
Locating Faults Through Automated Predicate Switching

Xiangyu Zhang Neelam Gupta Rajiv Gupta

The University of Arizona
Department of Computer Science

Tucson, Arizona 85721

ABSTRACT
Typically debugging begins when during a program executiona
point is reached at which an obviously incorrect value is observed.
A general and powerful approach to automated debugging can be
based upon identifying modifications to the program state that will
bring the execution to a successful conclusion. However, search-
ing for arbitrary changes to the program state is difficult due to the
extremely large search space. In this paper we demonstrate that
by forcibly switching a predicate’s outcome at runtime and altering
the control flow, the program state can not only be inexpensively
modified, but in addition it is often possible to bring the program
execution to a successful completion (i.e., program produces the
desired output). By examining the switched predicate, alsocalled
the critical predicate, the cause of the bug can then be identified.
Since the outcome of a branch can only be either true or false,the
number of modified states resulting by predicate switching is far
less than those possible through arbitrary state changes. Thus, it is
possible to automatically search through modified states tofind one
that leads to the correct output. We have developed an implemen-
tation based upon dynamic instrumentation to perform this search
through program re-execution – the program is executed fromthe
beginning and a predicate’s outcome is switched to produce the de-
sired change in control flow. To evaluate our approach, we tried
our technique on several reported bugs for a number of UNIX util-
ity programs. Our technique was found to be practical (i.e.,accept-
able in time taken) and effective (i.e., we were able to automatically
identify critical predicates). Moreover we show that bidirectional
dynamic slices of critical predicates capture the faulty code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing

General Terms
Algorithms, Measurement, Reliability, Verification

Keywords
automated debugging, dynamic slicing, predicate switching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06,May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
A programmer often becomes aware of the existence of bugs in

a program when he/she observes that a program output deviates
from the expected output. A standard debugging process consists
of setting breakpoints, re-executing the program on the failed in-
put, and examining the program state (e.g., variable values, call
stack, etc.) to understand the cause of incorrect output being gen-
erated. During this process, the programmer must decide what part
of execution to explore to isolate the bug. This process of explo-
ration is often tedious and time consuming. Since the processing
power of machines has drastically increased, it is highly desirable
to utilize this computing power to make the task of finding bugs
less tedious for the programmer. Therefore automated debugging
techniques are being explored by researchers. Some examples of
such techniques include delta debugging [16, 7, 17, 15, 2], variants
of backward dynamic slicing [13, 9, 1, 18, 19, 20, 21], and failure
inducing chops [3].

Let us assume that on a given input we observe that the execu-
tion of a program fails. An aggressive and general approach to au-
tomated debugging is to run the program on this input again, inter-
rupt the execution at certain points to make changes to the program
state, and then see the impact of changes on continued execution.
If we can discover the changes to program state that cause thepro-
gram to terminate correctly, we will often be able to determine the
cause of the program failure. However, automating the search of
state changes is prohibitively expensive and difficult to realize be-
cause the search space of potential state changes is extremely large
(e.g., even possible changes for the value of a single variable are
enormous if the type of the variable is integer or float).

In this paper we overcome the above problem using the fol-
lowing approach. The state changes are simulated by changing
branch predicate outcomes at runtime. More precisely, eventhough
a branch predicate evaluates to true (false), we force the execution
along the false (true) path at runtime (note that we do not alter out-
comes of switch statements or indirect branches). This process, that
is calledpredicate switching, is performed by running the program
under the control of a dynamic instrumentation system. By restrict-
ing the simulated changes to program state to predicate switching,
we greatly reduce the state search space since a branch predicate
has only two possible outcomes, true or false. Our goal is to find a
runtime predicate switch that causes the program to producecorrect
results. The predicate instance whose switching produces correct
result is called acritical predicate. Predicate switching is simple
and surprisingly powerful in producing desired state changes. The
changes result because, following a predicate switch, the set of as-
signment statements executed by the program is altered.

We illustrate predicate switching using the faulty versionof the
flex (a fast lexical analyzer generator) program shown in Figure1

����������������������	�

���������������

����
�
��������������
��	����

���������������

������������������������	�������	���������������

�������������������������

������������

������������������������� ���������	��������!��

������������

������������������������"#$���������	�%&'()&*+,+&-�

������������

������!�����������������"#$��������.�!��	�/0,+&-()&*+,+&-�

������������

������������������������1

������2

������
�����������������	�������	����� ��������

�������������������������

�������������

����������������������������������"#$����		�/0,+&-()&*+,+&-��

���3�� ���45��6�5
�676���6�
��

�������������

��������������������������������89�:����;6���� ����� �98

���3�� ���45��6�5
�67�6�"#$���6�
��

�������������

������������������������1

Figure 1: Example of flex.

which is taken from the following website [24]. This websitepro-
vides the faulty versions and associated test suites for several pro-
grams. The program in Figure 1 is derived fromflex-2.4.7and aug-
mented by the provider of the program with a bug that is circled in
the figure:base[i+1] should actually bebase[i]. We took the first
provided input which produced an erroneous output. We observed
that the output differs from the expected output at the538th char-
acter. A ’1’ is produced as output due to the execution ofprintf in
theelsepart (at line 2696) instead of a ’0’ that should be output by
execution of theprintf in theelse ifpart (at line 2690). Under the
correct execution at line 2673offsetwould have been assigned the
value ofbase[0]which is1. The variablechk[0] at line 2681 would
have been assigned ACTIONPOSITION causing the predicate at
line 2690 to evaluate totrue for the loop iteration corresponding
to i=0 . Due to the error at line 2673, an incorrect value ofoff-
set(=3) causesch[0] to have an incorrect stale value(= 1) which
causes the predicate at line 2690 to incorrectly evaluate toits false
outcome. Using our proposed method we looked for a predicatein-
stance whose switching corrected the output. We found the appro-
priate instance of theelse ifpredicate instance through this search.
Once this predicate instance was found we could easily determine,
by following backwards the data dependences, that the incorrect
value of ch[0] was a stale value and it did not come from most
recent execution of for loop at line 2667. Thus, now it was clear
that the error was in the statement at line 2673 which sets theoff-
setvalue. The above example also illustrates that it is important to
alter the outcome of aselected predicate instanceas opposed to all
execution instances of a given predicate. This is because the fault
need not be in the predicate but elsewhere and thus all evaluations
of the predicate need not be incorrect. In the aboveflexexample,
by enforcing the outcome of a predicate, we avoided searching for
potential modifications of values forchk[], offset, or base[]which
areintegervariables and thus can take many different values.

The remainder of the paper is organized as follows. In section 2
we begin with a study that provides insight into the power of pred-
icate switching. In section 3 we describe how automated predicate
switching is performed. To improve the runtime of our approach
strategies for switching and the order in which switchings are ex-
plored are considered. In section 4 we describe our dynamic in-
strumentation framework used to implement predicate switching.

In section 5 we present an experimental evaluation of the success
rate and runtime cost of predicate switching. We show how to use
results of predicate switching in identifying faulty code with the as-
sistance of dynamic slicing techniques. Related work is discussed
in section 6 and conclusions are given in section 7.

2. MOTIVATING STUDY
The motivation of the above approach based on predicate switch-

ing can be found in the following observation. Given a program
run, from the perspective of a program output, the computation
performed to compute an output can be divided into two parts:the
Data Part(DP) and theSelect Part(SP).

TheData Part, DP, consists of executed instructions which com-
pute data values that are involved in computing the actual value that
is output. These instructions can be identified by computingthe
backward data slice, i.e. transitive closure of dynamic data depen-
dences starting from the output value. Note that the dynamicdata
slice does not contain any branches or branch predicates. For the
example in Figure 2 thedata partwill consist of statement at line
1, definition of x (statement at line 4 or 5 depending upon outcome
of branch predicate at line 3), and definition of y (statementat line
9 or 10 depending on outcome of branch predicate at line 8).

1. read(a,b);
2. c = f(a,b);
3. if c < 5
4. then x=a+b
5. else x=a-b
6. endif
7. d = g(a,b);
8. if c < 5
9. then y=a*b
10. else y=a/b
11. endif
12. output(x+y)

Figure 2: Data Part and Select Part.

TheSelect Part, SP, is essentially the part of the computation that
caused the selection of instructions in the dynamic data slice for ex-
ecution. Different executions of a program may involve execution
of different dynamic data slices leading to generation of differently
computed output values. The presence of faulty code inSPmay
cause an incorrect dynamic data slice to be selected for execution
and thus the generation of a wrong output value. In contrast to DP,
the size ofSPis much bigger.SPis computed by unioning the full
dynamic slices of the predicates on which the instructions in the
data slice are dynamically control dependent. A full dynamic slice
is computed by taking the transitive closure over dynamic data and
control dependences starting at a predicate. In the examplein Fig-
ure 2 there are four possible data slices: (1,4,9), (1,4,10), (1,5,9)
and (1,5,10). The data slice that is executed to compute the output
value is determined by outcomes of branch predicates at lines 3 and
8. Therefore the select part includes the two predicates (3 and 8)
and statements (1,2,7) that compute values used by the predicates.

Now let us consider the possible situations under which an erro-
neous result is produced. If the faulty code in the program belongs
to DP, typically finding the fault is often not difficult as dynamic
data slices are relatively small and the error is a computational error
(e.g., a mistake in an expression). If the faulty code is not present in
theDP, we need to examine a much largerSP. When the faulty code
belongs toSP, the goal of exploring state changes is to affect the
contributions to the program state by instructions inSPsuch that

correct output can be generated. No matter whether the faulty code
in SPis a branch predicate or an instruction that computes a value
that is used in the evaluation of a branch predicate, the effect of the
fault is the same, i.e. selection of a wrong data slice for execution
and hence the generation of an incorrect output value. Therefore
simply switching branch predicate outcomes is an appropriate way
to explore possible changes in program state due toSP that may
produce the correct output. This is an important observation be-
cause the number of branch predicates evaluated (i.e., the number
of conditional branches encountered) is significantly smaller than
the entireSPcomputation.

From the above discussion we conclude that the effects of pres-
ence of faulty code in a large part of the computation, i.e. the SP
computation, can be often overcome by causing state changesby
switching predicates that represent a small part of theSPcompu-
tation. We carried out an experimental study to confirm our two
claims on which the above reasoning is based: theDP computation
is much smaller than theSPcomputation; and the branch predicates
are a small part ofSPcomputation. In this study instrumented bi-
naries of programs were run to collect the desired data. The results
of this study are presented in Table 1. In this table we present the
total number of instructions executed (Total # Executed), instruc-
tions inDP andSPas a percentage of total instructions executed,
and the number of instances of conditional branches inSPboth as
a percentage of total executed instructions and the actual number.
The data presented is obtained by averaging the above information
across all distinct output values and corresponds to the runon the
first test input which came with each package. From the data we
can clearly see that the number of executed instructions inDP is
a small percentage (0.26% - 8.33%) of the total number of exe-
cuted instructions and this is 3 to 7 times smaller than the number
of executed instructions inSP. Note thatDP and SP do not add
up to 100% because they represent only part of the overall compu-
tation. Second we can see that the number of conditional branch
instructions (Preds) in SPis quite small in comparison to the total
number of instructions inSPas well as the total number of exe-
cuted instructions. Therefore exploring modifications to program
state by switching outcomes ofPredsis far more manageable than
exploring the effects on program state by making changes to values
computed by all instructions inSP.

Table 1: Distribution of Executed Instructions.
Program Total # DP SP Preds

Executed % % % (#)

flex-2.5.31 17,895,047 0.26 1.76 0.29 (51,691)
grep-2.5.1 160,071 6.10 35.0 5.58 (8,924)
make-3.80 1,181,569 6.70 36.2 6.61 (78,065)

bc-1.06 3,943,354 8.33 21.1 1.35 (53,102)
gzip-1.2.4 1,598,515 6.13 16.7 2.58 (41,305)
tar-1.13.25 83,353 5.10 15.8 3.23 (2,696)

tidy 9,556,715 7.06 31.4 5.68 (542,540)

In our discussion so far we have assumed that the execution of
faulty code causes the program to terminate with a wrong output
value. However, our approach also applies to situations where
the observed erroneous value is not an output value. In practice
it is very common that the execution of faulty code will causea
program to terminate prematurely (e.g., divide by zero, memory
segmentation error). In such situations the data or addressrefer-
ence which caused the program to fail and terminate prematurely
must be clearly erroneous. Therefore the goal of predicate switch-
ing would be to make the generation of this erroneous value, and
corresponding error, to go away. In fact our experiments consider
some faulty versions of programs that produce incorrect outputs
and some faulty versions that crash.

3. AUTOMATED PREDICATE SWITCHING
In this section we develop a detailed algorithm for predicate

switching. As we have already stated, the general idea of ourap-
proach is to perform repeated executions of the program on the
failing input and switch conditional branch outcomes during these
re-executions till we find a predicate switching that causesthe pro-
gram to produce the correct output. In doing so, it is our goalto
develop a search strategy that is both practical and effective. To
achieve this goal we design a search strategy which incorporates
the following features that together limit the search spaceand or-
der the search.

• Only one predicate switch at a time.Even though predi-
cate switching greatly reduces the search space by limiting
state changes to conditional branch outcomes, there are still
a substantial number of instances of executed conditional
branches whose outcomes are candidates for switching (see
last column of Table 1). Therefore we limit our search such
that during each new program execution, the outcome of only
a single predicate instanceis switched. In other words, we
do not explore program behavior by simultaneously switch-
ing outcomes of multiple predicate instances because number
of such possibilities is very large.

• Last Executed First Switched (LEFS) Ordering.Now that we
have decided that we will switch the outcome of one branch
predicate instance in each re-execution, we decide on the or-
der in which possible predicate switchings are explored. One
simple ordering strategy that we employ is based upon the
following observation: execution of faulty code (i.e., root
cause of a failed run) is often not far away from the point
at which the program fails (e.g., program crashes or it pro-
duces a wrong output value).Therefore we explore possible
predicate switchings in the reverse order of the predicate ex-
ecutions, i.e. the outcome of the conditional branch instance
encountered last is switched first.

• Prioritization-based (PRIOR) Ordering.In addition to the
simpleLEFSordering strategy, we developed another more
aggressive prioritization based ordering strategy (PRIOR) that
we describe next. This strategy consists of two main steps.
In the first step we use an algorithm to partition the set of
all branch predicate instances into two subsets: those that
are expected to be influenced by the faulty code via depen-
dences and those that are not expected to be influenced by
faulty code. The ones in the first subset are explored before
the ones in the second subset. In the second step we order
the branch predicate instances within the first subset accord-
ing to their dynamic dependence distance from the erroneous
output value. More precisely, the predicate instances that
are separated by fewer dependence edges from the erroneous
output value are explored before those that are separated by
greater number of dependence edges. The resulting ordering
of branch predicate instances is then used in our search.

Next we present some data confirming the observations on which
the above design choices are made. This data is based upon a set
of faulty versions of several commonly used programs. In Table 2
the names of programs, description of faults, the sources offaulty
versions, and times at which the faults were reported are given. All
faults are real reported faults except for those in versionsof s-flex.
Now let us consider the data in Table 3. The total number of in-
structions executed, excluding the instructions from library code,
before program terminated during a failing run is given firstin col-
umn (Total Instns). In 15 out of 20 faults that were studied we were

Table 2: Suite of Faulty Versions Used in Experiments.

Program Bug Description Report Website Report Date Output

flex 2.5.31 (a) some variable is not defined with option -l, http://soureforge.net 12/27/2003 wrong
which fails the compilation of xfree86
(b) string ”]]” is not allowed in user’s code http://soureforge.net 2/18/2004 wrong
(c) the generated code contains extra #endif http://soureforge.net 8/22/2003 wrong

grep 2.5 using -i -o together produces wrong output http://savannah.gnu.org 7/25/2004 wrong

grep 2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org 8/16/2003 wrong
(b) using -o -n together produces wrong output http://comments.gmane.org/ - wrong

gmane.comp.gnu.grep.bugs/
(c) ”echo dor̂e — grep dor̂e” finds no match http://comments.gmane.org/ 4/12/2005 wrong

gmane.comp.gnu.grep.bugs/

make 3.80 (a) Backslashes in dependency names are not removedhttp://savannah.gnu.org 2/24/2005 wrong
(b) Fail to recognize the updated file status while http://savannah.gnu.org 2/21/2005 wrong
there are multiple target in the pattern rule

bc-1.06 misuse of bounds variable corrupts heap objects AccMon [23] - crash
tar-1.13.25 wrong loop bounds lead to heap objects overflow AccMon [23] - crash
tidy memory corruption AccMon [23] - crash
s-flex 8-versions; errors in a single statement/predicate Website [24] - wrong

Table 3: Search Strategies:LEFSvs. PRIOR.
Program Total After Dep . Total LEFS PRIOR

Instr. Fault dist. Preds

flex 2.5.319(a) 17,637 2,583 23 3,669 432 6
flex 2.5.319(b) 366,624 search 60,481 failed
flex 2.5.319(c) 303,121 search 46,820 failed

grep 2.5 21,001 416 27 2,555 61 56

grep 2.5.1 (a) 4,290 232 26 844 38 21
grep 2.5.1 (b) 10,337 search 1,652 failed
grep 2.5.1 (c) 41,068 185 15 9,561 32 28

make 3.80 (a) 1,907,361 163,050 23 166,837 155,492 102
make 3.80 (b) 1,787,616 404,400 50 218,778 50,909 7,108
bc-1.06 68,336 15,676 6 9,684 2,079 2
tar-1.13.25 2,471 1,783 12 470 388 3
tidy 771,154 108 3 131,336 39 1

s-flex-v4 321,888 11,728 5 59,352 4,228 37
s-flex-v5 171,953 search failed 30,203 error in DP
s-flex-v6 8,252 search failed 1,717 error in DP
s-flex-v7 187,903 139,799 21 33,136 26,028 6
s-flex-v8 9,848 1,522 NA 1,943 218 NA
s-flex-v9 69,258 59,209 33 13,010 11,085 190
s-flex-v10 177,821 41 16 29,240 4 4
s-flex-v11 185,724 27,809 11 33,199 7,189 13

able to find a predicate instance to switch that caused the failure
to be removed. We refer to this predicate as thecritical predicate.
In three cases (faults (b) and (c) inflex 2.5.319; fault (b) in grep
2.5.1) our technique could not identify a predicate instance whose
switching caused the failure to be removed because the erroris too
complex for any predicate switch to produce correct output value.
In versions 5 and 6 ofs-flex) the search failed because the errors
were in the data part of the computation. The number of instruc-
tions executed by the program following the execution of thecrit-
ical predicate and before the program’s termination are given in
columnAfter Fault. This number is considerably smaller than the
number inTotal Instrns. This difference motivates theLEFSstrat-
egy. The next column,Dep. Dist., is the shortest dependence dis-
tance between the output and the critical predicate in the dynamic
dependence graph. As we can see, this distance is quite smalland
thus this provides the motivation for ourPRIORstrategy. The re-
maining data in the table demonstrates the effectiveness ofthe two
search strategies. The column labeledTotal Predsis the total num-
ber of conditional branches that were executed during the program
runs while the last two columns,LEFSandPRIOR, give the num-

ber of predicate instances that were actually explored by switching
before finding a predicate instance whose switching produced the
correct output (i.e., a critical predicate). As we can see, these num-
bers are considerably smaller than the numbers inTotal Preds. In
addition, thePRIORnumber is far smaller than theLEFSnumber
in most of the cases. In the case ofs-flex-v8, although we found
a critical predicate using theLEFS strategy, we could not do so
using thePRIORstrategy. This is because we could not compute
the dynamic slices on which the ordering of predicate instances is
based. As explained later, the dynamic slices needed byPRIOR
are for the erroneous output produced and the failure-inducing in-
put difference. However, the program produced no output andthe
failure-inducing input difference could not be identified.Overall,
the above data indicates that the more aggressivePRIORstrategy
for ordering predicate instances is very effective.

Given the choices in search strategy described above, now we
present our predicate switching algorithm. The overview ofour
algorithm is given in Figure 3. The algorithm has three major
steps: finding the first erroneous value in a failing run; identifying
the predicate instances which will be considered using predicate

switching; and finally searching for a critical predicate reversal of
whose outcome causes the program run to succeed. Let us consider
the above steps in greater detail:

Step 1: Locate the first erroneous output value. A program
run is considered to be a failing run if it produces incorrectoutput.
Given the correct output, we determine the first deviation between
the output produced by the failing run and the correct outputand
also identify the execution instanceIe of instructionI that pro-
duced the erroneous output value. The goal of our algorithm is to
find a predicate instance switch that causes correct output value to
be produced.

Step 1: Find Erroneous Value

Examine failed run to identify the first erroneous value
– erroneous output or value that crashes the program.

Step 2: Find Predicates for Switching

Run the program again for the following:
(a) GeneratePredicate Trace(PT) identifying all instances

of branch predicates executed and their execution order.
(b) PerformPredicate Orderingof predicates

in PT usingLEFSor PRIOR.

Step 3: Find Critical Predicate

for each pred. instanceP in orderedPT do
Generate instrumented program to switchP ’s outcome;
Execute above program; if program run succeeds,
reportP and terminate search.

endfor

Figure 3: Algorithm Overview.
As mentioned earlier, if the program crashes at some execution

instanceIe of instructionI , the value or address referenced byIe

that caused the program to crash takes the place of the erroneous
output value. The goal of our algorithm in this situation is to find
a predicate instance switch such that, following the switch, when
execution instanceIe is encountered, the program does not crash.

Step 2: Identify predicate instances for switching. In this step
we rerun the program and collect thePredicate Trace(PT). The
predicate trace is a record of all instances of conditional branches
executed during the failing program run from the start of theexe-
cution to the point at which the failing run produced the erroneous
value identified in the preceding step (i.e., whenIe was executed).
The program execution performed in this step not only generates
the predicate trace, but in addition it also provides information us-
ing which we perform predicate instance ordering. IfLEFSis used,
the ordering is already clear from the predicate trace. IfPRIOR
is used we perform ordering as follows. We generate the dynamic
dependence graph containing both dynamic data and control de-
pendences during this run. Partitioning of predicates intohigh and
low priority subsets is performed using a slicing based chopping
algorithm that we presented in [3]. Here first we compute the back-
ward dynamic slice (BS) of the erroneous output value. We also
identify the failure inducing input using delta debugging technique
[17] and compute the forward slice (FS) of the failure inducing
input. The predicate instances that belong to the intersection of the
forward and backward slice (FS ∩ BS) form the subset that con-
tains predicate instances that are expected to be influencedby faulty
code as they were involved in producing the erroneous output. The
remaining predicate instances form the lower priority subset. The
predicate instances in the higher priority subset are further arranged
in the order of increasing dependence distance from the erroneous
output. The distances needed to perform this ordering are obtained
from the dynamic dependence graph.

Step 3: Searching for a critical predicate. Figure 4 pictori-
ally shows the search for a critical predicate when the simpleLEFS
strategy is used. The first line represents the failed run up to the
point it produced the first erroneous value. The small ovals mark
execution of predicate instances which are also labeled. Then the
subsequent steps show how the predicate instances are switched
one at a time in each subsequent run in theLEFSorder. The predi-
cate instance that is switched is marked using a larger oval.During
each run the new output value is observed. The above process is
repeated till correct output value is generated. The basic function-
ing of this step is the same whenPRIORstrategy is used, only the
order in which predicate instances are switched changes.

3

R

R

R

2

3

n

R 1

Buggy run
P

P P

P

P

P

P

P

Px

m

m

m−1

m−2

m−1

m−2

m−3

m−4

O

O

O

O

O = On correct

wrong

1

2

Figure 4: Search Method.

In the above algorithm we have assumed that once a predicate in-
stance whose switching produces the correct output has beenfound,
no further search is performed. In general it is possible that the
predicate switch found is not meaningful and thus it does noten-
able us to understand the cause of the error. In such a situation, the
search may be continued till another more useful predicate switch
is identified. However, as our experimental results given later show,
whenPRIORstrategy is used, the first critical predicate found was
a meaningful one except in one case.

There are a two important practical issues that must be consid-
ered during the above search. These issues are discussed next:
(1) Correct output.The first issue is that of determining if the pred-
icate switch has generated the correct output. In case the program
terminates producing output value, the value generated cansimply
be compared with the output value known to be correct. However,
in case program crashes, as described earlier we are simply look-
ing for a predicate instance switch that makes the cause of the crash
to disappear. Determining that this has indeed happened requires
some additional analysis. We know the instructionI , and its execu-
tion instanceIe, that caused the crash. When the program is being
run with a predicate switch three cases can arise: program executes
Ie and does not crash atIe; program executesIe and crashes again
at Ie; and program does not executeIe. In the first case we have
found the desired predicate instance switch and therefore the search
terminates. In the second case it is clear that the current predicate
instance did not produce the desired result and hence we mustcon-
tinue the search. In the third case although the program did not
crash, it is unclear whether the predicate instance switch really re-
solved the problem. This is because the predicate switch mayhave
simply avoided the error by avoiding the execution of the instruc-
tion at which crash previously took place, but in reality theproblem
may still exist. Therefore in this case also we continue the search.
(2) Infinite loops.The second issue we consider is that sometimes
a predicate switch may introduce an infinite loop.

while (i!=1000) {
...
i=i+1;

}

Consider the loop shown above. If the predicate instance in which
the conditioni!=1000 takes theFALSE branch (i.e., wheni is

equal to1000) is switched, the loop will continue to execute asi

will take values of1001, 1002, 1003, · · · and so on. This problem
is handled by maintaining an internal basic block counter and if this
counter exceeds a certain very large preset value, the execution is
aborted and search is continued using the next predicate.

Finally we would like to mention that our technique does have
its limitations. If the fault in the program is quite complex, our
technique may fail to find a critical predicate due to following rea-
sons. Overcoming the problems created by faulty code may require
switching multiple predicate instances, i.e., simply switching one
predicate instance at a time may not produce the desired result. If
the fault is very significant, for instance some functionality is miss-
ing from the program, it is highly unlikely that the desired output
can ever be generated by predicate switching. In this case simple
modifications to program state may never yield the correct output.

4. DYNAMIC INSTRUMENTATION
We implemented our work within Valgrind [26], a well-known

memory debugger and profiler for x86-linux binaries. Even though
this tool works at binary level, the mapping back to source code
level can be performed using the debugging information generated
by thegcc compiler. Valgrind’s kernel is a dynamic instrumenter
which takes the binary and before executing any new (i.e., never
instrumented) basic block, it calls the instrumentation function pro-
vided by us. The instrumentation function instruments the provided
basic block and returns the new basic block toValgrindkernel. The
kernel executes the instrumented basic block instead of theoriginal
one. The instrumented basic block is copied to a new code space
and thus it can be reused without calling the instrumenter again.
The instrumentation isdynamicin the sense that we can enforce
the expiration of any instrumented basic block such that theorigi-
nal basic block has to be instrumented again (in a different way).

�������������

������	
����

�

�����������������	
�������

������������������

��������������������������
�������	�����

�������

��

������������ !�

������"���

�������������

Phase 1

������������

��������������	

����������
�������������������������

������������

��������������������	

���������������
������	

������������

���������������������	

�������������

���������������

Phase 2

Figure 5: Instrumentation and Phases.

To switch a particular predicate instance (pred, inst) in a run
R, we divideR into three phases. Each phase has its unique instru-
mentation.Phase Oneis from the beginning of the execution to the
predicate instance of interest. In this phase, the program is instru-
mented in such a way that it surrenders the control to our frame-
work when the execution reaches (pred, inst). This is done by in-
strumenting a counter atpred as shown in Figure 5. The counter is
initialized toinst. Therefore, when it counts down to0, it reaches
the execution point of (pred, inst− 1). Current instrumentation is
invalidated such thatValgrind can re-instrument the predicate next
time it sees the predicate and the execution enters the second phase.
In Phase Two, as shown in Figure 5, the branch outcome of the
predicate instance (pred, inst) is reversed in this phase by switch-
ing the two branch targets. Once the instrumentation gets executed,
it also invalidates itself to guarantee that the predicate is switched
only once (i.e., future instances are not switched). After this instru-
mented predicate is executed once,Valgrind gains control and the
execution enters the third phase. InPhase Three, Valgrind cleans

up all the instrumentation and lets the program run to completion
on its own without any interference.

5. EXPERIMENTAL RESULTS

5.1 Finding Critical Predicates
Table 4 shows how often our technique is successful in findinga

critical predicate. As columnFoundshows, in 15 out of 20 cases we
found a predicate instance switch which caused the program to pro-
duce correct output or eliminated the cause of the program crash.
The critical predicate identified is indicated in columnsWhereand
Which. Here columnWheregives the file name and source line
number at which the switched predicate can be found andWhich
is the dynamic instance of the predicate that was switched. The
predicate instance number is measured from the point at which er-
roneous output is produced or program crashed. A value of 0 corre-
sponds to the most recent execution instance of the predicate while
greater values correspond to earlier instances of the predicate. As
we can see, in many cases the most recent instance of a predicate
is the critical instance while in some cases it is not the mostrecent
instance. Finally, columnFalse +vesrepresents the number of dy-
namic predicate switches, which produced correct output but were
not related to the fault, that were found byPRIOR(except in case
of s-flex-v8which usesLEFS) before the desired predicate switch
was located. As we can see, in all cases except one, this number
is 0 indicating that the first predicate switch located byPRIORwas
related to the fault. In one case first predicate switch foundwas not
useful but the second one found was meaningful.

Table 4: Successful/Failed Searches.

Program Found Where Which False +ves

flex 2.5.319(a) yes gen.c @ 1813 0 0
flex 2.5.319(b) no search failed
flex 2.5.319(c) no search failed
grep 2.5 yes grep.c @ 532 0 0
grep 2.5.1 (a) yes search.c @ 549 0 0
grep 2.5.1 (b) no search failed
grep 2.5.1 (c) yes dfa.c @ 2854 2 0
make 3.80 (a) yes read.c @ 6162 143 1
make 3.80 (b) yes remake.c @ 652 1 0
bc-1.06 yes storage.c @ 176 9 0
tar-1.13.25 yes prepargs.c @ 81 0 0
tidy yes parser.c @ 3496 0 0
s-flex-v4 yes flex.c @ 2978 0 0
s-flex-v5 no search failed – error in DP
s-flex-v6 no search failed – error in DP
s-flex-v7 yes flex.c @ 9171 0 0
s-flex-v8 yes flex.c @ 11833 0 0
s-flex-v9 yes flex.c @ 5046 0 0
s-flex-v10 yes flex.c @ 2687 1 0
s-flex-v11 yes flex.c @ 3559 0 0

We had shown earlier thatPRIORlocates the desired predicate
instance switch far sooner thanLEFS. Now we measured the time
taken byPRIOR to locate the desired predicate instance switch.
The results are given in Table 5. As we can see, the time taken to
locate critical predicates is quite reasonable. In many cases it is
around 1 minute. The cases in which the search failed, the time is
large (few hours) as it went through all the predicate instances.

5.2 Locating Faulty Code
After having found the critical predicate, the next step is to use

this information in locating faulty code. One approach to this step
is to simply require the user to manually examine the entire code

Table 5: Search time.

Program PRIOR

flex 2.5.319(a) 2.51 sec
flex 2.5.319(b) search failed (364 min)
flex 2.5.319(c) search failed (274 min)
grep 2.5 8.83 sec
grep 2.5.1 (a) 2.59 sec
grep 2.5.1 (b) search failed (4 min 28 sec)
grep 2.5.1 (c) 4.46 sec
make 3.80 (a) 26.92 sec
make 3.80 (b) 30 min 37 sec
bc-1.06 0.49 sec
tar-1.13.25 2.83 sec
tidy 0.90 sec
s-flex-v4 8.76 sec
s-flex-v5 search failed (96 min 20 sec)
s-flex-v6 search failed (3 min 56 sec)
s-flex-v7 3.34 sec
s-flex-v8 34.35 sec
s-flex-v9 34.51 sec
s-flex-v10 2.76 sec
s-flex-v11 2.56 sec

Table 6: Sizes of bidirectional slices and chops.
Program EXEC BiS (%EXEC) FiChop (%EXEC) BiChop (%EXEC) Where

flex 2.5.319(a) 1871 225 (12.03%) 256 (13.68%) 27 (1.44%) Pred.
flex 2.5.319(b) 2198 - 102 (4.64%) 102 (4.64%) -
flex 2.5.319(c) 2053 - 5 (0.24%) 5 (0.24%) -
grep 2.5 1157 88 (7.61%) 731 (63.18%) 86 (7.43%) Down
grep 2.5.1 (a) 509 111 (21.81%) 32 (6.29%) 25 (4.91%) Down
grep 2.5.1 (b) 1123 - 599 (53.34%) 599 (53.34%) -
grep 2.5.1 (c) 1338 453 (33.86%) 12 (0.90%) 12 (0.90%) Up
make 3.80 (a) 2277 1372 (60.25%) 739 (32.45%) 739 (32.45%) Up
make 3.80 (b) 2740 1436 (52.41%) 1104 (40.29%) 1051 (38.36%) Up
bc-1.06 636 267 (41.98%) 102 (16.03%) 102 (16.03%) Up
tar-1.13.25 445 117 (26.29%) 103 (23.15%) 45 (10.11%) Down
tidy 1519 541 (35.62%) 164 (10.80%) 161 (10.60%) Up
s-flex-v4 1631 37 (2.27%) 7 (0.43%) 7 (0.43%) Pred.
s-flex-v5 1882 - 544 (28.91%) 544 (28.91%) -
s-flex-v6 424 - 156 (36.79%) 156 (36.79%) -
s-flex-v7 2045 836 (40.88%) 63 (3.08%) 63 (3.08%) Up
s-flex-v8 610 280 (45.90%) - 280 (45.90%) Pred.
s-flex-v9 1396 230 (16.48%) 112 (8.02%) 112 (8.02%) Pred.
s-flex-v10 1683 640 (38.03%) 574 (34.11%) 574 (34.11%) Miss
s-flex-v11 1749 27 (1.54%) 102 (5.83%) 27 (1.54%) Up

to understand why the switching of a predicate instance caused the
program to produce correct output. Another approach is to assist
in this step by automatically narrowing the set of potentially faulty
statements and then having the user examine these statements in
conjunction with the critical predicate. We consider both these ap-
proaches next.

First we present an approach to locatepotentially faulty code
that is based on the use of dynamic slicing. One possible scenario
is in which the critical predicate outcome was wrong due to in-
correct values used in its computation. The faulty statements that
produced the incorrect value(s) can be typically found in the back-
ward sliceof the critical predicate. Another scenario that arises is
one in which the changing the critical predicate outcome avoids the
program crash. In this case theforward sliceof the critical pred-
icate captures the code causing the crash. Given the above two
scenarios, we conclude that to identify potentially faultycode we
must compute thebidirectional dynamic sliceof the critical predi-
cate (i.e., the union of the backward and forward dynamic slices of
the critical predicate as shown in Figure 6a).

Input

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(a) Bidirectional Slice

Critical

Predicate

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

(b) Failure−Inducing Chop

Erroneous

Value

Failure

Inducing

Input

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

(c) Bidirectional Chop

Critical

Predicate

Value
Erroneous

Failure
Inducing

Figure 6: Bidirectional Dynamic Slice and Chop.

Consider the results in Table 6.EXECis the number of distinct
program statements that are executed at least once while thesize
of the subset of these statements that belong to the bidirectional
dynamic slice of the critical predicate is given byBiS. We observe
thatBiS is significantly smaller thanEXEC. In fact the size ofBiS
ranges from only 1.54% to 60.25% of the size ofEXEC. In other
words bidirectional slices are highly effective in reducing the scope
of potentially faulty code. The faulty code was captured by the
bidirectional slice in all cases except fors-flex-v10.

In prior work we introduced the notion offailure-inducing chop
[3] which is obtained by intersecting the contents of thebackward
sliceof an incorrect output value and theforward sliceof the failure-
inducing input difference. This is another approximation of poten-
tially faulty code. The sizes of failure-inducing chops aregiven in
columnFiChopin Table 6. TheBiSandFiChopcan be used in con-
juction – by interescting the two, thebidirectional chop(BiChop)
as shown in Figure 6 is obtained. As the results in columnBiChop
in Table 6 show, the sizes ofBiChopsare very small for majority of
the cases. In fact in 13 cases it is less than 16% ofEXEC.

After having located the set of potentially faulty statements in
form of BiChop, the next step for the user is to locate the actual
cause of the fault. We consider a strategy for this task to further
reduce the number of statements examined by the programmer be-
fore locating the fault. In Table 6, the columnWhereindicates the
location of faulty code – the critical predicate (Pred.), the upward
chop inBiChop (Up), or the downward chop inBiChop (Down).
Of course, first we should look at the critical predicate itself. As
we can see in 4 cases the fault was in the predicate itself. If the
fault is not in the predicate, the following technique for ordering
the statements inBiChopfor examination by the programmer can
be used. A strategy that orders the statements based upon their
dynamic dependence distance from the critical predicate was con-
sidered. In other words, the strategy examines the statements that
are closer to the critical predicate first. We found that thisordering
is quite effective because even though the chops may containmany
statements, if the above ordering is followed, the user encounters
the faulty statement after examining only a few statements.The
result of a study to demonstrate this point fors-flexversions are
presented in Table 7. In the six versions we succeeded in finding
critical predicates, to locate the faulty statement we onlyneeded

Table 7: Dependence Distance Based Search.

Program Statements Dep. Distance
s-flex-v4 1 0
s-flex-v5 search failed – error in DP
s-flex-v6 search failed – error in DP
s-flex-v7 2 1
s-flex-v8 2 0
s-flex-v9 1 0
s-flex-v10 3 1
s-flex-v11 3 2

to examine 1 to 3 statements before finiding the faulty statement.
The reason for this is that the faulty statement was at a very small
dependence distance from the critical predicate.

Finally we also considered a simpler strategy that manuallyex-
amines the statements inBiS. We found that in many cases even
thoughBiSmay be large, in practice, the location of the fault through
manual examination was easy to perform. Given the predicatein-
stance switch one may have to examine a small subset of statements
identified above to locate the cause of erroneous behavior. Next we
examine three of the real bugs to demonstrate this claim.

Flex It has been reported that XFree86 does not compile when
flex-2.5.31 is installed. The reason for this problem is that vari-
ableyy prev more offset is used but not defined in the lexical
analyzer generated byflex. The bug is reproduced in the left col-
umn of Figure 7. Our technique identifies that switching one pred-
icate instance in functionmake tables(), as shown in the right
column of Figure 7, produces the desired output. By looking at
the code, it is apparent that it is not correct that the definition of
yy prev more offsetshould appear in the generated code only when
reentrantis TRUE. Reentrantis TRUEwhen the option –reentrant
is specified, which tellsflex to produce a reentrant analyzer. Mov-
ing the statement at line 1816 out of theelsebranch fixes the bug.

Grep In grep version 2.51, if both the option−F and−w are
specified, the result may not be correct. For instance, in thefollow-
ing case.

-bash-2.05>echo "test1 test test2" | grep -Fw test
-bash-2.05>

Option−F prescribes that the pattern expression is used as a string
to perform matching. Option−w means searching for the pattern
expression as a word. Obviously, empty output is not desiredbe-
cause the pattern string”test” occurs in the input string as a word.
Instead, the input string should be printed out as the resultof a
match.

We apply our technique on this buggy execution and find two
different critical predicate instances. These two critical predicates
(at lines 549 and 554) are shown in Figure 8. They are infunction
Fexecute(), which is called when−F is specified. From line 516
to line 548,Fexecute()takes the input string and matches it to the
pattern string. If a match exists,begis the start of the matched sub-
string andlen contains length of the match. At line 549, if−w is
not specified, the program claims the matching is successfuland
then prints the input string; otherwise, it tries to decide whether the
match just found is a word match in lines 550-570. If it is a word
match, the program claims success and prints the input string. In
the original buggy run, both the predicate instance at 549 and the
predicate instance at 554 take theTRUEbranch, which indicates
−w is specified and the first match is not a word match. The first
match is the”test” substring in”test1”. Therefore,beg equals
to the beginning of the input string andlen equals to 4. Thesub-
string(beg, –len)is ”tes”, which fails to match to the pattern string
at line 556. As a result, the procedure returns failed at line563.
Apparently, the procedure should not return failed at 563, it should
break out of loop 550-570 and continue to the second match, which
is the second”test” substring in the input and is a word match.
Replacing the return statement at 563 with a break statementsuc-
cessfully produces the desired output. Either of the two critical
predicates point us right to where the bug is. They also provide
information on how to fix the bug.

Make In make version 3.80, if backslashes are used for quoting
or escaping colons in dependency names, it may create some prob-

lem. This error is manifested in the left column of Figure 9. We
can see in the first run,make -f input1.mk xyz:1, the program cor-
rectly identifies the target named ”xyz\:1”. However, in the second
run, make -f input1.mk xyz, it fails to find the target of ”xyz\:1”,
which is the dependency of target ”xyz”. We find that switching
either of the two predicates produces the correct output as marked
in the right column with shaded rectangles. These two predicates
are in functionfind char unquote(), which parses a string stopping
at charstop1, stop2, or blank if specified. It starts from the begin-
ning of the string and searches for any stop char or char ’\0’, if
the char right before the stop char is a backslash, which means the
stop char is quoted and thus not a real stop sign, it removes that
backslash and continues. We further investigate the two predicates
and find that they are in a call byparsefile seq(), which generates
the list of names for target dependencies. The stop char is defined
as ’\0’. When parsing the target names, the stop char is specified
as ’:’ in a similar call tofind char unquote(). Because the stop
char is ’\0’, find char unquote()keeps increasingp at 2164 till the
end of string when parsing ”xyz\:1” which is the dependency for
target ”xyz”. These two predicates correspond to terminating the
loop in 2162 − 2164 at char ’:’ before reaching the end. Because
now p[-1]==’ \’ at 2172, the\ is removed from the string. Finally
string ”xyz:1” is returned as the dependency name. Because char
’:’ is specified as the stop char when parsing the target names, tar-
get ”xyz\:1” has the internal name of ”xyz:1” as well. Therefore,
the program is able to find a match between the dependency and the
target such that it generates the correct output. Note that reversing
predicate*p!=’ \0’ at 2162 does not have the same effect because
the compiler optimization combines this predicate with theone at
2169 such that the generated code directly breaks out of the outer
while loop.

Except fors-flex, in all other cases the bugs are logical errors
which require changes to the code that are not localized to a specific
faulty statement. The above study shows that logical errorscan be
understood by studying the statements in the chops and the critical
predicate. However, as is the case ins-flex, there can also be faults
in a program which are contained in a specific statement such that
fixing that statement fixes the program.

6. RELATED WORK
Dynamic slicing was introduced as a aid to debugging [9, 1]. Our

recent works [19, 20] have greatly reduced the space and timecost
of dynamic slicing. In [21], we evaluated the effectivenessof back-
ward dynamic slicesin fault location. Our result showed that even
though dynamic slices can capture the faulty code, identifying the
faulty code from the set of statements in the slice still requires non-
trivial human effort. We further narrowed the scope of potentially
faulty code in [3] by, for the first time, usingforward dynamic slices
of failure-inducing input difference. In contrast, in thispaper, we
have shown thatbidirectional dynamic slicesof critical predicates
can further narrow the search for faulty code. The computation of
Bidirectional Chopis based upon identifying multiple kinds ofneg-
ative evidence, i.e. program entities related to execution of faulty
code. In recent work we have demonstrated the use ofpostive ev-
idencein form of correct portions of the outputs produced during
a failing run to order and prune statements in the potentially faulty
code [22].

In a series of articles [17, 16, 15], thedelta debuggingalgorithm
has been developed to automatically simplify or isolate a failure-
inducing input [17, 16], produce cause effect chains [15] and to
link cause transitions [2] to the faulty code. In [2] delta debugging
algorithm is used to analyzeprogram state changesduring the ex-
ecution of a failed run to identify points ofcause transitions. Code

-bash-2.05>cat input
\%{
\%}
\%\%
-bash-2.05>flex -l -t -Cae input
...
(yy_prev_more_offset is not defined)
...
-bash-2.05>

The CORRECT output is,

-bash-2.05>flex -l -t -Cae input
...
static int yy_prev_more_offset = 0;
...
-bash-2.05>

��������������	�
��
�����
����

������������

������������������

������������������������������

��������

��	
��������� �����!�����""�
��
�����
���#��$ �$

������������������������%�
��
�

������&�����������������������	
��������� �����!�����""���
��
��
�����
��#��$ �$

������'�����������������%

�����������������

gen.c

Figure 7: Bug in flex-2.5.31

�����������������	
�����
������
���	��������
������������
���

�����������
���
�
�

������������������������

����������������������� ��	�!�����" ��	��#�����!�##����

������������������	�
��
�
�����������	�#����$�	���������������	��	���
�
��%����������
���	��	�������������	����

����������������

������&����������%��������

���'��(��� ���������
�
�	����	���

�������������������������
�)� ����!�%��!��

������������������������������������

��������������������������������������� �������	������	��
��
�
�����
���������
���

�������������������������������

������*������������������������������
� ������! ��������
��
�
����
�)��$$%����������������	��	���
�
��
	
�����
�������������
��

������+����������������������������������
� �������
��$�� ����	
	��
�����������

������,��������������������������������������

�����*����������������������������������
	��������
!

�����*����������������������������-

������������������ �������	�
�)��%�� �����	��	���������	��	����������	������	��
��
�
�����

�����*+�����������������������-

�����*,����������������������%��

�����*&��������������������������
���	�����!

�����+����������������-

�����+����������������%��

�����+.���������������������
���	�����!

�����+���������-

Figure 8: Bug in search.c of grep 2.51.

-bash-2.05>cat input1.mk
xyz: xyz\:1
@echo $@: $<

xyz\:1: input1.mk
@echo $@: $<

.PHONY: none

-bash-2.05>make -f input1.mk xyz:1
xyz:1: input1.mk
-bash-2.05>make -f input1.mk xyz
make: *** No rule to make target ‘xyz\:1’,
needed by ‘xyz’. Stop.
-bash-2.05>

The CORRECT output is

-bash-2.05>make -f input1.mk xyz
xyz:1: input1.mk
xyz: xyz:1

�����������������	

������
�������
��������
������������	�����
����
����������
����������
�����
��

�������������

����� !���������������������	��"�����
�#

����� ��������$��������

����������������������%���%���%

�����&������������������������
��

�����&��������������$������	��'"�()!(�**�	��'"������

�����&
��������������������**�'������
�����
���
���������	���

�����&����������������++�#

���������%���%���%

�����&,���������������	��""�()!(�

�����-!���������������������#

�����-������������������.�����
��**��/0�1�""�())(�

�����-
��������������

����������	
����
�����
 �����	
��	
���	������

�����,��������������2

�����������������������%�%�%

�����,&���������2 read.c

Figure 9: Bug in make3.80

executed at the points of cause transitions is expected to berelevant
to the fault. Comparing and changing memory states of C program
executions at a point is difficult due to pointers [2]. In addition, to
identify points of cause transitions, the above state-based analysis
has to be performed at a large number of points along the failed
run. Therefore, program state based analysis is difficult and time
consuming for C programs [2]. In comparison our approach is in-
expensive in terms of time taken.

A number of statistical approaches that analyze program spectra
of program runs for multiple inputs, including inputs correspond-
ing to both failed and successful runs, are being employed for fault
location. Harrold et al. [5] compared the spectra of passingand
failing runs and found that failing runs tend to have unusualcover-
age spectra. Jones et al. [8] ranked each statement according to its
ratio of failing tests to correct tests and used this information to as-
sist fault location. Liblit et al. [10] describe a sampling framework
and present an approach to guess and eliminate predicates toiso-
late a deterministic bug. For isolating nondeterministic bugs, they
use statistical regression techniques to identify predicates that are
highly correlated with the program failure. In contrast, Renieris and
Reiss [12] focused on the difference between the failing runand a
singlepassing run with similar spectra as a means to narrow down
the search space for faulty code. Our work is complementary to the
above work as it focusses on a failed run corresponding to single
input for fault location. However, one advantage of our approach
is that it provides dependence relationships between various points
of interest, i.e. failure-inducing input, critical predicate, and erro-
neous output. This information is useful to the programmer during
debugging.

Some additional works include the following. Xie et al. show
that many redundancies [14] in programs correspond to hard pro-
gram errors. Hangal et al. [4] identified the causes of some pro-
gramming errors in Java programs by observing violations ofpro-
gram invariants. In [6], we developed a technique that used anotion
of path based weakest preconditions to automatically locate faulty
code in a function when the precondition and postcondition of the
function are available as first order predicate logic formulas.

7. CONCLUSIONS
In this paper we presented the idea ofcritical predicatesand pre-

sented an efficient automated algorithm for locating critical pred-
icates. A critical predicate is an instance of a conditionalbranch
such that if the outcome of this instance is switched, the failing run
changes to a successful run either by causing correct outputto be
generated instead of incorrect output or by causing the crash that
previously occurred not to happen. We show that not only can crit-
ical predicates be very often located in many real reported faulty
programs, they provide valuable clues to the cause of the failure
and hence assist in fault location. We also demonstrated howcrit-
ical predicates when coupled with dynamic slicing can reduce the
effort for fault location.

Acknowledgements
This work is supported by grants from Microsoft, IBM, and NSF
grants CCF-0541382, CCF-0324969, and EIA-0080123 to the Uni-
versity of Arizona.

8. REFERENCES
[1] H. Agrawal and J. Horgan, “Dynamic Program Slicing,”SIGPLAN

Conference on Programming Language Design and Implementation,
pages 246-256, 1990.

[2] H. Cleve and A. Zeller, “Locating Causes of Program Failures,”27th
International Conf. on Software Engineering, pages 342-351, 2005.

[3] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code
Using Failure-Inducing Chops,”IEEE/ACM International Conf. on
Automated Software Engineering, Long Beach, CA, Nov. 2005.

[4] S. Hangal and M.S.Lam, “Tracking Down Software Bugs Using
Automatic Anomaly Detection,”International Conference on Software
Engineering, 2002.

[5] M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
Empirical Investigation of the Relationship Between Spectra
Differences and Regression Faults,”Journal of Software Testing
Verification and Reliability, 10(3):171-194, 2000.

[6] H. He and N. Gupta, “Automated Debugging using Path-Based
Weakest Preconditions,”Fundamental Approaches to Software
Engineering, Barcelona, Spain, 2004.

[7] R. Hildebrandt and A. Zeller, “Simplifying Failure-inducing Input,”
International Symposium on Software Testing and Analysis, pages
135-145, 2000.

[8] J.A. Jones, ”Fault Localization Using Visualization ofTest
Information”, 26th International Conference on Software Engineering,
page 54-56,2004.

[9] B. Korel and J. Laski, “Dynamic program slicing,”Information
Processing Letters, (29)3:155-163, 1988.

[10] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug Isolation
via Remote Program Sampling,”SIGPLAN Conference on
Programming Language Design and Implementation, San Diego,
California, June 2003.

[11] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. Reiss,“Automated
Fault Localization Using Potential Invariants,”Fifth Int. Workshop on
Automated and Algorithmic Debugging, Ghent, Belgium, Sept. 2003.

[12] M. Renieris and S. Reiss, “Fault Localization with Nearest Neighbor
Queries,”Automated Software Engineering, 2003.

[13] M. Weiser, “Program Slicing,”IEEE Transactions on Software
Engineering, Vol. SE-10, No. 4, pages 352-357, 1982.

[14] Y. Xie and D. Engler, “Using Redundancies to Find Errors,” ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 51-60, 2002.

[15] A. Zeller, “Isolating Cause-effect Chains from Computer Programs,”
SIGSOFT Symposium on Foundations of Software Engineering,
Charleston, South Carolina, US, 2002.

[16] A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?,” 7th European Software Engineering Conference/ 7th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages
253-267, Sept. 1999.

[17] A. Zeller and R. Hildebrandt, “Simplifying and Isolating
Failure-inducing Input,”IEEE Transactions on Software Engineering,
Vol 28, No 2, Feb. 2002.

[18] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic Slicing
Algorithms,” IEEE International Conference on Software Engineering,
pages 319-329, Portland, Oregon, May 2003.

[19] X. Zhang, R. Gupta, and Y. Zhang, “Effective Forward Computation
of Dynamic Slices Using Reduced Ordered Binary Decision
Diagrams,”IEEE International Conference on Software Engineering,
pages 502-511, May 2004.

[20] X. Zhang and R. Gupta, “Cost Effective Dynamic Program Slicing,”
SIGPLAN Conference on Programming Language Design and
Implementation, pages 94-106, June 2004.

[21] X. Zhang, H. He, N. Gupta and R. Gupta, “Experimental evaluation
of using dynamic slices for fault location,”Sixth International
Symposium on Automated and Analysis-Driven Debugging, Monterey,
California, September 2005.

[22] X. Zhang, N. Gupta, and R. Gupta, “Pruning Dynamic Slices With
Confidence,”SIGPLAN Conference on Programming Language Design
and Implementation, to appear, June 2006.

[23] P. Zhou, W. Liu, f. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J.
Torrelas, “Accmon: Automatically Detecting Memory-related Bugs via
Program Counter-based Invariants,”International Symposium on
Microarchitecture, pages 269-280, Nov. 2004.

[24] http://www.cse.unl.edu/∼galileo/sir
[25] http://www.elis.ugent.be/diablo/
[26] http://valgrind.org/

