Locating Faults Through Automated Predicate Switching

Xiangyu Zhang

Neelam Gupta

Rajiv Gupta

The University of Arizona
Department of Computer Science
Tucson, Arizona 85721

ABSTRACT

Typically debugging begins when during a program execution
point is reached at which an obviously incorrect value iseoled.
A general and powerful approach to automated debugging ean b
based upon identifying modifications to the program steaé whll
bring the execution to a successful conclusion. Howevexrcke
ing for arbitrary changes to the program state is difficul tluthe
extremely large search space. In this paper we demonshate t
by forcibly switching a predicate’s outcome at runtime altdrang
the control flow, the program state can not only be inexpehsiv
modified, but in addition it is often possible to bring the gram
execution to a successful completion (i.e., program preslube
desired output). By examining the switched predicate, addled
the critical predicate, the cause of the bug can then beifabeht
Since the outcome of a branch can only be either true or ftise,
number of modified states resulting by predicate switchinar
less than those possible through arbitrary state chandes, T is
possible to automatically search through modified statéadmne
that leads to the correct output. We have developed an ingsiem
tation based upon dynamic instrumentation to perform thésch
through program re-execution — the program is executed fhem
beginning and a predicate’s outcome is switched to procueeé-
sired change in control flow. To evaluate our approach, vesltri
our technique on several reported bugs for a number of UNIX ut
ity programs. Our technique was found to be practical @ecept-
able in time taken) and effective (i.e., we were able to aattirally
identify critical predicates). Moreover we show that béditional
dynamic slices of critical predicates capture the faultgleco

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Bebuggers
D.2.5 [Software Engineering: Testing and Debugging-Bebug-
ging aids, Testing tools, Tracing

General Terms
Algorithms, Measurement, Reliability, Verification

Keywords

automated debugging, dynamic slicing, predicate switghin

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICSE’06,May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005%5.00.

1. INTRODUCTION

A programmer often becomes aware of the existence of bugs in
a program when he/she observes that a program output deviate
from the expected output. A standard debugging processstens
of setting breakpoints, re-executing the program on thedan-
put, and examining the program state (e.g., variable valcalb
stack, etc.) to understand the cause of incorrect outpughgen-
erated. During this process, the programmer must decidé peine
of execution to explore to isolate the bug. This process pfaex
ration is often tedious and time consuming. Since the peicgs
power of machines has drastically increased, it is highkirdéle
to utilize this computing power to make the task of finding $ug
less tedious for the programmer. Therefore automated dgtoyg
techniques are being explored by researchers. Some exaofple
such techniques include delta debugging [16, 7, 17, 15a2jants
of backward dynamic slicing [13, 9, 1, 18, 19, 20, 21], antufai
inducing chops [3].

Let us assume that on a given input we observe that the execu-
tion of a program fails. An aggressive and general approaciut
tomated debugging is to run the program on this input agaiar-i
rupt the execution at certain points to make changes to thgrgm
state, and then see the impact of changes on continued mxecut
If we can discover the changes to program state that caugedhe
gram to terminate correctly, we will often be able to detewrthe
cause of the program failure. However, automating the heafrc
state changes is prohibitively expensive and difficult t@ire be-
cause the search space of potential state changes is exttarge
(e.g., even possible changes for the value of a single Jar&ie
enormous if the type of the variable is integer or float).

In this paper we overcome the above problem using the fol-
lowing approach. The state changes are simulated by ctgangin
branch predicate outcomes at runtime. More precisely, thargh
a branch predicate evaluates to true (false), we force tbeution
along the false (true) path at runtime (note that we do net altt-
comes of switch statements or indirect branches). Thisgsmthat
is calledpredicate switchingis performed by running the program
under the control of a dynamic instrumentation system. Byria-
ing the simulated changes to program state to predicatetswit,
we greatly reduce the state search space since a branckgiesdi
has only two possible outcomes, true or false. Our goal iswbdi
runtime predicate switch that causes the program to prochucect
results. The predicate instance whose switching produsesat
result is called aritical predicate Predicate switching is simple
and surprisingly powerful in producing desired state cleang he
changes result because, following a predicate switch,ahefsas-
signment statements executed by the program is altered.

We illustrate predicate switching using the faulty versafrihe
flex (a fast lexical analyzer generator) program shown in Figure

970 base = ...

2565 base[..]= ...

2667 for (i=0:i<= lastdfa; ++i)

2668 (

2673 int offset = base[i+1];

2677 chk[offset] = EOB_POSITION;

2681 chk[offset - 1] = ACTION_POSITION;

2683 }

2684

2685 for (i=0;i<=tblend; ++i)

2686 (

2690 else if (chk[i] == ACTION_POSITION)
printi(*%7d, %54, 0, ...);

2696 else /" verify, transition */
printf(“%7d, %5d,” , chk(il, ...);

2699 }

Figure 1: Example of flex.

which is taken from the following website [24]. This website-
vides the faulty versions and associated test suites farakepro-
grams. The program in Figure 1 is derived frlex-2.4.7and aug-
mented by the provider of the program with a bug that is cit@te
the figure:base[i+1] should actually béase[i]. We took the first
provided input which produced an erroneous output. We obsder
that the output differs from the expected output atiBgth char-
acter. A1’ is produced as output due to the executioprifdtf in
theelsepart (at line 2696) instead of a '0’ that should be output by
execution of theprintf in the else ifpart (at line 2690). Under the
correct execution at line 267#fsetwould have been assigned the
value ofbase[O]which is1. The variablechk[0] at line 2681 would
have been assigned ACTIQROSITION causing the predicate at
line 2690 to evaluate torue for the loop iteration corresponding
to i=0. Due to the error at line 2673, an incorrect valueofff
se(=3) causegh[0] to have an incorrect stale vale- 1) which
causes the predicate at line 2690 to incorrectly evaluaits false
outcome. Using our proposed method we looked for a predicate
stance whose switching corrected the output. We found theoap
priate instance of thelse ifpredicate instance through this search.
Once this predicate instance was found we could easily mater
by following backwards the data dependences, that the riecor
value ofch[0] was a stale value and it did not come from most
recent execution of for loop at line 2667. Thus, now it wascle
that the error was in the statement at line 2673 which setsfthe
setvalue. The above example also illustrates that it is impbrta
alter the outcome of selected predicate instanes opposed to all
execution instances of a given predicate. This is becawséatlt
need not be in the predicate but elsewhere and thus all ¢évalaa
of the predicate need not be incorrect. In the abitmeexample,
by enforcing the outcome of a predicate, we avoided seaydbin
potential modifications of values fahk[], offset or base[Jwhich
areintegervariables and thus can take many different values.
The remainder of the paper is organized as follows. In se&io
we begin with a study that provides insight into the powerrefdp
icate switching. In section 3 we describe how automatedigaesl
switching is performed. To improve the runtime of our apptoa
strategies for switching and the order in which switchings ex-
plored are considered. In section 4 we describe our dynamic i
strumentation framework used to implement predicate $vite

In section 5 we present an experimental evaluation of theessc
rate and runtime cost of predicate switching. We show howsto u
results of predicate switching in identifying faulty codéwthe as-
sistance of dynamic slicing techniques. Related work isudised
in section 6 and conclusions are given in section 7.

2. MOTIVATING STUDY

The motivation of the above approach based on predicatelswit
ing can be found in the following observation. Given a progra
run, from the perspective of a program output, the compnati
performed to compute an output can be divided into two pénts:
Data Part(DP) and theSelect Par(SP.

TheData Part DP, consists of executed instructions which com-
pute data values that are involved in computing the actuaévhat
is output. These instructions can be identified by computirey
backward data slice, i.e. transitive closure of dynamia dkgpen-
dences starting from the output value. Note that the dynalmia
slice does not contain any branches or branch predicatesth&o
example in Figure 2 thdata partwill consist of statement at line
1, definition of x (statement at line 4 or 5 depending upon auie
of branch predicate at line 3), and definition of y (statenarine
9 or 10 depending on outcome of branch predicate at line 8).

1. read(a,b);
2. c=f(ab);

3. ifc<b

4. thenx=atb
5. elsex=a-b
6. endif

7. d=g(ab);
8. ifc<b

. theny=a*b
10. el sey=a/b
11. endi f

12. output(x+y)

@ -

Figure 2: Data Part and Select Part.

TheSelect PartSPR, is essentially the part of the computation that
caused the selection of instructions in the dynamic date §ir ex-
ecution. Different executions of a program may involve exien
of different dynamic data slices leading to generation tiedently
computed output values. The presence of faulty cod8Rmay
cause an incorrect dynamic data slice to be selected foutgac
and thus the generation of a wrong output value. In contee3P
the size ofSPis much biggerSPis computed by unioning the full
dynamic slices of the predicates on which the instructionthe
data slice are dynamically control dependent. A full dyrastice
is computed by taking the transitive closure over dynamta dad
control dependences starting at a predicate. In the examplig-
ure 2 there are four possible data slices: (1,4,9), (1,4(10%,9)
and (1,5,10). The data slice that is executed to computetitpeid
value is determined by outcomes of branch predicates & Hraad
8. Therefore the select part includes the two predicatesd38
and statements (1,2,7) that compute values used by thecptesli

Now let us consider the possible situations under which eot er
neous result is produced. If the faulty code in the progratorgs
to DP, typically finding the fault is often not difficult as dynamic
data slices are relatively small and the error is a compartatierror
(e.g., a mistake in an expression). If the faulty code is neggnt in
theDP, we need to examine a much lar@®. When the faulty code
belongs toSP, the goal of exploring state changes is to affect the
contributions to the program state by instructionsSPsuch that

correct output can be generated. No matter whether they femite
in SPis a branch predicate or an instruction that computes a value
that is used in the evaluation of a branch predicate, thetaffehe
fault is the same, i.e. selection of a wrong data slice focetien
and hence the generation of an incorrect output value. Tdrere
simply switching branch predicate outcomes is an apprigpriay
to explore possible changes in program state duBRdhat may
produce the correct output. This is an important obsermabie-
cause the number of branch predicates evaluated (i.e. uthbar
of conditional branches encountered) is significantly sendhan
the entireSPcomputation.

From the above discussion we conclude that the effects sf pre
ence of faulty code in a large part of the computation, i.e SR
computation, can be often overcome by causing state chdnges
switching predicates that represent a small part of3Reompu-
tation. We carried out an experimental study to confirm ow tw
claims on which the above reasoning is basedtReomputation
is much smaller than th®@Pcomputation; and the branch predicates
are a small part o6Pcomputation. In this study instrumented bi-
naries of programs were run to collect the desired data. &hdts
of this study are presented in Table 1. In this table we ptethen
total number of instructions executed (Total # Executehtric-
tions inDP andSPas a percentage of total instructions executed,
and the number of instances of conditional branchesHboth as
a percentage of total executed instructions and the actumabar.
The data presented is obtained by averaging the above iafimm
across all distinct output values and corresponds to th@mnutine
first test input which came with each package. From the data we
can clearly see that the number of executed instructioi®Hns
a small percentage (0.26% - 8.33%) of the total number of exe-
cuted instructions and this is 3 to 7 times smaller than thebar
of executed instructions iBP. Note thatDP and SP do not add
up to 100% because they represent only part of the overalpaem
tation. Second we can see that the number of conditionakhran
instructions Predg in SPis quite small in comparison to the total
number of instructions ISP as well as the total number of exe-
cuted instructions. Therefore exploring modifications togoam
state by switching outcomes Bfedsis far more manageable than
exploring the effects on program state by making changesltes
computed by all instructions i8P.

Table 1: Distribution of Executed Instructions.

Program Total # DP SP Preds
Executed % % % (#)
flex-2.5.31| 17,895,047 0.26 | 1.76 | 0.29 (51,691)
grep-2.5.1| 160,071 || 6.10 | 35.0 | 5.58 (8,924)
make-3.80(1,181,569 || 6.70 | 36.2 | 6.61 (78,065)
bc-1.06 3,943,354 || 8.33| 21.1| 1.35(53,102)
gzip-1.2.4 | 1,598,515 | 6.13 | 16.7 | 2.58 (41,305)
tar-1.13.25] 83,353 5.10| 15.8| 3.23(2,696)
tidy 9,556,715 || 7.06 | 31.4 | 5.68 (542,540)

In our discussion so far we have assumed that the execution of
faulty code causes the program to terminate with a wrongubutp
value. However, our approach also applies to situationsravhe
the observed erroneous value is not an output value. Inipeact
it is very common that the execution of faulty code will caase
program to terminate prematurely (e.g., divide by zero, wrgm
segmentation error). In such situations the data or addedss
ence which caused the program to fail and terminate preeigtur
must be clearly erroneous. Therefore the goal of predicaitets
ing would be to make the generation of this erroneous valne, a
corresponding error, to go away. In fact our experimentsician
some faulty versions of programs that produce incorregpuist
and some faulty versions that crash.

3. AUTOMATED PREDICATE SWITCHING

In this section we develop a detailed algorithm for predicat
switching. As we have already stated, the general idea oapur
proach is to perform repeated executions of the program en th
failing input and switch conditional branch outcomes dgrihese
re-executions till we find a predicate switching that caubegro-
gram to produce the correct output. In doing so, it is our goal
develop a search strategy that is both practical and eféecfio
achieve this goal we design a search strategy which incatger
the following features that together limit the search sy or-
der the search.

e Only one predicate switch at a timeEven though predi-
cate switching greatly reduces the search space by limiting
state changes to conditional branch outcomes, there Hre sti
a substantial number of instances of executed conditional
branches whose outcomes are candidates for switching (see
last column of Table 1). Therefore we limit our search such
that during each new program execution, the outcome of only
a single predicate instancis switched. In other words, we
do not explore program behavior by simultaneously switch-
ing outcomes of multiple predicate instances because numbe
of such possibilities is very large.

Last Executed First Switched (LEFS) Orderitpw that we
have decided that we will switch the outcome of one branch
predicate instance in each re-execution, we decide on the or
der in which possible predicate switchings are explorece On
simple ordering strategy that we employ is based upon the
following observation: execution of faulty code (i.e., root
cause of a failed run) is often not far away from the point
at which the program fails (e.g., program crashes or it pro-
duces a wrong output valueTherefore we explore possible
predicate switchings in the reverse order of the predicate e
ecutions, i.e. the outcome of the conditional branch ircstan
encountered last is switched first.

Prioritization-based (PRIOR) Orderingln addition to the
simple LEFSordering strategy, we developed another more
aggressive prioritization based ordering stratéfRIOR that

we describe next. This strategy consists of two main steps.
In the first step we use an algorithm to partition the set of
all branch predicate instances into two subsets: those that
are expected to be influenced by the faulty code via depen-
dences and those that are not expected to be influenced by
faulty code. The ones in the first subset are explored before
the ones in the second subset. In the second step we order
the branch predicate instances within the first subset decor
ing to their dynamic dependence distance from the erroneous
output value. More precisely, the predicate instances that
are separated by fewer dependence edges from the erroneous
output value are explored before those that are separated by
greater number of dependence edges. The resulting ordering
of branch predicate instances is then used in our search.

Next we present some data confirming the observations orhwhic
the above design choices are made. This data is based upbn a se
of faulty versions of several commonly used programs. Inéfab
the names of programs, description of faults, the sourcésuity
versions, and times at which the faults were reported aengixl
faults are real reported faults except for those in versafrssflex
Now let us consider the data in Table 3. The total number of in-
structions executed, excluding the instructions fromdlitgrcode,
before program terminated during a failing run is given fingtol-
umn (Total Instn3. In 15 out of 20 faults that were studied we were

Table 2: Suite of Faulty Versions Used in Experiments.

[Program | Bug Description | Report Website | Report Date| Output |
flex 2.5.31 | (a) some variable is not defined with option -I, http://soureforge.net 12/27/2003 | wrong
which fails the compilation of xfree86
(b) string "]" is not allowed in user’s code http://soureforge.net 27/18/2004 | wrong
(c) the generated code contains extra #endif http://soureforge.net 8/22/2003 | wrong
[grep2.5 | using -i-o together produces wrong output | http://savannah.gnu.org | 7/25/2004 | wrong |
grep 2.5.1 | (a) using -F -w together produces wrong output http://savannah.gnu.org 8/16/2003 | wrong
(b) using -o -n together produces wrong output http://comments.gmane.ord/ - wrong
gmane.comp.gnu.grep.bugp/
(c) "echo dofe — grep dofe” finds no match http://comments.gmane.ord/ 4/12/2005 | wrong
gmane.comp.gnu.grep.bugps/
make 3.80 | (a) Backslashes in dependency names are not rempuvth://savannah.gnu.org 2/24/2005 | wrong
(b) Fail to recognize the updated file status while http://savannah.gnu.org 272172005 | wrong
there are multiple target in the pattern rule
bc-1.06 misuse of bounds variable corrupts heap objects AccMon [23] - crash
tar-1.13.25| wrong loop bounds lead to heap objects overflow | AccMon [23] - crash
tidy memory corruption AccMon [23] - crash
s-flex 8-versions; errors in a single statement/predicate | Website [24] - wrong
Table 3: Search StrategiesL EFSvs. PRIOR
Program Total After Dep . Total LEFS | PRIOR
Instr. Fault dist. Preds
flex 2.5.319(a) 17,637 2,583 | 23 | 3,669 432 | 6
flex 2.5.319(b)|| 366,624 search 60,481 failed
flex 2.5.319(c) || 303,121 search 46,820 failed
[grep 2.5 [21,001 | 416 | 27]| 2,555 | 61 | 56 |
grep 2.5.1 () 4,290 232 | 26 || 844 38 21
grep 2.5.1 (b) 10,337 search 1,652 failed
grep 2.5.1(c) || 41,068 185 | 15 [9,561 32 [28
make 3.80 (a) || 1,907,361| 163,050 23 166,837 | 155,492| 102
make 3.80 (b) || 1,787,616| 404,400 50 218,778| 50,909 | 7,108
bc-1.06 68,336 15,676 6 9,684 2,079 2
tar-1.13.25 2,471 1,783 12 470 388 3
tidy 771,154 108 3 131,336 39 1
s-flex-v4 321,888 11,728 | 5 | 59,352 4,228 | 37
s-flex-v5 171,953 search failed 30,203 error in DP
s-flex-v6 8,252 search failed 1,717 error in DP
s-flex-v7 187,903 | 139,799 21 33,136 | 26,028 6
s-flex-v8 9,848 1,522 NA 1,943 218 NA
s-flex-v9 69,258 59,209 33 13,010 | 11,085 190
s-flex-v10 177,821 41 16 29,240 4 4
s-flex-v1l 185,724 | 27,809 11 33,199 7,189 13

able to find a predicate instance to switch that caused thedai
to be removed. We refer to this predicate asdtigical predicate

In three cases (faults (b) and (c)fiex 2.5.319fault (b) in grep
2.5.1) our technique could not identify a predicate instance whos
switching caused the failure to be removed because theistiao
complex for any predicate switch to produce correct outpliie.

In versions 5 and 6 of-fley the search failed because the errors
were in the data part of the computation. The number of instru
tions executed by the program following the execution ofdtie
ical predicate and before the program’s termination arergivn
columnAfter Fault This number is considerably smaller than the
number inTotal Instrns This difference motivates tHeEFSstrat-
egy. The next columrDep. Dist, is the shortest dependence dis-
tance between the output and the critical predicate in timeuahyc
dependence graph. As we can see, this distance is quite anakll
thus this provides the motivation for oBRIORstrategy. The re-
maining data in the table demonstrates the effectivenesgedivo
search strategies. The column labeledal Predsss the total num-
ber of conditional branches that were executed during thgrpm
runs while the last two columng§EFSandPRIOR give the num-

ber of predicate instances that were actually explored litching
before finding a predicate instance whose switching praditice
correct output (i.e., a critical predicate). As we can sees¢ num-
bers are considerably smaller than the numberotal Preds In
addition, thePRIORnumber is far smaller than tHeEFSnumber
in most of the cases. In the casessflex-v8 although we found
a critical predicate using theEFS strategy, we could not do so
using thePRIORstrategy. This is because we could not compute
the dynamic slices on which the ordering of predicate irnstans
based. As explained later, the dynamic slices needeBR¥OR
are for the erroneous output produced and the failure-induo-
put difference. However, the program produced no outputthed
failure-inducing input difference could not be identifie@verall,
the above data indicates that the more aggre®3REORSstrategy
for ordering predicate instances is very effective.

Given the choices in search strategy described above, now we
present our predicate switching algorithm. The overviewoof
algorithm is given in Figure 3. The algorithm has three major
steps: finding the first erroneous value in a failing run; tdgimg
the predicate instances which will be considered usingipatel

switching; and finally searching for a critical predicateenrsal of
whose outcome causes the program run to succeed. Let useonsi
the above steps in greater detail:

Step 1: Locate the first erroneous output value. A program

run is considered to be a failing run if it produces incor@atput.

Given the correct output, we determine the first deviatiamvben

the output produced by the failing run and the correct ougmat

also identify the execution instande of instruction] that pro-

duced the erroneous output value. The goal of our algorithto i
find a predicate instance switch that causes correct ougbué o

be produced.

Step 1: Find Erroneous Value

Examine failed run to identify the first erroneous value
— erroneous output or value that crashes the program.

Step 2: Find Predicates for Switching

Run the program again for the following:
(a) Generat®redicate Trac€ PT') identifying all instances
of branch predicates executed and their execution order.
(b) PerformPredicate Orderingof predicates
in PT usingLEFSor PRIOR

Step 3: Find Critical Predicate

for each pred. instanc® in orderedPT do

Generate instrumented program to swifels outcome;
Execute above program; if program run succeeds,
report P and terminate search.

endfor

Figure 3: Algorithm Overview.

As mentioned earlier, if the program crashes at some executi
instancel. of instruction’, the value or address referenced hy
that caused the program to crash takes the place of the eusne
output value. The goal of our algorithm in this situationadfind
a predicate instance switch such that, following the switgchen
execution instancé. is encountered, the program does not crash.

Step 2: Identify predicate instances for switching. In this step
we rerun the program and collect tReedicate Tracg PT"). The
predicate trace is a record of all instances of conditionahthes
executed during the failing program run from the start of éke-
cution to the point at which the failing run produced the remous
value identified in the preceding step (i.e., wherwas executed).
The program execution performed in this step not only geasra
the predicate trace, but in addition it also provides infation us-
ing which we perform predicate instance orderind-HFSis used,
the ordering is already clear from the predicate tracePRIOR

is used we perform ordering as follows. We generate the di;am
dependence graph containing both dynamic data and corgrol d
pendences during this run. Partitioning of predicates fingh and
low priority subsets is performed using a slicing based pirap
algorithm that we presented in [3]. Here first we compute tekb
ward dynamic slice BS) of the erroneous output value. We also
identify the failure inducing input using delta debuggieghnique
[17] and compute the forward slicéd’S) of the failure inducing
input. The predicate instances that belong to the intdseof the
forward and backward sliceF(S N BS) form the subset that con-
tains predicate instances that are expected to be infludrydadlty
code as they were involved in producing the erroneous oulhe
remaining predicate instances form the lower priority sth3he
predicate instances in the higher priority subset are éndhranged

in the order of increasing dependence distance from theeois
output. The distances needed to perform this ordering aegruul
from the dynamic dependence graph.

Step 3: Searching for a critical predicate. Figure 4 pictori-
ally shows the search for a critical predicate when the shpFS
strategy is used. The first line represents the failed rurouphée
point it produced the first erroneous value. The small ovaiskm
execution of predicate instances which are also labele@n The
subsequent steps show how the predicate instances ardeulvitc
one at a time in each subsequent run inltB#Sorder. The predi-
cate instance that is switched is marked using a larger Bvaing
each run the new output value is observed. The above progess i
repeated till correct output value is generated. The basiction-
ing of this step is the same wh&RIORstrategy is used, only the
order in which predicate instances are switched changes.

Pm4 P2 Pm
Buggyrun=———= ===~ P P Owrong
m-3 m—1
R
| ——— o900
p, 10
R —_—————- oo _ "
: Pt 1 0,
R —_— === o . ==
3 - -
P, = o
Ry — @ __
5 T = 050

Figure 4: Search Method.

In the above algorithm we have assumed that once a predicate i
stance whose switching produces the correct output hasfbeed,
no further search is performed. In general it is possiblé tie
predicate switch found is not meaningful and thus it doesemet
able us to understand the cause of the error. In such a situtie
search may be continued till another more useful predicatiels
is identified. However, as our experimental results givésr ishow,
whenPRIORstrategy is used, the first critical predicate found was
a meaningful one except in one case.

There are a two important practical issues that must be donsi
ered during the above search. These issues are discussed nex
(1) Correct output.The first issue is that of determining if the pred-
icate switch has generated the correct output. In case tugggmn
terminates producing output value, the value generatediosuly
be compared with the output value known to be correct. Howeve
in case program crashes, as described earlier we are siogiy |
ing for a predicate instance switch that makes the causeaftsh
to disappear. Determining that this has indeed happenedresq
some additional analysis. We know the instructigand its execu-
tion instancel., that caused the crash. When the program is being
run with a predicate switch three cases can arise: progracuees
I. and does not crash &t; program executek and crashes again
at I.; and program does not execute In the first case we have
found the desired predicate instance switch and therdfersgarch
terminates. In the second case it is clear that the currexdiiqate
instance did not produce the desired result and hence weamst
tinue the search. In the third case although the program alid n
crash, it is unclear whether the predicate instance swéaliyrre-
solved the problem. This is because the predicate switchhaas
simply avoided the error by avoiding the execution of therirns
tion at which crash previously took place, but in reality tineblem
may still exist. Therefore in this case also we continue #arch.

(2) Infinite loops.The second issue we consider is that sometimes
a predicate switch may introduce an infinite loop.

while (i!=1000) {
=i +1;
}

Consider the loop shown above. If the predicate instancehintw
the conditioni!=1000 takes theF’ALSFE branch (i.e., when is

equal t01000) is switched, the loop will continue to executeias
will take values ofl001, 1002, 1003, - - - and so on. This problem
is handled by maintaining an internal basic block counterittis
counter exceeds a certain very large preset value, the tixeds
aborted and search is continued using the next predicate.
Finally we would like to mention that our technique does have

its limitations. If the fault in the program is quite compleour
technigue may fail to find a critical predicate due to follogrirea-
sons. Overcoming the problems created by faulty code mayreeq
switching multiple predicate instances, i.e., simply shig one
predicate instance at a time may not produce the desirett.réfsu
the fault is very significant, for instance some functiotyak miss-
ing from the program, it is highly unlikely that the desiregtput
can ever be generated by predicate switching. In this casglesi
modifications to program state may never yield the corretgdu

4. DYNAMIC INSTRUMENTATION

We implemented our work within Valgrind [26], a well-known
memory debugger and profiler for x86-linux binaries. Evesutth
this tool works at binary level, the mapping back to sourcéeco
level can be performed using the debugging information gead
by thegcc compiler. Valgrind’s kernel is a dynamic instrumenter
which takes the binary and before executing any new (i.e.eme
instrumented) basic block, it calls the instrumentatiamcfion pro-
vided by us. The instrumentation function instruments tioeided
basic block and returns the new basic blockadgrind kernel. The
kernel executes the instrumented basic block instead afrtbmal
one. The instrumented basic block is copied to a new codeespac
and thus it can be reused without calling the instrumentainag
The instrumentation islynamicin the sense that we can enforce
the expiration of any instrumented basic block such thabtitg-
nal basic block has to be instrumented again (in a differeyf)w

phase=3;
invalidate_instrumentation();

pred_counter--;

if (!pred_counter) {
phase=2; cmp XXX, XXX
invalidate instrumentation(); je true_branch

} jmp false_branch

L: cmp XXX, XXX
cmp XXX, XXX jne true_branch
jne XXXxx false branch:

Phase 1 Phase 2

Figure 5: Instrumentation and Phases.

To switch a particular predicate instange-dd, inst) in a run
R, we divideR into three phases. Each phase has its unique instru-
mentation.Phase Onas from the beginning of the execution to the
predicate instance of interest. In this phase, the progsamstru-
mented in such a way that it surrenders the control to ourdram
work when the execution reaches-éd, inst). This is done by in-
strumenting a counter at-ed as shown in Figure 5. The counter is
initialized toinst. Therefore, when it counts down @it reaches
the execution point ofgired, inst — 1). Current instrumentation is
invalidated such tha¥algrind can re-instrument the predicate next
time it sees the predicate and the execution enters thedpbase.
In Phase Twq as shown in Figure 5, the branch outcome of the
predicate instancented, inst) is reversed in this phase by switch-
ing the two branch targets. Once the instrumentation getsuted,
it also invalidates itself to guarantee that the predicatgwitched
only once (i.e., future instances are not switched). Afier instru-
mented predicate is executed onw¥elgrind gains control and the
execution enters the third phase.Rhase Three Valgrind cleans

up all the instrumentation and lets the program run to cotigpie
on its own without any interference.

5. EXPERIMENTAL RESULTS
5.1 Finding Critical Predicates

Table 4 shows how often our technique is successful in finding
critical predicate. As columBoundshows, in 15 out of 20 cases we
found a predicate instance switch which caused the progvaurot
duce correct output or eliminated the cause of the prograshcr
The critical predicate identified is indicated in columf¥hiereand
Which Here columnWheregives the file nhame and source line
number at which the switched predicate can be found\&hith
is the dynamic instance of the predicate that was switchdte T
predicate instance number is measured from the point atwéric
roneous output is produced or program crashed. A value ofr@-co
sponds to the most recent execution instance of the predidate
greater values correspond to earlier instances of theqatedi As
we can see, in many cases the most recent instance of a peedica
is the critical instance while in some cases it is not the mexsent
instance. Finally, columfalse +vesrepresents the number of dy-
namic predicate switches, which produced correct outptriveve
not related to the fault, that were found BYRIOR(except in case
of s-flex-v8which used EFS before the desired predicate switch
was located. As we can see, in all cases except one, this mumbe
is 0 indicating that the first predicate switch located%ORwas
related to the fault. In one case first predicate switch fouas not
useful but the second one found was meaningful.

Table 4: Successful/Failed Searches.

[Program | Found] Where | Which [False +ves|
flex 2.5.319(a)[yes genc@1813] 0 | 0
flex 2.5.319(b)| no search failed
flex 2.5.319(c)| no search failed
grep 2.5 yes grep.c @ 532 0 0
grep 2.5.1(a) yes search.c @ 549 0 0
grep 2.5.1 (b) no search failed
grep 2.5.1(c) yes dfa.c @ 2854 2 0
make 3.80 (a) | yes read.c @ 6162| 143 1
make 3.80 (b) | yes | remake.c @657 1 0
bc-1.06 yes | storage.c @ 17§ 9 0
tar-1.13.25 yes prepargs.c @ 81 0 0
tidy yes | parser.c @ 349§ O 0
s-flex-v4 yes flex.c @ 2978 0 0
s-flex-v5 no search failed — error in DP
s-flex-v6 no search failed — error in DP
s-flex-v7 yes flex.c @ 9171 0 0
s-flex-v8 yes flex.c @ 11833 0 0
s-flex-v9 yes flex.c @ 5046 0 0
s-flex-v10 yes flex.c @ 2687 1 0
s-flex-vil yes flex.c @ 3559 0 0

We had shown earlier th&RIORIlocates the desired predicate
instance switch far sooner thafEFS Now we measured the time
taken byPRIORto locate the desired predicate instance switch.
The results are given in Table 5. As we can see, the time taken t
locate critical predicates is quite reasonable. In mang<isis
around 1 minute. The cases in which the search failed, theim
large (few hours) as it went through all the predicate instan

5.2 Locating Faulty Code

After having found the critical predicate, the next stepoisise
this information in locating faulty code. One approach tis gtep
is to simply require the user to manually examine the entigec

Table 5: Search time.

Table 6: Sizes of bidirectional slices and chops.

[Program [PRIOR | [Program | EXEC [BiS (%EXEC) | FiChop (%EXEC)| BiChop (%EXEC)| Where |
flex 2.5.319(a) 251 sec flex 2.5.319(a)| 1871 225 (12.03%) 256 (13.68%) 27 (1.44%) | Pred.
flex 2.5.319(b)| _ search failed (364 min) flex 2.5.319(b)| 2198 - 102 (4.64%) 102 (4.64%)| -
flex 2.5.319(c)| _ search failed (274 min) flex 2.5.319(c)| 2053 - 5 (0.24%) 5(0.24%) | -
grep 2.5 8.83 sec grep 2.5 1157 88 (7.61%) 731 (63.18%) 86 (7.43%) | Down
grep 2.5.1 (a) 250 sec grep 2.5.1 (a) 509 111 (21.81%) 32 (6.29%) 25 (4.91%) | Down
grep 2.5.1(b) | search failed (4 min 28 sec grep 2.5.1 (b) 1123 - 599 (53.34%) 599 (53.34%) N
grep 2.5.1(c) 4.46 sec grep 2.5.1 (c) 1338 | 453 (33.86%) 12 (0.90%) 12 (0.90%)| Up
make 3.80 (@) 5607 Sec make 3.80 () | 2277 | 1372 (60.25%) 739 (32.45%) 739 (32.45%)| Up
make 3.80 (b) 30N 37 Sec make 3.80 (b) | 2740 | 1436 (52.41%)| 1104 (40.29%)| 1051 (38.36%)| Up
bC-1.06 049 sec bc-1.06 636 | 267 (41.98%) 102 (16.03%) 102 (16.03%)| Up
11375 583 560 tar-1.13.25 445 | 117 (26.29%) 103 (23.15%) 45 (10.11%)| Down
tidy 590 se0 tidy 1519 | 541 (35.62%) 164 (10.80%) 161 (10.60%)| Up
S-flex-v4 8.76 sec s-flex-v4 1631 37 (2.27%) 7 (0.43%) 7 (0.43%) | Pred.
s-flex-v5 search failed (96 min 20 sed) | S-flex-vb 1882 - 544 (28.91%) 544 (28.91%)| -
s-flex-v6 search failed (3 min 56 sec, s-flex-vé 424 - 156 (36.79%) 156 (36.79%)| -
sTlexv7 334 sec s-flex-v7 2045 | 836 (40.88%) 63 (3.08%) 63 (3.08%)| Up
S-flex-ve 34.35 sec s-flex-v8 610 | 280 (45.90%) - 280 (45.90%)| Pred.
s-flex-va 3451 sec s-flex-v9 1396 | 230 (16.48%) 112 (8.02%) 112 (8.02%)| Pred.
sflexvi0 576 sec s-flex-vi0 1683 | 640 (38.03%) 574 (34.11%) 574 (34.11%)| Miss
s-flex-vil 256 sec s-flex-vil 1749 27 (1.54%) 102 (5.83%) 27 (1.54%)| Up

to understand why the switching of a predicate instanceezhtise
program to produce correct output. Another approach is ssts
in this step by automatically narrowing the set of potehtitdulty
statements and then having the user examine these staseiment
conjunction with the critical predicate. We consider bdtbste ap-
proaches next.

First we present an approach to locattentially faulty code
that is based on the use of dynamic slicing. One possibleasicen
is in which the critical predicate outcome was wrong due to in
correct values used in its computation. The faulty statesnérat
produced the incorrect value(s) can be typically found altick-
ward sliceof the critical predicate. Another scenario that arises is
one in which the changing the critical predicate outcomédsne
program crash. In this case tfward sliceof the critical pred-
icate captures the code causing the crash. Given the abave tw
scenarios, we conclude that to identify potentially fauode we
must compute theidirectional dynamic slicef the critical predi-
cate (i.e., the union of the backward and forward dynamaes|of
the critical predicate as shown in Figure 6a).

Failure —>
Inducing
Input

Failure
Inducing
Input

Critical

Predicate

Critical
Predicate

Erroneous
— -
Value

Erroneous
Value

(a) Bidirectional Slice (b) Failure—Inducing Chop (c) Bidirectional Chop

Figure 6: Bidirectional Dynamic Slice and Chop.

Consider the results in Table &XECis the number of distinct
program statements that are executed at least once whikzibe
of the subset of these statements that belong to the biidinatt
dynamic slice of the critical predicate is given BiS. We observe
thatBiSis significantly smaller thaEXEC In fact the size oBiS
ranges from only 1.54% to 60.25% of the sizeEXEC In other
words bidirectional slices are highly effective in redugthe scope
of potentially faulty code The faulty code was captured by the
bidirectional slice in all cases except forf | ex- v10.

In prior work we introduced the notion dilure-inducing chop
[3] which is obtained by intersecting the contents of blaekward
sliceof an incorrect output value and tfward sliceof the failure-
inducing input difference. This is another approximatidémpaten-
tially faulty code. The sizes of failure-inducing chops gieen in
columnFiChopin Table 6. TheBiSandFiChopcan be used in con-
juction — by interescting the two, thHadirectional chop(BiChop)
as shown in Figure 6 is obtained. As the results in col@Bi@hop
in Table 6 show, the sizes 8iChopsare very small for majority of
the cases. Infactin 13 cases it is less than 16®XEC

After having located the set of potentially faulty staterseim
form of BiChop the next step for the user is to locate the actual
cause of the fault. We consider a strategy for this task tthéur
reduce the number of statements examined by the progranmewner b
fore locating the fault. In Table 6, the columitthereindicates the
location of faulty code — the critical predicate (Pred.g tipward
chop inBiChop (Up), or the downward chop iBiChop (Down).
Of course, first we should look at the critical predicatelftsAs
we can see in 4 cases the fault was in the predicate itselhelf t
fault is not in the predicate, the following technique fodering
the statements iBiChopfor examination by the programmer can
be used. A strategy that orders the statements based upon the
dynamic dependence distance from the critical predicatcsa-
sidered. In other words, the strategy examines the statsrtteat
are closer to the critical predicate first. We found that ¢nering
is quite effective because even though the chops may comiziry
statements, if the above ordering is followed, the user @mers
the faulty statement after examining only a few statemeiitse
result of a study to demonstrate this point ®flexversions are
presented in Table 7. In the six versions we succeeded imfindi
critical predicates, to locate the faulty statement we ordgded

Table 7: Dependence Distance Based Search.

[Program [Statementd Dep. Distance]
s-flex-v4 1 [0
s-flex-vb search failed — error in DP
s-flex-ve search failed — error in DP
s-flex-v7 2 1
s-flex-v8 2 0
s-flex-v9 1 0
s-flex-v10 3 1
s-flex-vll 3 2

to examine 1 to 3 statements before finiding the faulty statém
The reason for this is that the faulty statement was at a veslls
dependence distance from the critical predicate.

Finally we also considered a simpler strategy that manueadly
amines the statements BiS. We found that in many cases even
thoughBiSmay be large, in practice, the location of the fault through
manual examination was easy to perform. Given the predinate
stance switch one may have to examine a small subset of gatem
identified above to locate the cause of erroneous behavext e
examine three of the real bugs to demonstrate this claim.

Flex It has been reported that XFree86 does not compile when
flex-2.5.31 is installed. The reason for this problem is that-var
ableyy_prev_more_of fset is used but not defined in the lexical
analyzer generated bffex. The bug is reproduced in the left col-
umn of Figure 7. Our technique identifies that switching orezlp
icate instance in functiomake_tables(), as shown in the right
column of Figure 7, produces the desired output. By lookihg a
the code, it is apparent that it is not correct that the déimiof
yy_prev.more offsetshould appear in the generated code only when
reentrantis TRUE Reentranis TRUEwhen the option reentrant
is specified, which tellflexto produce a reentrant analyzer. Mov-
ing the statement at line 1816 out of thlsebranch fixes the bug.

Grep In grep version 2.51, if both the optior F' and —w are
specified, the result may not be correct. For instance, ifollav-
ing case.

-bash-2. 05>echo "test1l test test2"
- bash- 2. 05>

| grep -Fw test

Option—F prescribes that the pattern expression is used as a string
to perform matching. Optior-w means searching for the pattern
expression as a word. Obviously, empty output is not desieed
cause the pattern strifigest” occurs in the input string as a word.
Instead, the input string should be printed out as the rexudt
match.

We apply our technique on this buggy execution and find two
different critical predicate instances. These two critmadicates
(at lines 549 and 554) are shown in Figure 8. They aferttion
Fexecute(,)which is called when-F is specified. From line 516
to line 548,Fexecute(Yakes the input string and matches it to the
pattern string. If a match existsegis the start of the matched sub-
string andlen contains length of the match. At line 549,-fw is
not specified, the program claims the matching is successil
then prints the input string; otherwise, it tries to decidether the
match just found is a word match in lines 550-570. If it is a @vor
match, the program claims success and prints the inpugsttin
the original buggy run, both the predicate instance at 54PBtha
predicate instance at 554 take thRUE branch, which indicates
—w is specified and the first match is not a word match. The first
match is the’test” substring in”test1”. Therefore,begequals
to the beginning of the input string ateh equals to 4. Theub-
string(beg, —len)s "tes”, which fails to match to the pattern string
at line 556. As a result, the procedure returns failed at %i62.
Apparently, the procedure should not return failed at 56&hould
break out of loop 550-570 and continue to the second matciejwh
is the secondtest” substring in the input and is a word match.
Replacing the return statement at 563 with a break statesuent
cessfully produces the desired output. Either of the twticeti
predicates point us right to where the bug is. They also pevi
information on how to fix the bug.

Make In make version 3.80, if backslashes are used for quoting
or escaping colons in dependency names, it may create safe pr

lem. This error is manifested in the left column of Figure 9e W
can see in the first rumake -f inputl.mk xyz;the program cor-
rectly identifies the target named "Xy4". However, in the second
run, make -f inputl.mk xyit fails to find the target of "xyx:1”,
which is the dependency of target "xyz”. We find that switchin
either of the two predicates produces the correct outputaaked

in the right column with shaded rectangles. These two peatelsc
are in functiorfind_char_unquote() which parses a string stopping
at charstop] stop2 or blankif specified. It starts from the begin-
ning of the string and searches for any stop char or ck@l if

the char right before the stop char is a backslash, which sben
stop char is quoted and thus not a real stop sign, it remows th
backslash and continues. We further investigate the twdigaies
and find that they are in a call lparsefile_seq() which generates
the list of names for target dependencies. The stop chaffirzede
as \0'. When parsing the target names, the stop char is specified
as '’ in a similar call tofind_char_unquote() Because the stop
charis \0’, find_char_unquote(keeps increasing at 2164 till the
end of string when parsing "xyz1” which is the dependency for
target "xyz". These two predicates correspond to termigathe
loop in2162 — 2164 at char ;" before reaching the end. Because
now p[-1]=="\" at 2172, thé, is removed from the string. Finally
string "xyz:1" is returned as the dependency name. Becauae ¢
"’ is specified as the stop char when parsing the target naraes
get "xyz\:1” has the internal name of "xyz:1” as well. Therefore,
the program is able to find a match between the dependenchand t
target such that it generates the correct output. Note ¢vatsing
predicate*p!="\0" at 2162 does not have the same effect because
the compiler optimization combines this predicate with tine at
2169 such that the generated code directly breaks out oftitez o
while loop.

Except fors-flex in all other cases the bugs are logical errors
which require changes to the code that are not localizedpecific
faulty statement. The above study shows that logical eqansbe
understood by studying the statements in the chops andittoakr
predicate. However, as is the casesifiex there can also be faults
in a program which are contained in a specific statement ath t
fixing that statement fixes the program.

6. RELATED WORK

Dynamic slicing was introduced as a aid to debugging [9, 1. O
recent works [19, 20] have greatly reduced the space andciiste
of dynamic slicing. In [21], we evaluated the effectiveneSback-
ward dynamic slicef fault location. Our result showed that even
though dynamic slices can capture the faulty code, identifthe
faulty code from the set of statements in the slice still rezginon-
trivial human effort. We further narrowed the scope of ptitdly
faulty code in [3] by, for the first time, usirfgrward dynamic slices
of failure-inducing input difference. In contrast, in thpaper, we
have shown thabidirectional dynamic slicesf critical predicates
can further narrow the search for faulty code. The compuradf
Bidirectional Chops based upon identifying multiple kinds nég-
ative evidencei.e. program entities related to execution of faulty
code. In recent work we have demonstrated the ugmosfive ev-
idencein form of correct portions of the outputs produced during
a failing run to order and prune statements in the poteptialllty
code [22].

In a series of articles [17, 16, 15], thelta debugginglgorithm
has been developed to automatically simplify or isolateilarfe
inducing input [17, 16], produce cause effect chains [15] tn
link cause transitions [2] to the faulty code. In [2] deltédodgging
algorithm is used to analyz@ogram state changeduring the ex-
ecution of a failed run to identify points etuse transitionsCode

- bash- 2. 05>cat i nput

\

\ %

\ % %

-bash-2.05>flex -1 -t -Cae input
(yy_prev_nore_of fset is not defined)
- bash-2. 05>

The CORRECT output is,
-bash-2.05>flex -1 -t -Cae input

static int yy_prev_nore_offset = 0;

~bash- 2. 05>

1508 void make_tables ()
1509 ¢
1813 if (!reentrant){
1814 indent puts ("static int yy _more offset = 0;");
1815 } else{
1816 indent_puts ("static int yy_prev_more_offset = 0;");
1817 }
gen.c

Figure 7: Bug in flex-2.5.31

503 Fexecute (char const *buf, size t size, size t *match_size, int exact)

504

{. ..
515 for (beg = buf; beg <= buf + size; ++beg)

— { /*match the substring (beg, bugtsize-buf) to any of the keywords, len contains the length of matched;*/
549 else if (match_words) /*if -w is specified*/
550 r— for (try = beg; len;)
551 (...
554 if (...) /*if the matched substring is not a word*/
555 {
556 offset=...; /*match substring(try, --len) to any of the keywords, result is put in offset*/
557 if (offset == (size_t) -1) /*there is no match*/
558 { ...
563 return offset;
564 }

/*update try, len to the head and the length of the matched substring™®/

567 }
568 else
569 goto success;
570 —
571 else
572 goto success;
573 — 3}

Figure 8: Bug in search.c of grep 2.51.

-bash-2. 05>cat input1.nk
xyz: xyz\:1
@cho $@ $<

xyz\:1: inputl.nk
@cho 3@ $<

. PHONY: none

-bash-2. 05>make -f inputl.mk xyz:1

xyz:1: inputl. nk

-bash-2. 05>make -f inputl. nk xyz

nmeke: *** No rule to make target ‘xyz\:1',
needed by ‘xyz'. Stop.

-bash-2. 05>

The CORRECT output is
-bash-2.05>make -f inputl.nmk xyz

xyz: 1: inputl.nk
xyz: xyz:1

2142 char *
2143 find_char_unquote (char * string, int stop1, int stop2, int blank)
2148 {
2150 register char *p = string;
2152 —while (1)

{. ..
2161 else if (blank)
2162 while (*p !="0' && *p != stopl
2163 && ! isblank ((unsigned char) *p))
2164 ++p;
2169 if (*p=="0")
2170 break;
2172 if (p > string && p[-1]=="\)
2173

/*remove the backslash from the the string*/

2192 }
2196 —} read.c

Figure 9: Bug in make3.80

executed at the points of cause transitions is expectedreldant

to the fault. Comparing and changing memory states of C pragr
executions at a point is difficult due to pointers [2]. In &, to
identify points of cause transitions, the above statedbasalysis
has to be performed at a large number of points along thedfaile
run. Therefore, program state based analysis is difficuttane
consuming for C programs [2]. In comparison our approach-is i
expensive in terms of time taken.

A number of statistical approaches that analyze prograrctispe
of program runs for multiple inputs, including inputs capend-
ing to both failed and successful runs, are being employethtdt
location. Harrold et al. [5] compared the spectra of passing
failing runs and found that failing runs tend to have unusosker-
age spectra. Jones et al. [8] ranked each statement aaggdodis
ratio of failing tests to correct tests and used this infdiamato as-
sist fault location. Liblit et al. [10] describe a samplimgriework
and present an approach to guess and eliminate predica&s to
late a deterministic bug. For isolating nondeterministigdy they
use statistical regression techniques to identify preegcthat are
highly correlated with the program failure. In contrastpieis and
Reiss [12] focused on the difference between the failingamh a
singlepassing run with similar spectra as a means to narrow down
the search space for faulty code. Our work is complementsityet
above work as it focusses on a failed run corresponding fiesin
input for fault location. However, one advantage of our appgh
is that it provides dependence relationships betweenuwspoints
of interest, i.e. failure-inducing input, critical predie, and erro-
neous output. This information is useful to the programmeing
debugging.

Some additional works include the following. Xie et al. show
that many redundancies [14] in programs correspond to hard p
gram errors. Hangal et al. [4] identified the causes of soroe pr
gramming errors in Java programs by observing violationgsrof
gram invariants. In [6], we developed a technique that useatian
of path based weakest preconditions to automatically éofzatlty
code in a function when the precondition and postconditiothe
function are available as first order predicate logic forasul

7. CONCLUSIONS

In this paper we presented the ideadfical predicatesand pre-
sented an efficient automated algorithm for locating altjgred-
icates. A critical predicate is an instance of a conditidmanch
such that if the outcome of this instance is switched, tHa€arun
changes to a successful run either by causing correct otdhe
generated instead of incorrect output or by causing thehdtzst
previously occurred not to happen. We show that not only cién ¢
ical predicates be very often located in many real reporaedtyf
programs, they provide valuable clues to the cause of therdai
and hence assist in fault location. We also demonstratedchiow
ical predicates when coupled with dynamic slicing can redie
effort for fault location.

Acknowledgements

This work is supported by grants from Microsoft, IBM, and NSF
grants CCF-0541382, CCF-0324969, and EIA-0080123 to the Un
versity of Arizona.

8. REFERENCES

[1] H. Agrawal and J. Horgan, “Dynamic Program SlicinG/GPLAN
Conference on Programming Language Design and Implenientat
pages 246-256, 1990.

[2] H. Cleve and A. Zeller, “Locating Causes of Program Raifj’ 27th
International Conf. on Software Engineeringages 342-351, 2005.

[3] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faultydé
Using Failure-Inducing ChopslEEE/ACM International Conf. on
Automated Software Engineeririgong Beach, CA, Nov. 2005.

[4] S. Hangal and M.S.Lam, “Tracking Down Software Bugs dsin
Automatic Anomaly Detection,International Conference on Software
Engineering 2002.

[5] M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
Empirical Investigation of the Relationship Between Sgect
Differences and Regression Faultdgurnal of Software Testing
Verification and Reliability10(3):171-194, 2000.

[6] H. He and N. Gupta, “Automated Debugging using Path-Base
Weakest PreconditionsFPundamental Approaches to Software
Engineering Barcelona, Spain, 2004.

[7] R. Hildebrandt and A. Zeller, “Simplifying Failure-ingting Input,”
International Symposium on Software Testing and Analpsiges
135-145, 2000.

[8] J.A. Jones, "Fault Localization Using Visualization Tdst
Information”, 26th International Conference on Software Engineering
page 54-56,2004.

[9] B. Korel and J. Laski, “Dynamic program slicingfiformation
Processing Letterg29)3:155-163, 1988.

[10] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug tdation
via Remote Program SamplingsIGPLAN Conference on
Programming Language Design and Implementati®an Diego,
California, June 2003.

[11] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. Rei#sjtomated
Fault Localization Using Potential Invariant$;ifth Int. Workshop on
Automated and Algorithmic DebugginGhent, Belgium, Sept. 2003.

[12] M. Renieris and S. Reiss, “Fault Localization with NestrNeighbor
Queries,”Automated Software Engineering003.

[13] M. Weiser, “Program Slicing,TJEEE Transactions on Software
Engineering Vol. SE-10, No. 4, pages 352-357, 1982.

[14] Y. Xie and D. Engler, “Using Redundancies to Find ErfoACM
SIGSOFT International Symposium on Foundations of Soétwar
Engineering pages 51-60, 2002.

[15] A. Zeller, “Isolating Cause-effect Chains from ComguPrograms,”
SIGSOFT Symposium on Foundations of Software Engineering
Charleston, South Carolina, US, 2002.

[16] A. Zeller, “Yesterday, my program worked. Today, it da®ot.
Why?,” 7th European Software Engineering Conference/ 7th ACM
SIGSOFT Symposium on Foundations of Software Engineqrayes
253-267, Sept. 1999.

[17] A. Zeller and R. Hildebrandt, “Simplifying and Isolag
Failure-inducing Input,IEEE Transactions on Software Engineering
Vol 28, No 2, Feb. 2002.

[18] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic 8Hci
Algorithms,” IEEE International Conference on Software Engineering
pages 319-329, Portland, Oregon, May 2003.

[19] X. Zhang, R. Gupta, and Y. Zhang, “Effective Forward Gaitation
of Dynamic Slices Using Reduced Ordered Binary Decision
Diagrams,”IEEE International Conference on Software Engineering
pages 502-511, May 2004.

[20] X. Zhang and R. Gupta, “Cost Effective Dynamic PrograliniSy,”
SIGPLAN Conference on Programming Language Design and
Implementationpages 94-106, June 2004.

[21] X. Zhang, H. He, N. Gupta and R. Gupta, “Experimental@tion
of using dynamic slices for fault locationSixth International
Symposium on Automated and Analysis-Driven Debugditamnterey,
California, September 2005.

[22] X.Zhang, N. Gupta, and R. Gupta, “Pruning Dynamic Sligdith
Confidence,"SIGPLAN Conference on Programming Language Design
and Implementatiorto appear, June 2006.

[23] P. Zhou, W. Liu, f. Long, S. Lu, F. Qin, Y. Zhou, S. Midkjfand J.
Torrelas, “Accmon: Automatically Detecting Memory-reddtBugs via
Program Counter-based Invariantsjternational Symposium on
Microarchitecture pages 269-280, Nov. 2004.

[24] http://www.cse.unl.edws/galileo/sir

[25] http://www.elis.ugent.be/diablo/

[26] http://valgrind.org/

