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Abstract. We present a novel approach to avoid the debugging of op-
timized code through comparison checking. In the technique presented,
both the unoptimized and optimized versions of an application program
are executed, and computed values are compared to ensure the behav-
iors of the two versions are the same under the given input. If the values
are different, the comparison checker displays where in the application
program the differences occurred and what optimizations were involved.
The user can utilize this information and a conventional debugger to
determine if an error is in the unoptimized code. If the error is in the
optimized code, the user can turn off those offending optimizations and
leave the other optimizations in place. We implemented our comparison
checking scheme, which executes the unoptimized and optimized versions
of C programs, and ran experiments that demonstrate the approach is
effective and practical.

1 Introduction

Although optimizations are important in improving the performance of pro-
grams, an application programmer typically compiles a program during the de-
velopment phase with the optimizer turned off. After the program is tested and
apparently free of bugs, it is ready for production. The user then compiles the
program with the optimizer turned on to take advantage of the performance
improvement offered by optimizations. However, when the application is opti-
mized, its semantic behavior may not be the same as the unoptimized program;
we consider the semantic behaviors of an unoptimized program and its optimized
program version to be the same if all corresponding statements executed in both
programs compute the same values under given inputs. In this situation, the
programmer is likely to assume that errors in the optimizer are responsible for
the change in semantic behavior and, lacking any more information, turn all the
optimizations off.
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Differences in semantic behaviors between unoptimized and optimized pro-
gram versions are caused by either (1) the application of an unsafe optimization,
(2) an error in the optimizer, or (3) an error in the source program that is
exposed by the optimization. For instance, reordered operations under certain
conditions can cause overflow or underflow or produce different floating point
values. The optimized program may crash (e.g., division by zero) because of
code reordering. The application of an optimization may assume that the source
code being transformed follows a programming standard (e.g., ANSI standard),
and if the code does not, then an error can be introduced by the optimization.
The optimizer itself may also contain an error in the implementation of a par-
ticular optimization. And lastly, the execution of the optimized program may
uncover an error that was not detected in the unoptimized program (e.g., unini-
tialized variable, stray pointer, array index out of bounds). Thus, for a number
of reasons, a program may execute correctly when compiled with the optimizer
turned off but fail when the optimizer is turned on.

Determining the cause of errors in an optimized program is hampered by
the limitations of current techniques for debugging optimized code. Source level
debugging techniques for optimized code have been developed but they either
constrain debugging features, limit optimizations, modify the code, or burden
the user with understanding how optimizations affect the source level program.
For example, to locate an error in the optimized program, the user must step
through the execution of the optimized program and examine values of variables
to find the statement that computes an incorrect value. Unfortunately, if the user
wishes to observe the value of a variable at some program point, the debugger
may not be able to report this value because the value has not been computed
vet or was overwritten. Techniques to recover the values for reporting purposes
work in limited situations and for a limited set of optimizations [13,10,25,19,7,

12,14,4, 18,5,6,23,3,24, 8].

In this paper, we present comparison checking, a novel approach that avoids
debugging of optimized code. The comparison checking scheme is illustrated in
Figure 1. The user first develops, tests, and debugs the unoptimized program
using a conventional debugger and once the program appears free of bugs, the
program is optimized. The comparison checker orchestrates the executions of
both the unoptimized and optimized versions of a source program under a num-
ber of inputs and compares the semantic behaviors of both program versions
for each of the inputs; comparisons are performed on values computed by cor-
responding executed statements from both program versions. If the semantic
behaviors are the same and correct, the optimized program can be run with
high confidence. On the other hand, if the semantic behaviors differ, the checker
displays the statements responsible for the differences and optimizations applied
to these statements. The user can use this information and a conventional de-
bugger to determine if the error is in the unoptimized or optimized code. If the
user finds the problem to be in the unoptimized version, modifications are per-
formed and the checking is repeated. If the error is in the optimized code, the
user can turn off those offending optimizations in the effected parts of the source
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Fig. 1. The Comparison Checking System

program. The difference would be eliminated without sacrificing the benefits of

correctly applied optimizations.

Our system can locate the earliest point where both programs differ in their
semantic behavior. That is, the checker detects the earliest point during execu-
tion time when corresponding statement instances should but do not compute
the same values. For example, if a difference is due to an uninitialized variable,

our scheme detects the first incorrect use of the value of this variable. If a dif-

ference is due to the optimizer, this scheme helps locate the statement that was
incorrectly optimized. In fact, this scheme proved very useful in debugging our
optimizer that we implemented for this work.

The merits of a comparison checking system are as follows.

— The user debugs the unoptimized version of the program, and is therefore
not burdened with understanding the optimized code.
— The user has greater confidence in the correctness of the optimized program.
— When a comparison fails, we report the earliest place where the failure oc-
curred and the optimizations that involved the statement. Information about
where an optimized program differs from the unoptimized version benefits
the user in tracking down the error as well as the optimizer writer in debug-
ging the optimizer.
— A wide range of optimizations including classical optimizations, register allo-
cation, loop transformations, and inlining can be handled by the technique.
Many of these optimizations are not supported by current techniques to
debug optimized code.
— The optimized code is not modified except for breakpoints, and thus no
recompilation is required.



The design of comparison checking has several challenges. We must decide
what values computed in both the unoptimized and optimized programs should
be compared and how to associate these values in both programs. These tasks
are achieved by generating mappings between corresponding instances of state-
ments in the unoptimized and optimized programs as optimizations are applied.
We must also decide how to execute both programs and when the comparisons
should be performed. Since values can be computed out of order, a mechanism
must save values that are computed early. These values are saved in a wvalue
pool and removed when no longer needed. Finally, the above tasks must be au-
tomated. The mappings are used to automatically generate annotations for the
optimized and unoptimized programs. These annotations guide the comparison
checker in comparing corresponding values and addresses. Checking is performed
for corresponding assignments of values to source level variables and results of
corresponding branch predicates. In addition, for assignments through arrays
and pointers, checking is done to ensure the addresses to which the values are
assigned correspond to each other. All assignments to source level variables are
compared with the exception of those dead values that are never computed in the
optimized code. We implemented the scheme, which executes the unoptimized
and optimized versions of C programs. We also present our experience with the
system and experimental results demonstrating the practicality of the system.

While our comparison checking scheme is generally applicable to a wide range
of optimizations from simple code reordering transformations to loop transfor-
mations, this paper focuses on classical statement level optimizations. Optimiza-
tions can be performed at the source, intermediate, or target code level, and our
checker is language independent. Mappings between the source and intermedi-
ate/target code are maintained to report differences in terms of the source level
statements.

This paper is organized by demonstrating the usefulness of the comparison
checking scheme in Section 2. An overview of the mappings is presented in Sec-
tion 3. Sections 4 and 5 describe the annotations and the comparison checker.
Section 6 provides an example of comparison checking. Section 7 presents exper-
imental results. Related work is discussed in Section 8, and concluding remarks
are given in Section 9.

2 Comparison Checking Scenarios

In this section, we demonstrate the usefulness of comparison checking using ex-
amples. Consider the unoptimized C program fragment and its optimized version
in Figure 2(a). Assume the unoptimized program has been tested, the optimizer
is turned on, and when the optimized program executes, it returns incorrect out-
put. The natural inclination of the user is to think that an error in the optimizer
caused the optimized program to generate incorrect output. However, using the
comparison checker, a difference in the program versions is detected at line 7 in
the unoptimized program. The checker indicates that the value 2 is assigned to
y in the unoptimized program and the value 22 is assigned to y in the optimized
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Fig. 2. Program examples for comparison checking

program at line 7 during loop iteration 10. The checker also indicates that no
optimizations were applied to the statement at line 7. To determine if there is
an error in the unoptimized program or if perhaps a prior optimization caused
the problem, the user utilizes a conventional debugger and places a breakpoint
in the unoptimized program at line 7. Upon the last iteration of the loop, the
user examines the value of 7, which is 10, and realizes that 10 is not within the
bounds of array a (C assigns subscripts 0...9). At this point, the user realizes
that the error is in the original program. The user can fix the original program,
generate the new optimized version, and repeat the checking. Notice that the
user does not need to examine the optimized program.

What caused the optimized program to generate incorrect output? The cause
was an optimization that changed the memory layout of the program. Consider
the execution time behavior of both program versions. The loop stores values
into array a at statement 5 and overruns the upper bound of @ when ¢ is 10. In
the unoptimized program, the assignment to a[7] when ¢ is 10 actually stores a
value in b. Assuming b is not used in the unoptimized program, the output of the
program is correct. However, in the optimized program in which storage for b is
removed because variable b is dead, the assignment to a[i] when 7 is 10 actually
stores a value in z. Since the same value of & is overwritten at line 6 but needed
in subsequent statements, the output of the optimized code is incorrect.

Even when the outputs generated by the unoptimized and optimized pro-
grams are both the same and correct, comparing the internal behaviors of the
unoptimized and optimized programs can still help users detect errors in the orig-
inal program. This would happen when an error in the unoptimized program is
unmasked in the optimized program and affects the output only on certain in-
puts. Assume the unoptimized program and optimized program in Figure 2(a)
output the same values at statement 9. The error in the program described above



does not affect this output. However, using the comparison checker, a difference
in the programs is detected at line 7 in the unoptimized program. As mentioned
above, the user can utilize the information supplied by the checker and a con-
ventional debugger to determine that at line 7, array a is indexing out of its
bounds.

Differences in the behavior of the unoptimized and optimized programs can
also be caused by errors in the way optimizations are applied. Consider the ex-
ample in Figure 2(b). Using the checker and assuming #, y, and z upon entry
to the procedure one are 1,2, and 3, respectively, a difference is detected in the
internal behavior of both programs at line 8 in the unoptimized program. The
checker indicates that the value 3 is assigned in the unoptimized program and
the value 5 is assigned in the optimized program. The checker indicates that con-
stant propagation was applied to this statement in the optimized program and
an operand in line 8 was replaced by the constant 5. The user can once again use
a conventional debugger to determine if there is an error in the original program.
The user places a breakpoint in the unoptimized program at line 8. When the
unoptimized program execution reaches the breakpoint, the user examines the
values of the operands at line 8 and notices none of the operand’s values are 5.
The user concludes the value 5 should not have replaced an operand at line 8
and therefore, the constant propagation optimization has been incorrectly ap-
plied. The user disables the constant propagation optimization, the checking is
repeated, and no differences are reported. The difference was eliminated without
sacrificing the benefits of other correctly applied optimizations.

3 Mappings

To compare values computed in both the unoptimized and optimized programs,
we need to determine the corresponding statement instances that compute the
values. A statement instance in the unoptimized program and a statement in-
stance in the optimized program are said to correspond if the values computed
by the two instances should be the same and the latter was derived from the
former by the application of some optimizations. Our mappings associate state-
ment instances in the unoptimized program and the corresponding statement
instances in the optimized program. In [16], we developed a mapping technique
to identify corresponding statement instances and describe how to generate
mappings that support code optimized with classical optimizations as well as
loop transformations. Since optimizations can be applied in any order and as
many times as desired, the mappings also summarize the effects of all previously
applied optimizations. In this section, we use an example to describe the map-
pings used by the comparison checking scheme to support code optimized with
classical optimizations.

In Figure 3, the unoptimized program and the optimized program version
as well as the mappings are shown. For ease of understanding, the source level
statements shown are simple. The mapping technique applies when optimizations
are applied at the source, intermediate, or target code level. The mappings are
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Fig. 3. Mappings for Unoptimized and Optimized Code

illustrated by labeled dotted edges between corresponding statements in both
programs. The following optimizations were applied.

— constant propagation - the constant 1 in S1 is propagated, as shown in 52/,
S3’, and S11’.

— copy propagation - the copy M in 56 is propagated, as shown by 57 and
5107,

— dead code elimination - S1 and 56 are dead after constant and copy propa-
gation.

— loop invariant code motion - S5 is moved out of the doubly nested loop. 510
is moved out of the inner loop.

— partial redundancy elimination - 59 is partially redundant with S8.

— partial dead code elimination - 510 is moved out of the outer loop.

Mapping labels identify the instances in the unoptimized program and the
corresponding instances in the optimized program. If there is an one-to-one cor-
respondence between the instances, then the number of instances is the same and
corresponding instances appear in the same order. If the number of instances is



not the same, a consecutive subsequence of instances in one sequence corresponds
to a single instance in the other.

Since code optimizations move, modify, delete, and add statements in a pro-
gram, the number of instances of a statement can increase, decrease, or remain
the same in the optimized program as compared to the unoptimized program. If
a statement is moved out of a loop, then the statement will execute fewer times in
the optimized code. For example, in loop invariant code motion (see statements
S5 and S5'), the statement moved out of the loop will execute fewer times and
thus all the instances of statement 55 in the loop in the unoptimized code must
map to one instance of statement S5’ in the optimized code. If a statement is
moved below a loop, for example by applying partial dead code elimination (see
statements S10 and S10’), then only the last instance of statement S10 in the
loop in the unoptimized code is mapped to one instance of statement 510’ in the
optimized code. If the optimization does not move the statement across a loop
boundary (see statements S2 and 52'), then the number of instances executed in
the unoptimized and optimized code is the same and thus one instance of state-
ment 52 in the unoptimized code is mapped to one instance of statement 52’
in the optimized code. The removal of statements (see statements S1 and S6)
can cause mappings to be removed because there is no correspondence between
a statement in the unoptimized code to a deleted statement in the optimized
code.

4 Annotations

Code annotations guide the comparison checking of values computed by corre-
sponding statement instances from the unoptimized and optimized code. An-
notations (1) identify program points where comparison checks should be per-
formed, (2) indicate if values should be saved in a value pool so that they will be
available when checks are performed, and (3) indicate when a value currently re-
siding in the value pool can be discarded since all checks involving the value have
been performed. The selection and placement of annotations are independent of
particular optimizations and depend only on which and how statement instances
correspond and the relative positions of corresponding statements in both the
unoptimized and optimized programs. Data flow analysis, including reachabil-
ity and postdominance, is used to determine where and what annotations to
use [15]. Annotations are placed after all optimizations are performed and tar-
get code has been generated, and therefore, the code to emit the annotations
can be integrated as a separate phase within a compiler.

Five different types of annotations are needed to implement our compari-
son checking strategy. In Figure 4(a), annotations shown in dotted boxes, are
given for the example in Figure 3. In the following description, Sy.p: indicates a
statement in the unoptimized code and S5,,; a statement in the optimized code.

Check S,,p: annotation: This annotation is associated with a program point
in the optimized code to indicate a check of a value computed by statement
Suopt is to be performed. The corresponding value to be compared is the result
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of the most recently executed statement in the optimized code. For example, in
Figure 4(a), the annotation Check 52 is associated with S2.

A variation of this annotation is the Check Sy.p with 5;,.5;, ... annotation,
which is associated with a program point in the optimized code to indicate a
check of a value computed by statement S,,,; is to be performed with a value
computed by one of Sy.p:’s corresponding statements S;, Sj, ... in the optimized
program. The corresponding value to be compared is either the result of the
most recently executed statement in the optimized code or is in the value pool.

Save S,,; annotation: If a value computed by a statement S,,; cannot be
immediately compared with the corresponding value computed by the unopti-
mized code, then the value computed by S,,; must be saved in the value pool.
In some situations, a value computed by S,,; must be compared with multiple
values computed by the unoptimized code. Therefore, it must be saved until all
those values have been computed and compared. The annotation Save Sop; is
associated with S,,; to ensure the value is saved. In Figure 4(a), the statement
S5 in the unoptimized code, which is moved out of the loops by invariant code
motion, corresponds to statement S5’ in the optimized code. The value com-
puted by S5’ cannot be immediately compared with the corresponding values
computed by S5 in the unoptimized code because S5’ is executed prior to the
execution of S$5. Thus, the annotation Save S5 is associated with S5’.



Delay S5, ,p: and Checkable S, ,,; annotations: If the value computed by the
execution of a statement S,,,; cannot be immediately compared with the cor-
responding value computed by the optimized code because the correspondence
between the values cannot be immediately established, then the value of Syop:
must be saved in the value pool. The annotation Delay Sy.p: is associated with
Suopt to indicate the checking of the value computed by Su,p: should be delayed,
saving the value in the value pool. The point in the unoptimized code at which
checking can finally be performed is marked using the annotation Checkable
Suopt-

In some situations, a delay check is needed because the correspondence be-
tween statement instances cannot be established unless the execution of the
unoptimized code is further advanced. In Figure 4(a), statement S10 inside the
loops in the unoptimized code is moved after the loops in the optimized code
by partial dead code elimination. In this situation, only the value computed by
statement 510 during the last iteration of the nested loops is to be compared
with the value computed by S10’. However, an execution of S10 corresponding
to the last iteration of the nested loops can only be determined when the exe-
cution of the unoptimized code exits the loops. Therefore, the checking of 510’s
value is delayed.

Delete S: This annotation is associated with a program point in the unopti-
mized/optimized code to indicate a value computed previously by S and stored
in the value pool can be discarded. Since a value may be involved in multiple
checks, a delete annotation must be introduced at a point where all relevant
checks would have been performed. In Figure 4(a), the annotation Delete Sb’
is introduced after the loops in the optimized code because at that point, all
values computed by statement S5 in the unoptimized code will certainly have
been compared with the corresponding value computed by S5’ in the optimized
code.

Check-self S: This annotation is associated with a program point in the
unoptimized /optimized code and indicates that values computed by S must be
compared against each other to ensure the values are the same. This annotation
causes a value of S to be saved in the value pool.

5 Comparison Checker

The comparison checker compares values computed by both the unoptimized
and optimized program executions to ensure the semantic behaviors of both pro-
grams are the same. The unoptimized and optimized programs are annotated
with actions that guide the comparison checking process. Once a program point
is reached, the actions associated with the annotation are executed by the com-
parison checker. To avoid modifying the unoptimized and optimized programs,
breakpoints are used to extract values from the unoptimized and optimized pro-
grams as well as activate annotations.

A high level conceptual overview of the comparison checker algorithm is
given in Figure 5. Execution begins in the unoptimized code and proceeds un-
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til a breakpoint is reached. Using the annotations, the checker can determine
if the value computed can be checked at this point. If so, the optimized pro-
gram executes until the corresponding value is computed (as indicated by an
annotation), at which time the check is performed on the two values. During
the execution of the optimized program, any values that are computed “early”
(i.e., the corresponding value in the unoptimized code has not been computed
yet) are saved in the value pool, as directed by the annotations. If annotations
indicate the checking of the value computed by the unoptimized program can-
not be performed at the current point, the value is saved for future checking.
The checker continues to alternate between executions of the unoptimized and
optimized programs. Annotations also indicate when values that were saved for
future checking can finally be checked and when the values can be removed from
the value pool. Any statement instances eliminated in the optimized code are
not checked.

6 Comparison Checking Scheme Example

Consider the unoptimized and optimized program segments in Figure 4. Assume
all the statements shown are source level statements and loops execute for a
single iteration. Breakpoints are indicated by circles. The switching between the
unoptimized and optimized program executions by the checker is illustrated by
the traces. The traces include the statements executed as well as the breakpoints
(circled) where annotations are processed. The arrows indicate the switching
between programs.

The unoptimized program starts to execute with S1 and continues execut-
ing without checking, as S1 was eliminated from the optimized program. Af-
ter 52 executes, breakpoint 1 is reached and the checker determines from the
annotation that the value computed can be checked at this point and so the
optimized program executes until Check 52 is processed, which occurs at break-
point 2. The values computed by $2 and 52’ are compared. The unoptimized



program resumes execution and the loop iteration at S3 begins. After S3 exe-
cutes, breakpoint 3 is reached and the optimized program executes until Check
53 is processed. Since a number of comparisons have to be performed using
the value computed by S5, when breakpoint 4 is reached, the annotation Save
S5’ is processed and consequently, the value computed by S5’ is stored in the
value pool. The optimized code continues executing until breakpoint 5, at which
time the annotation Check S3 is processed. The values computed by $3 and S3’
are compared. 54 then executes and its value is checked. 55 then executes and
breakpoint 8 is encountered. The optimized program executes until the value
computed by S5 can be compared, indicated by the annotation Check S5 with
S5 at breakpoint 9. The value of S5 saved in the value pool is used for the
check. The programs continue executing in a similar manner.

7 Implementation of the Comparison Checking Scheme

We implemented our Comparison checking of OPtimized code scheme, called
COP, to test our algorithms for instruction mapping, annotation placement, and
checking. Lee [9] was used as the compiler for the application program and was
extended to include a set of optimizations, namely loop invariant code motion,
dead code elimination, partial redundancy elimination, copy propagation, and
constant propagation and folding. On average, the optimized code executes 16%
faster in execution time than the unoptimized code.

As a program is optimized, mappings are generated. Besides generating tar-
get code, lcc was extended to generate a file containing breakpoint information
and annotations that are derived from the mappings; the code to emit breakpoint
information and annotations is integrated within lcc through library routines.
Thus, compilation and optimization of the application program produce the
target code for both the unoptimized program and optimized program as well
as auxiliary files containing breakpoint information and annotations for both
the unoptimized and optimized programs. These auxiliary files are used by the
checker. Breakpoints are generated whenever the value of a source level assign-
ment or a predicate is computed and whenever array and pointer addresses are
computed. Breakpoints are also generated to save base addresses for dynami-
cally allocated storage of structures (e.g., malloc(), free(), etc.). Array addresses
and pointer addresses are compared by actually comparing their offsets from
the closest base addresses collected by the checker. Floating point numbers are
compared by allowing for inexact equality; that is, two floating point numbers
are allowed to differ by a certain small delta [21]. Breakpointing is implemented
using fast breakpoints [17].

Experiments were performed to assess the practicality of COP. Our main
concerns were usefulness as well as cost of the comparison checking scheme. COP
was found to be very useful in actually debugging our optimizer. Errors were
easily detected and located in the implementation of the optimizations as well
as in the mappings and annotations. When an unsuccessful comparison between
two values was detected, COP indicated which source level statement computed
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length annotated annotated (response
Program |(lines)|| (CPU) (CPU)|| (CPU) (CPU)|| (CPU) time)
WC 3381(00:00.26| 00:02.16{|00:00.18| 00:01.86{|00:30.29| 00:53.33
yacc 59(|00:01.10| 00:06.38|00:00.98| 00:05.84|01:06.95| 01:34.33
go 28547/|00:01.43| 00:08.36(|00:01.38| 00:08.53|(01:41.34| 02:18.82

m88ksim' | 17939((00:29.62] 03:08.15[[00:24.92] 03:07.39([41:15.92| 48:59.29
compress'| 1438[[00:00.20] 00:02.91[[00:00.17| 00:02.89(/00:52.09] 01:22.82
1it 6916((01:00.25| 05:42.39|(00:55.15| 05:32.32|(99:51.17|123:37.67
ijpeg’ 27848(|00:22.53| 02:35.22)[00:20.72| 02:33.98]|38:32.45| 57:30.74

T Spec9s benchmark test input set was used.

Table 1. Execution Times (minutes:seconds)

the value, the optimizations applied to the statement, and which statements in
the unoptimized and optimized assembly code computed the values.

In terms of cost, we were interested in the slow downs of the unoptimized and
optimized programs and the speed of the comparison checker. COP performs on-
the-fly checking during the execution of both programs. Both value and address
comparisons are performed. In our experiments, we ran COP on an HP 712/100
and the unoptimized and optimized programs on separate SPARC 5 workstations
instead of running all three on the same processor as described in Section 3.
Messages are passed through sockets on a 10 Mb network. A buffer is used to
reduce the number of messages sent between the executing programs and the
checker. We ran some of the integer Spec95 benchmarks as well as some smaller
test programs.

Table 1 shows the CPU execution times of the unoptimized and optimized
programs with and without annotations. On average, the annotations slowed
down the execution of the unoptimized programs by a factor of 8 and that of
the optimized programs by a factor of 9. The optimized program experiences
greater overhead than the unoptimized program because more annotations are
added to the optimized program.

Table 1 also shows the CPU and response times of COP. The performance
of COP depends greatly upon the lengths of the execution runs of the programs.
Comparison checking took from a few minutes to a few hours in terms of CPU
and response times. These times are clearly acceptable if comparison checking is
performed off-line. We found that the performance of the checker is bounded by
the processing platform and speed of the network. A faster processor and 100
Mb network would considerably lower these times. In fact, we ran COP on a 333
MHz Pentium Pro processor and found the performance to be on average 6 times
faster in terms of CPU time. We did not have access to a faster network. We
measured the pool size during our experiments and found it to be fairly small.
If addresses are not compared, the pool size contains less than 40 values for all



programs. If addresses are compared, then the pool size contains less than 1900
values.

8 Related Work

The problem of debugging optimized code has long been recognized [13,20], with
most of the previous work focusing on the development of source level debuggers
of optimized code [13,10,25,19,7,12,14,4,18,5,6,23,3] that use static analy-
sis techniques to determine whether expected values of source level variables
are reportable at breakpoints. Mappings that track an unoptimized program to
its optimized program version are statically analyzed to determine the proper
placement of breakpoints as well as to determine if values of source level vari-
ables are reportable at given breakpoints. However, all values of source level
variables are not reportable and optimizations are restricted. One reason is that
the mappings are too coarse in that statements (and not instances) from the
unoptimized program are mapped to corresponding statements in the optimized
program. Another reason is that the effectiveness of static analysis in reporting
expected values is limited. Recent work on source level debuggers of optimized
code utilizes some dynamic information to provide more of the expected behav-
ior of the unoptimized program. By executing the optimized code in an order
that mimics the execution of the unoptimized program, some values of variables
that are otherwise not reportable by other debuggers can be reported in [24].
However, altering the execution of the optimized program masks certain user
and optimizer errors. The technique proposed in [8] can also report some val-
ues of variables that are not reportable by other debuggers by timestamping
basic blocks to obtain a partial history of the execution path, which is used to
precisely determine what variables are reportable at breakpoints. In all of the
prior approaches, limitations have been placed on the debugging system by ei-
ther restricting the type or placement of optimizations, modifying the optimized
program, or inhibiting debugging capabilities. These techniques have not found
their way into production type environments, and debugging of optimized code
still remains a problem.

In [16], we developed a mapping technique for associating corresponding
statement instances after optimization and describe how to generate mappings
that support code optimized with classical optimizations as well as loop trans-
formations. Since we track corresponding statement instances and use dynamic
information, our checker can automatically detect and report the earliest source
statement that computes a different value in the optimized code as well as report
the optimizations applied to that statement.

For understanding optimized code, [22] creates a modified version of the
source program along with annotations to display the effects of optimizations.
Their annotations are higher level than ours as their focus is on program under-
standing rather than comparison checking.

The goal of our system is not to build a debugger for optimized code but
to verify that given an input, the semantic behaviors of both the unoptimized



and optimized programs are the same. The most closely related work to our
approach is Guard [21,2,1], which is a relative debugger, but not designed to
debug optimized programs. Using Guard, users can compare the execution of
one program, the reference program, with the execution of another program, the
development version. Guard requires the user to formulate assertions about the
key data structures in both versions which specify the locations at which the
data structures should be identical. The relative debugger is then responsible
for managing the execution of the two programs and reporting any differences in
values. The technique does not require any modifications to user programs and
can perform comparisons on-the-fly. The important difference between Guard
and COP is that in Guard, the user essentially has to manually insert all of
the mappings and annotations, while this is done automatically in COP. Thus
using COP, the optimized program is transparent to the user. We also are able
to check the entire program which would be difficult in Guard since that would
require the user inserting all mappings. In COP, we can easily restrict checking
to certain regions or statements as Guard does. We can also report the particular
optimizations involved in producing erroneous behavior.

The Bisection debugging model [11] was also designed to identify semantic
differences between two versions of the same program, one of which is assumed
to be correct. The bisection debugger attempts to identify the earliest point
where the two versions diverge. However, to handle the debugging of optimized
code, the expected values of source level variables must be reportable at all
breakpoints. This is not an issue in COP because expected values of source level
variables are available at comparison points, having been saved before they are
overwritten.

9 Conclusion

Optimizations play an important role in the production of quality software. Each
level of optimization can improve program performance by approximately 25%.
Moreover, optimizations are often required because of the time and memory con-
straints imposed on some systems. Thus, optimized code plays, and will continue
to play, an important role in the development of high performance systems.
Our work adds a valuable tool in the toolkit of software developers. This tool
verifies that given an input, the semantic behaviors of both the unoptimized and
optimized program versions are the same. When the behaviors differ, information
to help the programmer locate the cause of the differences is provided. Even when
the outputs generated by the unoptimized and optimized programs are correct,
comparing the internal behaviors of the unoptimized and optimized programs
can help programmers detect errors in the original program. We implemented
this tool, which executes the unoptimized and optimized versions of C programs,
and ran experiments that demonstrate the approach is effective and practical.
Our checking strategy can also be used to check part of the execution of an
application program. For example, during testing, programs are typically exe-
cuted under different inputs, and checking the entire program under every input



may be redundant and unnecessary. Our tool can check regions of the application
program, as specified by the user. In this way, the technique can scale to larger
applications. Furthermore, the mapping and annotation techniques can be used
in different software engineering applications. For example, optimized code is
difficult to inspect in isolation of the original program. The mappings enable the
inspection of optimized code guided by the inspection of the unoptimized code.
Also, the same types of annotations can be used for implementing a source level
debugger that executes optimized code and saves runtime information so that
all values of source level variables are reportable. We are currently developing
such a debugger.
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