
Comparison Checking: An Approach toAvoid Debugging of Optimized Code ?Clara Jaramillo, Rajiv Gupta??, and Mary Lou So�aDepartment of Computer Science, University of PittsburghPittsburgh, PA 15260, U.S.A.cij,gupta,soffa@cs.pitt.eduAbstract. We present a novel approach to avoid the debugging of op-timized code through comparison checking. In the technique presented,both the unoptimized and optimized versions of an application programare executed, and computed values are compared to ensure the behav-iors of the two versions are the same under the given input. If the valuesare di�erent, the comparison checker displays where in the applicationprogram the di�erences occurred and what optimizations were involved.The user can utilize this information and a conventional debugger todetermine if an error is in the unoptimized code. If the error is in theoptimized code, the user can turn o� those o�ending optimizations andleave the other optimizations in place. We implemented our comparisonchecking scheme, which executes the unoptimized and optimized versionsof C programs, and ran experiments that demonstrate the approach ise�ective and practical.1 IntroductionAlthough optimizations are important in improving the performance of pro-grams, an application programmer typically compiles a program during the de-velopment phase with the optimizer turned o�. After the program is tested andapparently free of bugs, it is ready for production. The user then compiles theprogram with the optimizer turned on to take advantage of the performanceimprovement o�ered by optimizations. However, when the application is opti-mized, its semantic behavior may not be the same as the unoptimized program;we consider the semantic behaviors of an unoptimized program and its optimizedprogram version to be the same if all corresponding statements executed in bothprograms compute the same values under given inputs. In this situation, theprogrammer is likely to assume that errors in the optimizer are responsible forthe change in semantic behavior and, lacking any more information, turn all theoptimizations o�.? Supported in part by NSF grants CCR-940226, CCR-9704350, CCR-9808590 andEIA-9806525, and a grant from Hewlett Packard Labs to the University of Pitts-burgh.?? Current address: Department of Computer Science,University of Arizona, Tucson,AZ 85721,U.S.A.

Di�erences in semantic behaviors between unoptimized and optimized pro-gram versions are caused by either (1) the application of an unsafe optimization,(2) an error in the optimizer, or (3) an error in the source program that isexposed by the optimization. For instance, reordered operations under certainconditions can cause over
ow or under
ow or produce di�erent
oating pointvalues. The optimized program may crash (e.g., division by zero) because ofcode reordering. The application of an optimization may assume that the sourcecode being transformed follows a programming standard (e.g., ANSI standard),and if the code does not, then an error can be introduced by the optimization.The optimizer itself may also contain an error in the implementation of a par-ticular optimization. And lastly, the execution of the optimized program mayuncover an error that was not detected in the unoptimized program (e.g., unini-tialized variable, stray pointer, array index out of bounds). Thus, for a numberof reasons, a program may execute correctly when compiled with the optimizerturned o� but fail when the optimizer is turned on.Determining the cause of errors in an optimized program is hampered bythe limitations of current techniques for debugging optimized code. Source leveldebugging techniques for optimized code have been developed but they eitherconstrain debugging features, limit optimizations, modify the code, or burdenthe user with understanding how optimizations a�ect the source level program.For example, to locate an error in the optimized program, the user must stepthrough the execution of the optimized program and examine values of variablesto �nd the statement that computes an incorrect value. Unfortunately, if the userwishes to observe the value of a variable at some program point, the debuggermay not be able to report this value because the value has not been computedyet or was overwritten. Techniques to recover the values for reporting purposeswork in limited situations and for a limited set of optimizations [13,10, 25, 19, 7,12,14, 4, 18, 5, 6, 23, 3, 24, 8].In this paper, we present comparison checking, a novel approach that avoidsdebugging of optimized code. The comparison checking scheme is illustrated inFigure 1. The user �rst develops, tests, and debugs the unoptimized programusing a conventional debugger and once the program appears free of bugs, theprogram is optimized. The comparison checker orchestrates the executions ofboth the unoptimized and optimized versions of a source program under a num-ber of inputs and compares the semantic behaviors of both program versionsfor each of the inputs; comparisons are performed on values computed by cor-responding executed statements from both program versions. If the semanticbehaviors are the same and correct, the optimized program can be run withhigh con�dence. On the other hand, if the semantic behaviors di�er, the checkerdisplays the statements responsible for the di�erences and optimizations appliedto these statements. The user can use this information and a conventional de-bugger to determine if the error is in the unoptimized or optimized code. If theuser �nds the problem to be in the unoptimized version, modi�cations are per-formed and the checking is repeated. If the error is in the optimized code, theuser can turn o� those o�ending optimizations in the e�ected parts of the source

Use info on statements
and optimizations related
to failed checks to locate
error in source program

or optimizer.

comparisons
unsuccessful

 program.

yesUnoptimized
output
correct?

no

Compile to generate
unoptimized program

and execute.

comparisons successful

and optimized programs
on given inputs and
peforms comparisons.

Comparison checker

executes the unoptimized

Generate optimized
 program.

are turned off.

Offending

optimizations

program and modify the
to debug the unoptimized

Use conventional means Fig. 1. The Comparison Checking Systemprogram. The di�erence would be eliminated without sacri�cing the bene�ts ofcorrectly applied optimizations.Our system can locate the earliest point where both programs di�er in theirsemantic behavior. That is, the checker detects the earliest point during execu-tion time when corresponding statement instances should but do not computethe same values. For example, if a di�erence is due to an uninitialized variable,our scheme detects the �rst incorrect use of the value of this variable. If a dif-ference is due to the optimizer, this scheme helps locate the statement that wasincorrectly optimized. In fact, this scheme proved very useful in debugging ouroptimizer that we implemented for this work.The merits of a comparison checking system are as follows.{ The user debugs the unoptimized version of the program, and is thereforenot burdened with understanding the optimized code.{ The user has greater con�dence in the correctness of the optimized program.{ When a comparison fails, we report the earliest place where the failure oc-curred and the optimizations that involved the statement. Information aboutwhere an optimized program di�ers from the unoptimized version bene�tsthe user in tracking down the error as well as the optimizer writer in debug-ging the optimizer.{ A wide range of optimizations including classical optimizations, register allo-cation, loop transformations, and inlining can be handled by the technique.Many of these optimizations are not supported by current techniques todebug optimized code.{ The optimized code is not modi�ed except for breakpoints, and thus norecompilation is required.

The design of comparison checking has several challenges. We must decidewhat values computed in both the unoptimized and optimized programs shouldbe compared and how to associate these values in both programs. These tasksare achieved by generating mappings between corresponding instances of state-ments in the unoptimized and optimized programs as optimizations are applied.We must also decide how to execute both programs and when the comparisonsshould be performed. Since values can be computed out of order, a mechanismmust save values that are computed early. These values are saved in a valuepool and removed when no longer needed. Finally, the above tasks must be au-tomated. The mappings are used to automatically generate annotations for theoptimized and unoptimized programs. These annotations guide the comparisonchecker in comparing corresponding values and addresses. Checking is performedfor corresponding assignments of values to source level variables and results ofcorresponding branch predicates. In addition, for assignments through arraysand pointers, checking is done to ensure the addresses to which the values areassigned correspond to each other. All assignments to source level variables arecompared with the exception of those dead values that are never computed in theoptimized code. We implemented the scheme, which executes the unoptimizedand optimized versions of C programs. We also present our experience with thesystem and experimental results demonstrating the practicality of the system.While our comparison checking scheme is generally applicable to a wide rangeof optimizations from simple code reordering transformations to loop transfor-mations, this paper focuses on classical statement level optimizations. Optimiza-tions can be performed at the source, intermediate, or target code level, and ourchecker is language independent. Mappings between the source and intermedi-ate/target code are maintained to report di�erences in terms of the source levelstatements.This paper is organized by demonstrating the usefulness of the comparisonchecking scheme in Section 2. An overview of the mappings is presented in Sec-tion 3. Sections 4 and 5 describe the annotations and the comparison checker.Section 6 provides an example of comparison checking. Section 7 presents exper-imental results. Related work is discussed in Section 8, and concluding remarksare given in Section 9.2 Comparison Checking ScenariosIn this section, we demonstrate the usefulness of comparison checking using ex-amples. Consider the unoptimized C program fragment and its optimized versionin Figure 2(a). Assume the unoptimized program has been tested, the optimizeris turned on, and when the optimized program executes, it returns incorrect out-put. The natural inclination of the user is to think that an error in the optimizercaused the optimized program to generate incorrect output. However, using thecomparison checker, a di�erence in the program versions is detected at line 7 inthe unoptimized program. The checker indicates that the value 2 is assigned toy in the unoptimized program and the value 22 is assigned to y in the optimized

Unoptimized Program
 Fragment

x = x * z;8)

void one(x,y,z)

...

...

1)
2)

3)

4)

int x, y, z;

if (x == y) {

 z = 5;

else {
5) }
6)

...

}7)

(b) Example 2

void one(x,y,z)

...

...

1)
2)

3)

4)

int x, y, z;

if (x == y) {

 z = 5;

else {
5) }
6)

...

}7)
x = x * 5;8)

Optimized Program
 Fragment

int a[10];
int b,x,y,i;

1)
2)

...

i = 1;3)

Optimized Program

4)

}

5)
6)
7)
8)

}

Unoptimized Program
 Fragment

9)

(a) Example 1

while (i <= 10) {

10)
11)
12)
13)

if (x < y)

else

fscanf(...&a[i]);
x = 2 * i;
y = a[i]+2;

 printf(...2*y);
i = i + 1;

 printf(... x);

1)
2)

...

i = 1;
while (i <= 10) {

3)
4)
5)
6)
7)
8)

int a[10];
int x,y,i;

 Fragment

9)
if (x < y)

x = 2 * i;
y = a[i]+2;

i = i + 1;
 printf(...2*y);

 printf(... x);

fscanf(...&a[i]);

 else10)
11)
12)
13)Fig. 2. Program examples for comparison checkingprogram at line 7 during loop iteration 10. The checker also indicates that nooptimizations were applied to the statement at line 7. To determine if there isan error in the unoptimized program or if perhaps a prior optimization causedthe problem, the user utilizes a conventional debugger and places a breakpointin the unoptimized program at line 7. Upon the last iteration of the loop, theuser examines the value of i, which is 10, and realizes that 10 is not within thebounds of array a (C assigns subscripts 0 : : :9). At this point, the user realizesthat the error is in the original program. The user can �x the original program,generate the new optimized version, and repeat the checking. Notice that theuser does not need to examine the optimized program.What caused the optimized program to generate incorrect output? The causewas an optimization that changed the memory layout of the program. Considerthe execution time behavior of both program versions. The loop stores valuesinto array a at statement 5 and overruns the upper bound of a when i is 10. Inthe unoptimized program, the assignment to a[i] when i is 10 actually stores avalue in b. Assuming b is not used in the unoptimized program, the output of theprogram is correct. However, in the optimized program in which storage for b isremoved because variable b is dead, the assignment to a[i] when i is 10 actuallystores a value in x. Since the same value of x is overwritten at line 6 but neededin subsequent statements, the output of the optimized code is incorrect.Even when the outputs generated by the unoptimized and optimized pro-grams are both the same and correct, comparing the internal behaviors of theunoptimized and optimized programs can still help users detect errors in the orig-inal program. This would happen when an error in the unoptimized program isunmasked in the optimized program and a�ects the output only on certain in-puts. Assume the unoptimized program and optimized program in Figure 2(a)output the same values at statement 9. The error in the program described above

does not a�ect this output. However, using the comparison checker, a di�erencein the programs is detected at line 7 in the unoptimized program. As mentionedabove, the user can utilize the information supplied by the checker and a con-ventional debugger to determine that at line 7, array a is indexing out of itsbounds.Di�erences in the behavior of the unoptimized and optimized programs canalso be caused by errors in the way optimizations are applied. Consider the ex-ample in Figure 2(b). Using the checker and assuming x, y, and z upon entryto the procedure one are 1; 2; and 3, respectively, a di�erence is detected in theinternal behavior of both programs at line 8 in the unoptimized program. Thechecker indicates that the value 3 is assigned in the unoptimized program andthe value 5 is assigned in the optimized program. The checker indicates that con-stant propagation was applied to this statement in the optimized program andan operand in line 8 was replaced by the constant 5. The user can once again usea conventional debugger to determine if there is an error in the original program.The user places a breakpoint in the unoptimized program at line 8. When theunoptimized program execution reaches the breakpoint, the user examines thevalues of the operands at line 8 and notices none of the operand's values are 5.The user concludes the value 5 should not have replaced an operand at line 8and therefore, the constant propagation optimization has been incorrectly ap-plied. The user disables the constant propagation optimization, the checking isrepeated, and no di�erences are reported. The di�erence was eliminated withoutsacri�cing the bene�ts of other correctly applied optimizations.3 MappingsTo compare values computed in both the unoptimized and optimized programs,we need to determine the corresponding statement instances that compute thevalues. A statement instance in the unoptimized program and a statement in-stance in the optimized program are said to correspond if the values computedby the two instances should be the same and the latter was derived from theformer by the application of some optimizations. Our mappings associate state-ment instances in the unoptimized program and the corresponding statementinstances in the optimized program. In [16], we developed a mapping techniqueto identify corresponding statement instances and describe how to generatemappings that support code optimized with classical optimizations as well asloop transformations. Since optimizations can be applied in any order and asmany times as desired, the mappings also summarize the e�ects of all previouslyapplied optimizations. In this section, we use an example to describe the map-pings used by the comparison checking scheme to support code optimized withclassical optimizations.In Figure 3, the unoptimized program and the optimized program versionas well as the mappings are shown. For ease of understanding, the source levelstatements shown are simple. The mapping technique applies when optimizationsare applied at the source, intermediate, or target code level. The mappings are

0..2one one
0..2

0..1
one one

0..1

0
1..2

one ,a
ll

one 0

0
one one

0

0..1
one one

0..1

0..2
one one

0..2

0..2one
 one

0..2

0..2one one
0..2

0..2
one one

0..2

0..1
one one

0..1

0
one one

0

0
one ,last one

0
1..2

0..2
one one

0..2

F

Unoptimized Code

S2 T1 = A

S14 E = D * 2

F
T

T

S3 T1=T1+A

S5 M = X * X
S6 B = M

S7 IF (B > T2)

S8 C = T2 + X

S9 C = T2 + X

S11 T2 = T2 + A

S12 IF (T2 < 100)

S7’ IF (M > T1)

F

T

S2’ T1 = 1
S5’ M = X * X

F

F

T

T

S1 A = 1

S12’ IF (T2 < 100)

S8’ C = T2 + X

S13’ IF (T1 < 100)

Optimized Code

S11’ T2 = T2 + 1

S4 T2 = 1

F

S4’ T2 = 1

S10’ D = M + T1

T

S13 IF (T1 < 100)

S9’ C = T2 + X

S10 D = B + T1

S3’ T1=T1+1

S14’ E = D * 2Fig. 3. Mappings for Unoptimized and Optimized Codeillustrated by labeled dotted edges between corresponding statements in bothprograms. The following optimizations were applied.{ constant propagation - the constant 1 in S1 is propagated, as shown in S20,S30, and S110.{ copy propagation - the copy M in S6 is propagated, as shown by S70 andS100.{ dead code elimination - S1 and S6 are dead after constant and copy propa-gation.{ loop invariant code motion - S5 is moved out of the doubly nested loop. S10is moved out of the inner loop.{ partial redundancy elimination - S9 is partially redundant with S8.{ partial dead code elimination - S10 is moved out of the outer loop.Mapping labels identify the instances in the unoptimized program and thecorresponding instances in the optimized program. If there is an one-to-one cor-respondence between the instances, then the number of instances is the same andcorresponding instances appear in the same order. If the number of instances is

not the same, a consecutive subsequence of instances in one sequence correspondsto a single instance in the other.Since code optimizations move, modify, delete, and add statements in a pro-gram, the number of instances of a statement can increase, decrease, or remainthe same in the optimized program as compared to the unoptimized program. Ifa statement is moved out of a loop, then the statement will execute fewer times inthe optimized code. For example, in loop invariant code motion (see statementsS5 and S50), the statement moved out of the loop will execute fewer times andthus all the instances of statement S5 in the loop in the unoptimized code mustmap to one instance of statement S50 in the optimized code. If a statement ismoved below a loop, for example by applying partial dead code elimination (seestatements S10 and S100), then only the last instance of statement S10 in theloop in the unoptimized code is mapped to one instance of statement S100 in theoptimized code. If the optimization does not move the statement across a loopboundary (see statements S2 and S20), then the number of instances executed inthe unoptimized and optimized code is the same and thus one instance of state-ment S2 in the unoptimized code is mapped to one instance of statement S20in the optimized code. The removal of statements (see statements S1 and S6)can cause mappings to be removed because there is no correspondence betweena statement in the unoptimized code to a deleted statement in the optimizedcode.4 AnnotationsCode annotations guide the comparison checking of values computed by corre-sponding statement instances from the unoptimized and optimized code. An-notations (1) identify program points where comparison checks should be per-formed, (2) indicate if values should be saved in a value pool so that they will beavailable when checks are performed, and (3) indicate when a value currently re-siding in the value pool can be discarded since all checks involving the value havebeen performed. The selection and placement of annotations are independent ofparticular optimizations and depend only on which and how statement instancescorrespond and the relative positions of corresponding statements in both theunoptimized and optimized programs. Data
ow analysis, including reachabil-ity and postdominance, is used to determine where and what annotations touse [15]. Annotations are placed after all optimizations are performed and tar-get code has been generated, and therefore, the code to emit the annotationscan be integrated as a separate phase within a compiler.Five di�erent types of annotations are needed to implement our compari-son checking strategy. In Figure 4(a), annotations shown in dotted boxes, aregiven for the example in Figure 3. In the following description, Suopt indicates astatement in the unoptimized code and Sopt a statement in the optimized code.Check Suopt annotation: This annotation is associated with a program pointin the optimized code to indicate a check of a value computed by statementSuopt is to be performed. The corresponding value to be compared is the result

Delete S10

1

6

8

10

12

14

16

17

19

21

3

23
26

27

Delete S10

Unoptimized

26

Optimized

S3

S2

S1

S4

S5

S6
S7

S8

S9

S10

S11

S12

S13

1

3

6

8

10

12

17

16

14

19

23

21

27

S8’

S7’

9

S4’

S2’

S5’

S3’

7

5

4

2

11

13

S12’

S13’

S10’

S14’

S11’

15

18

28

25

24

22

20

S14

Code Trace Code Trace

Check S3

Check S13

Check S8
Save S8’

Check S4

4

2

5

7

9

11

15

Delay S10 18

20

22

24

25

13

Check S9 with S8’ , S9’

Delete S8’,S9’

Save S9’

S14’ E = D * 2
Check S14

Unoptimized Code

S2 T1 = A

F

S5 M = X * X

S6 B = M

S7 IF (B > T2)

S9 C = T2 + X
S10 D = B + T1
S11 T2 = T2 + A

S12 IF (T2 < 100)

F

F

T

S1 A = 1

T

T

S8 C = T2 + X

S3 T1=T1+A

S4 T2 = 1

S14 E = D * 2 Delete S10

Checkable S10

S13 IF (T1 < 100)

TF

F

F

Check S5 with S5’

Save S5’

Delete S5’

T

Check S12
T

Check S11

Check S7

Check S2

S3’ T1=T1+1

S4’ T2 = 1

S7’ IF (M > T1)

S2’ T1 = 1
S5’ M = X * X

S11’ T2 = T2 + 1

S13’ IF (T1 < 100)

28

Optimized Code

S9’ C = T2 + X S8’ C = T2 + X

S12’ IF (T2 < 100)

Check S10S10’ D = M + T1Fig. 4. (a) Annotated Unoptimized and Optimized Code (b) Check Tracesof the most recently executed statement in the optimized code. For example, inFigure 4(a), the annotation Check S2 is associated with S20.A variation of this annotation is theCheck Suopt with Si; Sj; : : : annotation,which is associated with a program point in the optimized code to indicate acheck of a value computed by statement Suopt is to be performed with a valuecomputed by one of Suopt's corresponding statements Si; Sj ; : : : in the optimizedprogram. The corresponding value to be compared is either the result of themost recently executed statement in the optimized code or is in the value pool.Save Sopt annotation: If a value computed by a statement Sopt cannot beimmediately compared with the corresponding value computed by the unopti-mized code, then the value computed by Sopt must be saved in the value pool.In some situations, a value computed by Sopt must be compared with multiplevalues computed by the unoptimized code. Therefore, it must be saved until allthose values have been computed and compared. The annotation Save Sopt isassociated with Sopt to ensure the value is saved. In Figure 4(a), the statementS5 in the unoptimized code, which is moved out of the loops by invariant codemotion, corresponds to statement S50 in the optimized code. The value com-puted by S50 cannot be immediately compared with the corresponding valuescomputed by S5 in the unoptimized code because S50 is executed prior to theexecution of S5. Thus, the annotation Save S50 is associated with S50.

Delay Suopt andCheckable Suopt annotations: If the value computed by theexecution of a statement Suopt cannot be immediately compared with the cor-responding value computed by the optimized code because the correspondencebetween the values cannot be immediately established, then the value of Suoptmust be saved in the value pool. The annotation Delay Suopt is associated withSuopt to indicate the checking of the value computed by Suopt should be delayed,saving the value in the value pool. The point in the unoptimized code at whichchecking can �nally be performed is marked using the annotation CheckableSuopt.In some situations, a delay check is needed because the correspondence be-tween statement instances cannot be established unless the execution of theunoptimized code is further advanced. In Figure 4(a), statement S10 inside theloops in the unoptimized code is moved after the loops in the optimized codeby partial dead code elimination. In this situation, only the value computed bystatement S10 during the last iteration of the nested loops is to be comparedwith the value computed by S100. However, an execution of S10 correspondingto the last iteration of the nested loops can only be determined when the exe-cution of the unoptimized code exits the loops. Therefore, the checking of S10'svalue is delayed.Delete S: This annotation is associated with a program point in the unopti-mized/optimized code to indicate a value computed previously by S and storedin the value pool can be discarded. Since a value may be involved in multiplechecks, a delete annotation must be introduced at a point where all relevantchecks would have been performed. In Figure 4(a), the annotation Delete S50is introduced after the loops in the optimized code because at that point, allvalues computed by statement S5 in the unoptimized code will certainly havebeen compared with the corresponding value computed by S50 in the optimizedcode.Check-self S: This annotation is associated with a program point in theunoptimized/optimized code and indicates that values computed by S must becompared against each other to ensure the values are the same. This annotationcauses a value of S to be saved in the value pool.5 Comparison CheckerThe comparison checker compares values computed by both the unoptimizedand optimized program executions to ensure the semantic behaviors of both pro-grams are the same. The unoptimized and optimized programs are annotatedwith actions that guide the comparison checking process. Once a program pointis reached, the actions associated with the annotation are executed by the com-parison checker. To avoid modifying the unoptimized and optimized programs,breakpoints are used to extract values from the unoptimized and optimized pro-grams as well as activate annotations.A high level conceptual overview of the comparison checker algorithm isgiven in Figure 5. Execution begins in the unoptimized code and proceeds un-

in the Optimized Program:
Process annotations at breakpoints
in the Unoptimized Program:

If no delay annotation then

If delay comparison check annotation then

 switch execution to the optimized program
 to perform the check on the value

 save value computed

Process annotations at breakpoints

If delete value annotation then
 and if error then report error discard saved value

If comparison check annotation on a delayed
 check then
 perform the comparison check
 and if error then report error

If save annotation then
 save value computed
If delete annotation then
 discard saved value

 perform the comparison check
If comparison check annotation then

 switch execution to the unoptimized program Fig. 5. Comparison Checker Algorithmtil a breakpoint is reached. Using the annotations, the checker can determineif the value computed can be checked at this point. If so, the optimized pro-gram executes until the corresponding value is computed (as indicated by anannotation), at which time the check is performed on the two values. Duringthe execution of the optimized program, any values that are computed \early"(i.e., the corresponding value in the unoptimized code has not been computedyet) are saved in the value pool, as directed by the annotations. If annotationsindicate the checking of the value computed by the unoptimized program can-not be performed at the current point, the value is saved for future checking.The checker continues to alternate between executions of the unoptimized andoptimized programs. Annotations also indicate when values that were saved forfuture checking can �nally be checked and when the values can be removed fromthe value pool. Any statement instances eliminated in the optimized code arenot checked.6 Comparison Checking Scheme ExampleConsider the unoptimized and optimized program segments in Figure 4. Assumeall the statements shown are source level statements and loops execute for asingle iteration. Breakpoints are indicated by circles. The switching between theunoptimized and optimized program executions by the checker is illustrated bythe traces. The traces include the statements executed as well as the breakpoints(circled) where annotations are processed. The arrows indicate the switchingbetween programs.The unoptimized program starts to execute with S1 and continues execut-ing without checking, as S1 was eliminated from the optimized program. Af-ter S2 executes, breakpoint 1 is reached and the checker determines from theannotation that the value computed can be checked at this point and so theoptimized program executes until Check S2 is processed, which occurs at break-point 2. The values computed by S2 and S20 are compared. The unoptimized

program resumes execution and the loop iteration at S3 begins. After S3 exe-cutes, breakpoint 3 is reached and the optimized program executes until CheckS3 is processed. Since a number of comparisons have to be performed usingthe value computed by S50, when breakpoint 4 is reached, the annotation SaveS50 is processed and consequently, the value computed by S50 is stored in thevalue pool. The optimized code continues executing until breakpoint 5, at whichtime the annotation Check S3 is processed. The values computed by S3 and S30are compared. S4 then executes and its value is checked. S5 then executes andbreakpoint 8 is encountered. The optimized program executes until the valuecomputed by S5 can be compared, indicated by the annotation Check S5 withS50 at breakpoint 9. The value of S5 saved in the value pool is used for thecheck. The programs continue executing in a similar manner.7 Implementation of the Comparison Checking SchemeWe implemented our Comparison checking of OPtimized code scheme, calledCOP, to test our algorithms for instruction mapping, annotation placement, andchecking. Lcc [9] was used as the compiler for the application program and wasextended to include a set of optimizations, namely loop invariant code motion,dead code elimination, partial redundancy elimination, copy propagation, andconstant propagation and folding. On average, the optimized code executes 16%faster in execution time than the unoptimized code.As a program is optimized, mappings are generated. Besides generating tar-get code, lcc was extended to generate a �le containing breakpoint informationand annotations that are derived from the mappings; the code to emit breakpointinformation and annotations is integrated within lcc through library routines.Thus, compilation and optimization of the application program produce thetarget code for both the unoptimized program and optimized program as wellas auxiliary �les containing breakpoint information and annotations for boththe unoptimized and optimized programs. These auxiliary �les are used by thechecker. Breakpoints are generated whenever the value of a source level assign-ment or a predicate is computed and whenever array and pointer addresses arecomputed. Breakpoints are also generated to save base addresses for dynami-cally allocated storage of structures (e.g., malloc(), free(), etc.). Array addressesand pointer addresses are compared by actually comparing their o�sets fromthe closest base addresses collected by the checker. Floating point numbers arecompared by allowing for inexact equality; that is, two
oating point numbersare allowed to di�er by a certain small delta [21]. Breakpointing is implementedusing fast breakpoints [17].Experiments were performed to assess the practicality of COP. Our mainconcerns were usefulness as well as cost of the comparison checking scheme. COPwas found to be very useful in actually debugging our optimizer. Errors wereeasily detected and located in the implementation of the optimizations as wellas in the mappings and annotations. When an unsuccessful comparison betweentwo values was detected, COP indicated which source level statement computed

Source Unoptimized Code Optimized Code COPlength annotated annotated (responseProgram (lines) (CPU) (CPU) (CPU) (CPU) (CPU) time)wc 338 00:00.26 00:02.16 00:00.18 00:01.86 00:30.29 00:53.33yacc 59 00:01.10 00:06.38 00:00.98 00:05.84 01:06.95 01:34.33go 28547 00:01.43 00:08.36 00:01.38 00:08.53 01:41.34 02:18.82m88ksim1 17939 00:29.62 03:08.15 00:24.92 03:07.39 41:15.92 48:59.29compress1 1438 00:00.20 00:02.91 00:00.17 00:02.89 00:52.09 01:22.82li1 6916 01:00.25 05:42.39 00:55.15 05:32.32 99:51.17 123:37.67ijpeg1 27848 00:22.53 02:35.22 00:20.72 02:33.98 38:32.45 57:30.741 Spec95 benchmark test input set was used.Table 1. Execution Times (minutes:seconds)the value, the optimizations applied to the statement, and which statements inthe unoptimized and optimized assembly code computed the values.In terms of cost, we were interested in the slow downs of the unoptimized andoptimized programs and the speed of the comparison checker. COP performs on-the-
y checking during the execution of both programs. Both value and addresscomparisons are performed. In our experiments, we ran COP on an HP 712/100and the unoptimized and optimized programs on separate SPARC 5 workstationsinstead of running all three on the same processor as described in Section 3.Messages are passed through sockets on a 10 Mb network. A bu�er is used toreduce the number of messages sent between the executing programs and thechecker. We ran some of the integer Spec95 benchmarks as well as some smallertest programs.Table 1 shows the CPU execution times of the unoptimized and optimizedprograms with and without annotations. On average, the annotations sloweddown the execution of the unoptimized programs by a factor of 8 and that ofthe optimized programs by a factor of 9. The optimized program experiencesgreater overhead than the unoptimized program because more annotations areadded to the optimized program.Table 1 also shows the CPU and response times of COP. The performanceof COP depends greatly upon the lengths of the execution runs of the programs.Comparison checking took from a few minutes to a few hours in terms of CPUand response times. These times are clearly acceptable if comparison checking isperformed o�-line. We found that the performance of the checker is bounded bythe processing platform and speed of the network. A faster processor and 100Mb network would considerably lower these times. In fact, we ran COP on a 333MHz Pentium Pro processor and found the performance to be on average 6 timesfaster in terms of CPU time. We did not have access to a faster network. Wemeasured the pool size during our experiments and found it to be fairly small.If addresses are not compared, the pool size contains less than 40 values for all

programs. If addresses are compared, then the pool size contains less than 1900values.8 Related WorkThe problem of debugging optimized code has long been recognized [13,20], withmost of the previous work focusing on the development of source level debuggersof optimized code [13,10, 25, 19, 7, 12, 14, 4, 18, 5, 6, 23, 3] that use static analy-sis techniques to determine whether expected values of source level variablesare reportable at breakpoints. Mappings that track an unoptimized program toits optimized program version are statically analyzed to determine the properplacement of breakpoints as well as to determine if values of source level vari-ables are reportable at given breakpoints. However, all values of source levelvariables are not reportable and optimizations are restricted. One reason is thatthe mappings are too coarse in that statements (and not instances) from theunoptimized program are mapped to corresponding statements in the optimizedprogram. Another reason is that the e�ectiveness of static analysis in reportingexpected values is limited. Recent work on source level debuggers of optimizedcode utilizes some dynamic information to provide more of the expected behav-ior of the unoptimized program. By executing the optimized code in an orderthat mimics the execution of the unoptimized program, some values of variablesthat are otherwise not reportable by other debuggers can be reported in [24].However, altering the execution of the optimized program masks certain userand optimizer errors. The technique proposed in [8] can also report some val-ues of variables that are not reportable by other debuggers by timestampingbasic blocks to obtain a partial history of the execution path, which is used toprecisely determine what variables are reportable at breakpoints. In all of theprior approaches, limitations have been placed on the debugging system by ei-ther restricting the type or placement of optimizations, modifying the optimizedprogram, or inhibiting debugging capabilities. These techniques have not foundtheir way into production type environments, and debugging of optimized codestill remains a problem.In [16], we developed a mapping technique for associating correspondingstatement instances after optimization and describe how to generate mappingsthat support code optimized with classical optimizations as well as loop trans-formations. Since we track corresponding statement instances and use dynamicinformation, our checker can automatically detect and report the earliest sourcestatement that computes a di�erent value in the optimized code as well as reportthe optimizations applied to that statement.For understanding optimized code, [22] creates a modi�ed version of thesource program along with annotations to display the e�ects of optimizations.Their annotations are higher level than ours as their focus is on program under-standing rather than comparison checking.The goal of our system is not to build a debugger for optimized code butto verify that given an input, the semantic behaviors of both the unoptimized

and optimized programs are the same. The most closely related work to ourapproach is Guard [21, 2, 1], which is a relative debugger, but not designed todebug optimized programs. Using Guard, users can compare the execution ofone program, the reference program, with the execution of another program, thedevelopment version. Guard requires the user to formulate assertions about thekey data structures in both versions which specify the locations at which thedata structures should be identical. The relative debugger is then responsiblefor managing the execution of the two programs and reporting any di�erences invalues. The technique does not require any modi�cations to user programs andcan perform comparisons on-the-
y. The important di�erence between Guardand COP is that in Guard, the user essentially has to manually insert all ofthe mappings and annotations, while this is done automatically in COP. Thususing COP, the optimized program is transparent to the user. We also are ableto check the entire program which would be di�cult in Guard since that wouldrequire the user inserting all mappings. In COP, we can easily restrict checkingto certain regions or statements as Guard does. We can also report the particularoptimizations involved in producing erroneous behavior.The Bisection debugging model [11] was also designed to identify semanticdi�erences between two versions of the same program, one of which is assumedto be correct. The bisection debugger attempts to identify the earliest pointwhere the two versions diverge. However, to handle the debugging of optimizedcode, the expected values of source level variables must be reportable at allbreakpoints. This is not an issue in COP because expected values of source levelvariables are available at comparison points, having been saved before they areoverwritten.9 ConclusionOptimizations play an important role in the production of quality software. Eachlevel of optimization can improve program performance by approximately 25%.Moreover, optimizations are often required because of the time and memory con-straints imposed on some systems. Thus, optimized code plays, and will continueto play, an important role in the development of high performance systems.Our work adds a valuable tool in the toolkit of software developers. This toolveri�es that given an input, the semantic behaviors of both the unoptimized andoptimized program versions are the same.When the behaviors di�er, informationto help the programmer locate the cause of the di�erences is provided. Even whenthe outputs generated by the unoptimized and optimized programs are correct,comparing the internal behaviors of the unoptimized and optimized programscan help programmers detect errors in the original program. We implementedthis tool, which executes the unoptimized and optimized versions of C programs,and ran experiments that demonstrate the approach is e�ective and practical.Our checking strategy can also be used to check part of the execution of anapplication program. For example, during testing, programs are typically exe-cuted under di�erent inputs, and checking the entire program under every input

may be redundant and unnecessary. Our tool can check regions of the applicationprogram, as speci�ed by the user. In this way, the technique can scale to largerapplications. Furthermore, the mapping and annotation techniques can be usedin di�erent software engineering applications. For example, optimized code isdi�cult to inspect in isolation of the original program. The mappings enable theinspection of optimized code guided by the inspection of the unoptimized code.Also, the same types of annotations can be used for implementing a source leveldebugger that executes optimized code and saves runtime information so thatall values of source level variables are reportable. We are currently developingsuch a debugger.References1. Abramson, D. and Sosic, R. A Debugging Tool for Software Evolution. CASE-95, 7th International Workshop on Computer-Aided Software Engineering, pages206{214, July 1995.2. Abramson, D. and Sosic, R. A Debugging and Testing Tool for Supporting SoftwareEvolution. Journal of Automated Software Engineering, 3:369{390, 1996.3. Adl-Tabatabai, A. and Gross, T. Source-Level Debugging of Scalar OptimizedCode. In Proceedings ACM SIGPLAN'96Conf. on Programming Languages Designand Implementation, pages 33{43, May 1996.4. Brooks, G., Hansen, G.J., and Simmons, S. A New Approach to Debugging Opti-mized Code. In Proceedings ACM SIGPLAN'92 Conf. on Programming LanguagesDesign and Implementation, pages 1{11, June 1992.5. Copperman, M. Debugging Optimized Code: Currency Determination with DataFlow. In Proceedings Supercomputer Debugging Workshop '92, October 1992.6. Copperman, M. Debugging Optimized Code Without Being Misled. ACM Trans-actions on Programming Languages and Systems, 16(3):387{427, 1994.7. Coutant, D.S., Meloy, S., and Ruscetta, M. DOC: A Practical Approach to Source-Level Debugging of Globally Optimized Code. In Proceedings ACM SIGPLAN'88Conf. on Programming Languages Design and Implementation, pages 125{134,June 1988.8. Dhamdhere, D. M. and Sankaranarayanan, K. V. Dynamic Currency Determina-tion in Optimized Programs. ACM Transactions on Programming Languages andSystems, 20(6):1111{1130, November 1998.9. Fraser, C. and Hanson, D. A Retargetable C Compiler: Design and Implementation.Benjamin/Cummings, 1995.10. Fritzson, P. A Systematic Approach to Advanced Debugging through Incremen-tal Compilation. In Proceedings ACM SIGSOFT/SIGPLAN Software EngineeringSymposium on High-Level Debugging, pages 130{139, 1983.11. Gross, T. Bisection Debugging. In Proceedings of the AADEBUG'97 Workshop,pages 185{191, May, 1997.12. Gupta, R. Debugging Code Reorganized by a Trace Scheduling Compiler. Struc-tured Programming, 11(3):141{150, 1990.13. Hennessy, J. Symbolic Debugging of Optimized Code. ACM Transactions onProgramming Languages and Systems, 4(3):323{344, July 1982.14. Holzle, U., Chambers, C., and Ungar, D. Debugging Optimized Code with Dy-namic Deoptimization. In Proceedings ACM SIGPLAN'92 Conf. on ProgrammingLanguages Design and Implementation, pages 32{43, June 1992.

15. Jaramillo, C. Debugging of Optimized Code Through Comparison Checking. PhDdissertation, University of Pittburgh, 1999.16. Jaramillo, C., Gupta, R., and So�a, M.L. Capturing the E�ects of Code ImprovingTransformations. In Proceedings of International Conference on Parallel Architec-tures and Compilation Techniques, pages 118{123, October 1998.17. Kessler, P. Fast Breakpoints: Design and Implementation. In Proceedings ACMSIGPLAN'90 Conf. on Programming Languages Design and Implementation, pages78{84, 1990.18. Pineo, P.P. and So�a, M.L. Debugging Parallelized Code using Code LiberationTechniques. Proceedings of ACM/ONR SIGPLAN Workshop on Parallel and Dis-tributed Debugging, 26(4):103{114, May 1991.19. Pollock, L.L. and So�a, M.L. High-Level Debugging with the Aid of an IncrementalOptimizer. In 21st Annual Hawaii International Conference on System Sciences,volume 2, pages 524{531, January 1988.20. Seidner, R. and Tindall, N. Interactive Debug Requirements. In Proceedings ACMSIGSOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging,pages 9{22, 1983.21. Sosic, R. and Abramson, D. A. Guard: A Relative Debugger. Software Practiceand Experience, 27(2):185{206, February 1997.22. Tice, C. and Graham, S.L. OPTVIEW: A New Approach for Examining OptimizedCode. Proceedings of ACM SIGPLANWorkshop on Program Analysis for SoftwareTools and Engineering, June 1998.23. Wismueller, R. Debugging of Globally Optimized Programs Using Data FlowAnalysis. In Proceedings ACM SIGPLAN'94 Conf. on Programming LanguagesDesign and Implementation, pages 278{289, June 1994.24. Wu, L., Mirani, R., Patil H., Olsen, B., and Hwu, W.W. A New Framework forDebugging Globally Optimized Code. In Proceedings ACM SIGPLAN'99 Conf. onProgramming Languages Design and Implementation, pages 181{191, 1999.25. Zellweger, P.T. An Interactive High-Level Debugger for Control-Flow OptimizedPrograms. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sym-posium on High-Level Debugging, pages 159{171, 1983.

