an empty
string to replace the focus tree node. The operational semantics of
act(A) will evaluate A to Av (Rule (14)). The operational seman-
tics of check(A) will evaluate A to Av and feed Av to the policy
(Rule (39)). By assumption, δ(q, Av) = (q′, Av). Therefore, act
and check will produce the same output action in this case. The
operational semantics of check(A) will further apply the macro
step to act(Av) to update the world components. Therefore, fur-
ther derivations of the two reductions follow the same structure.

In all other cases, W and ι(W ) will be executing the same
instructions. The derivation of the instrumented reduction follows
that of the original reduction. 2

The transparency theorem follows naturally from the lock step
lemma.

Theorem 3 (Transparency) If W ;∗ W ′ : ~Av and
(Q, q, δ) ` ~Av , then `δ (ι(W ), q) ;∗ (ι(W ′), q′) : ~Av .

Proof sketch: By structural induction on the multi-step relation
(;∗). The base case of zero step and emtpy output action is trivial.
In the inductive case, there exists W1 and Av

1 such that W ;

W1 : Av
1 , W1 ;∗ W ′ : ~Av ′, and ~Av = Av

1
~Av ′. By assumption

(Q, q, δ) ` ~Av and definition of policy satisfaction, there exists
q1 such that δ(q, Av

1) = (q1, A
v
1) and (Q, q1, δ) ` ~Av ′. By

Lemma 4, `δ (ι(W ), q) ; (ι(W ′), q1) : Av
1 . By induction

hypothesis, `δ (ι(W1), q1) ;∗ (ι(W ′), q′) : ~Av ′. By Rule (36),
`δ (ι(W ), q) ;∗ (ι(W ′), q′) : ~Av . 2

In the above transparency theorem, the original world W does
not refer to the instrumentation and policy interfaces, reflecting
that incoming script is written in regular JavaScript. We can also
formulate a variant of the transparency theorem to allow incoming
script that refers to the instrumentation and policy interfaces, as
follows.

Theorem 4 (Extended Transparency) If
`δ (W, q) ;∗ (W ′, q′) : ~Av and (Q, q, δ) ` ~Av , then
`δ (ι(W ), q) ;∗ (ι(W ′), q′) : ~Av .

This theorem allows W to be unorthodox—W may contain
a mixture of write, act, instr and check. The proof of this
theorem requires a similarly extended lock-step lemma. The proof
extension is straightforward, because on the two new cases allowed
by this theorem (instr and check), the rewriting is essentially an
identity function.



6. Discussions
We have modeled CoreScript as a core language for client-side
scripting. Its distinguishing features include the embedding of
script in documents, the generation of new script at runtime, and
distinguishing security-relevant actions. CoreScript abstracts away
some specific details of JavaScript so that the ideas are applica-
ble to other browser-based scripting languages. Nonetheless, any
practical realization of the approach will have to tackle some more
language-specific details.

First, CoreScript supports the embedding of code in a docu-
ment tree using js nodes. Such a treatment is adapted from the
use of <script> tags in JavaScript (Figure 1 provided an ex-
ample). Beyond the <script> tags, there are many other ways
for embedding script in an HTML document. Some common places
where script could occur include images (e.g., <IMG SRC=...>),
frames (e.g., <IFRAME SRC=...>), XML (e.g., <XML SRC=...>,
tables (e.g., <TABLE BACKGROUND=...>), and body back-
ground (e.g., <BODY BACKGROUND=...>. Furthermore, script
can also be embedded in a large number of event handlers (e.g.,
onActivate(), onClick(), onLoad(), onUnload(),
. . . ). A realization of our approach must also identify and rewrite
such embedded script.

Second, CoreScript makes use of write(E) to generate script at
runtime. This is a unified view on several related functions, includ-
ing eval in the JavaScript core language and window.execScript,
document.write, document.writeln in the DOM. These
functions all take string arguments. eval evaluates a string as a
JavaScript statement or expression and returns the result. In con-
trast, window.execScript executes one or more script state-
ments but returns no values. CoreScript’s treatment on higher-order
script is expressive enough for these two.

However, document.write and document.writeln are
more challenging. These two functions send strings as document
fragments to be displayed in their windows, where the document
fragments could have script embedded. Interestingly, these docu-
ment fragments do not have to be complete document tree nodes.
Instead, they can be pieced together with other strings to form a
complete node, as demonstrated in the following examples.

<script>
document.write("<scr");
document.write("ipt> malic");
var i = 1;
document.write("ious code; </sc");
document.write("ript>");
</script>

<script>
document.write("<scr");</script>ipt>
malicious code
</script>

Each of the above write would appear to produce harmless
text to a naı̈ve filter. To avoid such loopholes when applying Core-
Script instrumentation, one possibility is to piece together gener-
ated document fragments before feeding them into the rewriting
process of the next stage. This must be done with care to avoid
changing the semantics of the code (recall Figure 2). Observing that
the expressiveness of producing new script as broken-up fragments
does not seem to be useful in well-intended programs, a better so-
lution might be to simply disrupt the generation of ungrammatical
script pieces. As an example, Su and Wassermann [18] use meta-
characters to delimit user input syntactically and prevent command
injection attacks. A similar technique can be applied here to delimit
generated document pieces implicitly and prevent the above kind of
attacks (the generated document pieces “<scr” and “ipt>” will

A′

instr(E)

JavaScript

Interpreter

(Browser)

Special

Instruction
(instr)

ι(D) Dv

check(A)

D′

Rewriting

Module

(ι)

Policy

Module

(Π )

ι(D′)

ι(D′)

D

Figure 14. Implementation architecture

no longer be pieced together to form a script tag, if they are gener-
ated in two separate “document.write” statements).

CoreScript does not provide a means to modify the content of
a document in arbitrary ways, because a write(E) node gener-
ates a new node to be positioned at the exact same place in the
document tree. The DOM provides other means for modifying a
document. For instance, a document could be modified through
the innerHTML, innerText, outerHTML, outerText, and
nodeValue properties of any element. These are not covered
in the CoreScript model. Nonetheless, an extension is conceiv-
able, where the mechanisms for runtime script generation specifies
which node in the document tree is to be updated. The instrumenta-
tion method remains the same, because it does not matter where the
generated script is located, as long as it is rewritten appropriately
to go through the policy interface.

Lastly, CoreScript includes some simple actions for demon-
stration purposes. A realization would accommodate many other
actions pertinent to attacks and protections. Some relevant DOM
APIs include those for manipulating cookies, windows, network
usage, clipboard, and user interface elements. In addition, it is use-
ful to introduce implicit actions for some event handlers. For in-
stance, the “undead window” attack below could be prevented by
disallowing window opening inside an onUnload event.

<html>
<head>

<script type="text/javascript">
function respawn(){

window.open("URL/undead.html")
}

</script>
</head>
<body onunload="respawn()">

Content of undead.html
</body>

</html>

7. Implementation
As shown in Figure 14, our implementation extends a browser with
three small modules—one for the syntactic code rewriting (ι), one
for interpreting the special instruction (instr), and another for im-
plementing the security policy (Π). Under our instrumentation, a
browser does not interpret a document D directly. Instead, it inter-
prets a rewritten version ι(D) produced by the rewriting module.
Upon encountering a special instruction instr(E), the implemen-
tation of instr evaluates the expression E and sends the result-



ing document D′ through the rewriting module. The result of the
rewriting ι(D′) is directed back to the browser for further inter-
pretation. Upon a call to the policy interface check(A), the policy
module advances the state of the automaton and provides a replace-
ment action A′.

In our prototype, the rewriting module is implemented in Java,
with help of ANTLR [13] for parsing JavaScript code. We parse
HTML documents into abstract syntax trees (ASTs), perform
rewriting on the ASTs, and generate instrumented JavaScript code
and HTML documents from the ASTs. We set up the browser to
use this rewriting module as a proxy for all HTTP requests.

An obvious way to implement the special instruction is to mod-
ify the JavaScript interpreter in a browser according to the oper-
ational semantics given by Rule (33) in Section 5. After the in-
terpreter parses a document piece out of the string argument (ab-
stracted by the evaluation relation in Rule (33)), the rewriting
module is invoked. The interpretation resumes afterwards with the
rewritten document piece.

Although the above is straightforward, it requires changing the
implementation of the browser. In our prototype, we opted for an
implementation within the regular JavaScript language itself, where
instr is implemented as a JavaScript function. The call-by-value
nature of JavaScript functions evaluates the argument expression
before executing the function body, which naturally provides the
expected semantics. We make use of the XMLHttpRequest ob-
ject [21] (popularly known as part of the Ajax [7] approach) to call
the Java rewriting module from inside JavaScript code.

Although convenient, this approach is not as robust as that of
modifying the JavaScript interpreter, because it is more vulnerable
to malicious exploits. As discussed in Section 6, JavaScript pro-
vides some form of self-modifying code, e.g., through innerHTML.
This presents a possibility for malicious script to overwrite the im-
plementation of instr, if instr is implemented in JavaScript
and interpreted together with incoming documents. Additional
code inspection is needed to protect against such exploits, which
makes the implementation dependent on some idiosyncrasies of the
JavaScript language. Therefore, it may be more desirable to modify
the interpreter when facing a different tradeoff.

Similar implementation choices apply to the policy module. For
example, one can implement the policy module as an add-on to the
browser with the expected policy interface. In our prototype, we
implemented the policy module also in regular JavaScript—check
is implemented as a regular JavaScript function and calls to check
are regular function calls with properly encoded arguments that
reflect the actions being inspected. The body of the check function
carries out the replacement actions, which are typically the original
actions with checked arguments and/or inserted user prompts. The
above protection concerns for instr against malicious exploits
through self-modifying code also applies here.

We emphasize that our prototype enforces policies per “docu-
ment cluster.” A browser may simultaneously hold multiple win-
dows. Some of these windows can communicate with each other
(e.g., a window and its pop-up, if the pop-up holds a document
from the same origin); we consider these as being in the same clus-
ter. We give each cluster its own policy instance in the form of a
JavaScript object, and give all windows in the same cluster a refer-
ence to the cluster’s policy instance, which is properly set up when
windows are created or documents are loaded.

This does not affect the essence of the instrumentation, therefore
we have elided its formal treatment (our CoreScript model only
concerns a single cluster; our formal instrumentation only refers to
a single policy instance). Nonetheless, the per-cluster enforcement
is necessary for expressing practical policies. On the one hand,
documents from different clusters should not share the same policy
instance, so that the behavior of one document would not affect

what an unrelated document is allowed to do (e.g., two unrelated
windows may each have their own quota of pop-ups). On the other
hand, documents from the same cluster must share the same policy
instance to prevent malicious exploits (e.g., an attack may conduct
relevant actions in separate documents in the same cluster).

8. Experiments
We implemented some simple but useful policies in the context of
resource usage and secrecy, and tested the prototype with them on
a number of web pages, including malicious or exploited pages
from the real world, well-intended pages which might raise false
positives, random popular pages, and some pages specially written
to explore the boundaries of existing tools. Here we focus on two
policies for demonstration purposes.

The first relates to controlling pop-up windows. Whereas many
pop-up blockers have been developed and deployed, they only
provide a limited degree of customization. Typically, the choices
upon a pop-up are either to always allow, to allow once and ask
again, or to disallow. In comparison, our tool is more flexible in
the sense that it allows customization on the number of pop-ups
allowed (see Figure 10) as well as the size, position and chrome
visibility.

The second relates to controlling cookie information. Whereas
browsers allow a webpage to access a cookie only if the cookie
was set by the same domain, web pages with XSS vulnerabilities
are still subject to cookie-stealing attacks (Section 2.1). We tried a
simple policy which warns the user (and asks whether to proceed)
if a webpage is sending network requests to a different domain
after accessing the cookie (see Figure 11, where safe-loadULR is
implemented to check domain conformance and prompt the user
for decisions). We injected cookie-stealing script into some XSS-
vulnerable web pages [14]. Our tool successfully raised warnings
before the cookies were sent out. To the authors’ knowledge, no
existing tool provides client-side protection for such web pages.

We also tried the same cookie policy on some popular web
pages for online banking, online shopping and web-based emails.
We specifically looked for those that involved both cookie access
and redirection to other domains, aiming to learn about false pos-
itives (in this case, these would be false warnings which users can
easily dismiss). Only few tested pages exhibited policy-violating
behaviors, and they were all from online shopping sites. The viola-
tion happened because (1) the cookie is accessed for login and/or
shopping cart operations; (2) redirection to other domains hap-
pened when browsing external links, which are sometimes provided
on product description pages. In contrast, none of the online bank-
ing or web-based email pages tested presented policy-violating be-
haviors. Some of them did not use cookies for storing login infor-
mation at all. Others performed redirection before handling cook-
ies. This, in retrospection, is reasonable if the cookie is used to store
login information. Redirection after cookie access would happen if
a website sets a cookie from one domain but handles login from
another, a questionable behavior on its own.

We did not measure the performance of the prototype, because
JavaScript additions to web pages are usually small and the instru-
mentation overhead is unlikely to be noticeable given the nature of
web pages. Indeed, we did not notice any performance difference
between the original and the instrumented web pages. For the same
reason, our prototype does not perform optimizations, even though
it is possible to avoid certain checks by some analysis on the code.

We point out that these preliminary experiments aim at demon-
strating the effectiveness of our instrumentation method and its po-
tential in the context of browser security. A thorough policy in-
vestigation and use-case study is outside the scope of this paper.
Nonetheless, we are actively investigating policy issues and exper-
imenting with the latest attacks. For example, a simple policy that



warns against all redirections would have likely identified the re-
cent Yahoo Mail Worm attack [19] and therefore helped control its
damage. For a realistic deployment, customized policies that are
specifically based on different domain names (e.g., black and white
lists) would also be useful. These are supported by our prototype,
but not discussed due to space constraints.

9. Conclusion
JavaScript is widely employed to enhance web pages with client-
side computation. Unfortunately, as a popular (and perceptually
silent) form of mobile code, JavaScript has also been much ex-
ploited by malicious parties to launch browser-based attacks.
Whereas modern browsers and separate security tools provide cer-
tain basic protections, there are still many attacks at large. It is
useful to have a common and extensible framework that regulates
the behavior of untrusted JavaScript code from the perspective of
the JavaScript language, rather than from that of specific attacks
only.

This paper presents a provably correct method for instrumenting
JavaScript code for browser security. It reflects the application and
adaptation of a few interesting language theories and techniques.
We characterize the relevant features of JavaScript in a core lan-
guage and give it an operational semantics addressing its different
execution model. Due to the presence of higher-order script, the
conventional method of instrumentation cannot effectively identify
and rewrite all relevant code. We resolve this issue by embedding
“callbacks” in the instrumented code, so that further rewriting on
runtime-generated script can be carried out on demand. We use
edit automata to express security policies, and present some simple
consistency criterion and combination method for policy manage-
ment. A policy interface separates the policy implementation from
the rewriting mechanism, facilitating policy extension, upgrade and
customization.

This paper has focused on describing our approach and prov-
ing its correctness. It is organized in a generic context so that the
ideas are applicable to related questions. Our experiments are car-
ried out with the actual JavaScript language, where the prototype
implementation also tackles a few language-specific issues such as
the dynamic binding and rebinding of properties and methods. We
plan to document the implementation aspects separately. Current
experiments show much promise on the effectiveness of the instru-
mentation method, although further investigation is needed on the
practical aspects of deployment, particularly in the area of policy
design and customization.

Acknowledgments
We wish to thank Zhong Shao and the anonymous referees for their
helpful comments.

References
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type

inference for JavaScript. In Proc. 19th European Conference on
Object-Oriented Programming, pages 429–452, Glasgow, UK, July
2005.

[2] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with
Polymer. In Proc. 2005 ACM Conference on Programming Language
Design and Implementation, pages 305–314, Chicago, IL, June 2005.

[3] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C. Mitchell.
Client-side defense against web-based identity theft. In Proc. 11th
Annual Network and Distributed System Security Symposium, San
Diego, CA, Feb. 2004.

[4] ECMA International. ECMAScript language specification. Stardard
ECMA-262, 3rd Edition, http://www.ecma-international.

org/publications/files/ECMA-ST/Ecma-262.pdf,
Dec. 1999.

[5] U. Erlingsson and F. B. Schneider. SASI enforcement of security
policies: A retrospective. In Proc. 1999 New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Ontario, Canada, Sept. 1999.

[6] D. Evans and A. Twyman. Flexible policy-directed code safety. In
Proc. 20th IEEE Symposium on Security and Privacy, pages 32–47,
Oakland, CA, May 1999.

[7] J. J. Garrett. Ajax: A new approach to web applications.
Adaptive Path essay, http://www.adaptivepath.com/
publications/essays/archives/000385.php, Feb.
2005.

[8] R. Hansen. XSS cheat sheet. Appendix of OWASP 2.0 Guide,
http://ha.ckers.org/xss.html, Apr. 2005.

[9] A. L. Hors, P. L. Hegaret, L. W. ad Gavin Nicol, J. Robie,
M. Champion, and S. Byrne. Document Object Model (DOM) level 3
core specification. W3C candidate recommendation, http://www.
w3.org/TR/2003/CR-DOM-Level-3-Core-20031107/,
Nov. 2003.

[10] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement
mechanisms for run-time security policies. International Journal of
Information Security, 4(2):2–16, Feb. 2005.

[11] G. A. D. Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana.
Identifying cross-site scripting vulnerabilities in web applications. In
Proc. 6th IEEE International Workshop on Web Site Evolution, pages
71–80, Washington, DC, 2004.

[12] MozillaZine. XPCNativeWrapper. MozillaZine Knowledge Base,
http://kb.mozillazine.org/XPCNativeWrapper,
2006.

[13] T. Parr et al.. ANTLR reference manual. Reference manual,
http://www.antlr.org/, Jan. 2005.

[14] Point Blank Security. The XSS blacklists. http://www.
pointblanksecurity.com/xss/ and http://www.
pointblanksecurity.com/xss/xss2.php, 2002–2005.

[15] A. Rudys and D. S. Wallach. Termination in language-based systems.
ACM Transactions on Information and System Security, 5(2):138–
168, May 2002.

[16] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceeding of the IEEE, 63(9):1278–1308, Sept.
1975.

[17] F. B. Schneider. Enforceable security policies. Transactions on
Information and System Security, 3(1):30–50, Feb. 2000.

[18] Z. Su and G. Wassermann. The essence of command injection attacks
in web applications. In Proc. 33rd ACM Symposium on Principles of
Programming Languages, pages 372–382, Charleston, SC, Jan. 2006.

[19] Symantec Corp. JS.Yamanner@m. Symantec Security Response,
http://www.symantec.com/security_response/
writeup.jsp?docid=2006-061211-4111-99, June 2006.

[20] P. Thiemann. Towards a type system for analyzing JavaScript
programs. In Proc. 14th European Symposium on Programming,
pages 408–422, Edinburgh, UK, Apr. 2005.

[21] A. van Kesteren and D. Jackson. The XMLHttpRequest object. W3C
working draft, http://www.w3.org/TR/XMLHttpRequest/,
2006.

[22] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. 14th ACM Symposium on
Operating Systems Principles, pages 203–216, Asheville, NC, 1993.

[23] D. Walker. A type system for expressive security policies. In Proc.
27th ACM Symposium on Principles of Programming Languages,
pages 254–267, Boston, MA, 2000.

[24] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In Proc. 15th USENIX Security Symposium,
Vancouver, B.C., Canada, July 2006.


