
Generating Test Data for Functions with Pointer Inputs

Srinivas Visvanathan
Dept. of Computer Science
The University of Arizona

Tucson, AZ 85721
srini@cs.arizona.edu

Neelam Gupta
Dept. of Computer Science
The University of Arizona

Tucson, AZ 85721
ngupta@cs.arizona.edu

Abstract

Generating test inputs for a path in a function with
integer and real parameters is an important but diffi-
cult problem. The problem becomes more difficult when
pointers are passed as inputs to a function. In this case,
the shape of the input data structure as well as the data
values in the fields of this data structure need to be de-
termined for traversal of the given path. The existing
techniques to address this problem are inefficient since
they use backtracking to simultaneously satisfy the con-
straints on the pointer variables and the data values used
along the path.

In this paper, we develop a novel approach that allows
the generation of the shape of an input data structure to
be done independently of the generation of its data val-
ues so as to force the control flow of a function along a
given path. We also present a new technique that gen-
erates the shape of the input data structure by solving
a set of pointer constraints derived in a single pass of
the statements along the path. Although simple, our ap-
proach is powerful in handling pointer aliasing. It is
efficient and provides a practical solution to generating
test data for functions with pointer inputs.
Keywords - Test data generation, path testing, dy-
namic data structures, iterative relaxation methods.

1 Introduction

Generating test data to force the control flow of
a function along a given path in a function is a chal-
lenging problem. The presence of pointers as func-
tion input parameters introduces additional diffi-
culties for test data generation. A pointer repre-
sents a pair of data items, i.e., a data value and its
address. Although pointer inputs for programs are
not meaningful, they can be input parameters to
the functions to be tested at unit level testing.

For integer or real inputs, generating test data in-
volves generating the integer and floating point
values that should be used as input to a function.
However, the pointer addresses are allocated dy-
namically during program execution. The test data
generation for functions with pointer inputs does
not refer to generating the pointer addresses. In-
stead, the test data generation problem in this case
is to generate the shape of the input data structure
and the values in the data fields of this data struc-
ture so that the given path is executed by the func-
tion.

If the input parameter to a function is a pointer
to an integer or a real value, the existing test data
generation methods [1, 2, 3, 4, 5, 6, 7, 8] can be used
to generate the desired integer or real value. If the
input pointer points to a collection of related items
as in a record, the above mentioned existing test
data generation techniques can be used by treating
each field in the record as a separate input variable
for test data generation.

However, if the input pointer points to a dy-
namically linked data structure such as a linked
list or a binary tree, not only the values in the
fields of the input data structure should be deter-
mined, but also the shape of the data structure re-
quired to force execution through the given path
must be determined. We illustrate this with a sim-
ple code segment shown in Figure 1. We represent
a test path by an ordered list of statements that
must be executed to traverse the path. Consider
a test path P=f0; P1; 1; 2; P2; 3; 4g in Figure 1 that
requires both the predicates P1 and P2 to evaluate
to true. The input data structures shown in Figures
2(a) and 2(b) will execute P whereas the input data
structure in Figure 2(c) will not execute P . Note
that there are several data structures that will exe-
cute this test path. Similarly, there are several data
structures that will not execute this test path.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

node=record;
int data;
node * left;
node * right;

end=record;
0: func(node * root);
P1: if (root!right ==root!right!right)
1: printf(“P1 true”);
2: endif
P2: if (root!left!left == root!left!right)
3: printf(“P2 true”);
4: endif

Figure 1. A code segment using pointers.
root

2

3 5

2

3

2

3 5

null null null null null null null null null

(a) (b) (c)

root root

Figure 2. Input data structures for function
func given in Figure 1.

Let us now modify the function func in Figure 1 by
appending the following three lines (line numbers
P3, 5 and 6) at the end of the function.

P3: if (root!data < root!right!data)
5: printf(“P3 true”);
6: endif

If the test path now requires all three predicates
P1, P2 and P3 to evaluate to true, then the data
structure in Figure 2(a) will execute the test path
whereas the data structures in Figures 2(b) and 2(c)
will not execute the test path. Thus, test data gener-
ation for functions with dynamic data structures as
input requires, (i) the generation of a suitable shape
(i.e., the number of distinct nodes and how they
are connected) of the input data structure and (ii)
the generation of the values in the fields of the data
structure, so as to execute the given test path.

In [7], Korel presents a backtracking based ap-
proach for simultaneously generating the shape
and the values in the fields of the data structure for
functions with pointer inputs. The method starts
with an arbitrary input data structure with the
fields initialized with arbitrarily chosen values. It
varies the value of only one input variable at a time
to satisfy a branch predicate along the test path and
uses backtracking. Although this approach is an
important contribution to automated test data gen-
eration, it is inefficient since it tries to the generate
the shape as well as the values simultaneously. If it

has to backtrack to some predicate because of an in-
correct choice about the shape at that point, the val-
ues in the data structure that were generated subse-
quent to this incorrect choice also become useless.
In addition, the backtracking can be extensive in
presence of pointer aliasing.

In this paper, we develop a new approach that
first generates a suitable shape for the input data
structure and then generates the data values in
the fields of the data structure to force execution
through the test path. The reason for this two phase
approach is as follows. The constraints on the
pointers deal with addresses of memory locations
used by the statements along the path whereas the
constraints on the data values such as integer and
real values deal with the actual values being used
in the computation. Therefore, the solutions of
these two types of constraints are in two differ-
ent domains, namely the address domain and the
value domain. The solution in address domain de-
termines the shape of the input data structure and
the solution in the value domain determines the
values in the data fields of the input data structure.
Since these are disjoint types of domains, the con-
straint sets in these two domains are solved sepa-
rately. However, for the same test path in a func-
tion, different sets of pointer constraints and hence
different shapes can be generated by different tech-
niques. For example one technique may generate
the shape in Figure 2(a) and another may generate
the shape in Figure 2(b), both satisfying the pointer
constraints P1 and P2 in the function in Figure 1.
But only the shape in Figure 2(a) satisfies the con-
straint P3 on the data values in the nodes of the
data structure. Therefore, it is not obvious whether
(and if so, how) a suitable shape for the traversal of
a given path can be generated independently of the
values in the data fields of the input data structure.

A comparison of shapes in Figure 2(a) and 2(b)
provides an insight into our approach. Although
both the shapes satisfy pointer constraints P1 and
P2, the shape of input data structure in Figure 2(a)
is less restrictive than the shape in Figure 2(b). The
shape in Figure 2(b) coalesces the two nodes (root
node and its right child) of the shape in Figure 2(a)
into a single node (root node). Therefore, it re-
stricts the data value in the right child of the root
node to be identical to the data value in the root
node. However, the shape in Figure 2(a) allows
different or identical values to be stored in these
two nodes. So, the shape in Figure 2(a) will be
suitable whether the constraints on the data val-
ues in these two nodes require them to have iden-

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

tical values or different values. Therefore, a tech-
nique that generates the least restrictive shape (i.e.,
with the maximum number of nodes that can be
referenced by the statements along the path) sat-
isfying the constraints on the pointer fields used
along the path does not need to take into considera-
tion the constraints on the data values in the nodes.
In constrast, a technique that attempts to generate
a suitable shape with fewer number of nodes needs
to consider the constraints on the data values in
the nodes to determine whether some nodes can
be coalesced or not. Our shape generation algo-
rithm constructs the least restrictive shape satisfy-
ing the pointer constraints along the test path. It
constructs the shape in Figure 2(a) for this exam-
ple. Note that some of the pointer addresses in the
least restrictive shape may never be referenced by
the statements along the path. The least restrictive
shape generated by our algorithm sets these unref-
erenced pointers in the shape to NULL to avoid
any uninitialized pointers in the generated shape.
Thus, our approach separates the problem of gen-
erating a suitable shape for the input data structure
from the generation of desired values for the inte-
ger and real fields in the data structure.

In this paper, we also present a new algorithm
to generate the least restrictive shape of the input
data structure for the traversal of a given path in a
function. Our algorithm collects the constraints on
the pointer fields in the desired input data struc-
ture in a single pass of the statements along the
path. These constraints are solved efficiently us-
ing a technique developed in this paper. The so-
lution of the constraints gives the relative (not ab-
solute) addresses for the pointer fields. These rela-
tive addresses are then used to generate the shape
of the data structure that satisfies the constraints on
the pointer fields used by the statements along the
test path. Finally, the desired values for the inte-
ger and real data fields in the above data structure
are generated using the test data generation tech-
niques described in [5, 6].

An advantage of our approach is that the con-
straints on pointer fields are simple and can be eas-
ily solved to compute a consistent solution or de-
tect inconsistency. An inconsistency in these con-
straints implies a contradiction in the constraints
imposed on the pointer references by the branch
predicates along the path. Such a path is infeasible
and no shape can be generated to execute this path.
Thus our algorithm always either generates a suit-
able shape of the input data structure for the given
path or it guarantees that no such shape exists for

the given path. It is efficient as it always generates
the least restrictive shape or guarantees infeasibil-
ity in a single pass of the statements along the path.

Note that if a suitable shape of the input data
structure can be generated for a given path, it does
not imply that the path is feasible. It only im-
plies that the pointer constraints along the path are
consistent. However, a path with consistent con-
straints on pointer references can still be infeasible
due to some conflicting constraints along the path
that do not refer to the pointer fields of the input
data structure.

Another important reason for generating the
shape first and values of data elements later, is to
avoid aliasing problems. The test path may contain
statements where two pointers are used to derefer-
ence data elements e.g. p1 ! data and p2 ! data.
If p1 and p2 were the same, the data element being
referenced would also be the same. Otherwise, the
data elements being referenced would be different.
We cannot predict anything about aliasing until we
know the shape of the data structure.

We have implemented our shape generation
technique. Our experiments show that our ap-
proach is efficient in generating a suitable shape for
the input data structure. The important contribu-
tions of this paper are:
� A novel approach that first generates a suit-

able shape of the input data structure and then
generates the integer and real values in the
data fields of the data structure.

� A new algorithm for generating constraints on
the pointer addresses in the input shape by
a single pass of the statements along the test
path.

� An efficient technique to solve the pointer con-
straints arising in shape generation.

� It either generates a suitable shape for input
data structure or guarantees no such shape ex-
ists.

� It handles pointer aliasing efficiently.

� It is easy to automate and provides a practical
solution to shape generation for pointer inputs
to functions.

The organization of this paper is as follows. An
overview of our approach is presented in section 2.
The algorithm for shape generation is described in
section 3. The implementation and experiments are
discussed in section 4. Related work is discussed in
section 5. The important features of our method are
summarized in section 6.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

2 Overview

Given a test path P in a function F that accepts
linked data structures as part of its input, we derive
suitable shapes for the input data structures so as to
satisfy the constraints imposed by the pointer refer-
ences along the pathP . The input to our shape gen-
eration method is the list of statements along P and
the output is a function F 0 that constructs the re-
quired data structures using a series of node alloca-
tion and assignment statements. F 0 also sets up the
input pointer parameters of F with the addresses
of appropriate nodes of the input data structures.
After generating the suitable shapes for input data
structures, the appropriate values of data fields in
the nodes of these data structures (e.g. p1 ! data)
and other data arguments of F are generated using
the technique described in [5, 6] so that P is exe-
cuted with this generated input.

We use the following terminology to refer to
pointers. We call the pointer parameters of F as
argument pointers. The statements along P may
refer to a pointer variable such as ptr, which may
be a local pointer variable or an argument pointer.
We call these simple pointers. The statements may
also use the pointers that are dereferenced using
other pointers e.g., ptr ! next. We call them com-
plex pointers. Note that a complex pointer may be
dereferenced using a simple pointer e.g. ptr !
next or dereferenced using another dereferenced
pointer e.g., ptr ! next! prev.

Now we give an overview of our technique for
generating a suitable shape for an input data struc-
ture of a function F for execution of a given path
P in F . Our shape generation method essentially
consists of the following three steps:

� Collect constraints on pointer addresses used
by statements along the test pathP in the func-
tion F .

� Solve the above constraints on pointer ad-
dresses.

� Use the above solution to output the function
F 0 that constructs the desired data structure.

We illustrate our approach by generating the shape
of input data structure for traversal of path P =
f1; P1; 2; P2; 6; P1; 9; 10; 11g in the function func1
in Figure 3. It takes as input a pointer argument
root pointing to a linked data structure. We assume
that loops are unrolled at the time of defining the
test path.

2.1 Collection of Constraints

By examining the statements along the test path,
we derive a set of constraints in terms of node-
addresses that must be satisfied in order for the
linked data structure passed as input to execute
the test path. These constraints do not refer to ac-
tual addresses used at run time. Instead they cap-
ture the relationships between the node-addresses
in the data structure. In other words, these con-
straints define the shape of the input data struc-
ture. For example, A = B indicates that both node-
addresses A and B should be assigned the same
address since they refer to the same node in the
data structure. The actual address assigned is not
important as long as this constraint is satisfied. We
use the domain of whole numbers as our address
space. The NULL pointer is assigned value 0 in
our address space. So, if there is a pointer con-
straint C = 0, no memory allocation should be
done in the data structure for this node-address.
Instead, it represents a NULL pointer in the data
structure. We classify the statements into the fol-
lowing types to derive the constraints on the node-
addresses referred by the statements along P .

1. Statements that do not use any pointer vari-
ables e.g., x = 2. These statements do not ac-
cess the data structure and we ignore them.

2. Statements that do use pointer variables e.g.,
all statements along P in Figure 3(a) fall into
this category. Since these statements refer to
elements of the data structure, we try to derive
constraints from them. These statements are
further classified as following:

(a) Statements in which the actual element
being operated on is a pointer e.g. curr =
prev ! next. The actual elements op-
erated on in these statements are mem-
ory address values in the pointer fields of
nodes and pointer variables.

(b) Statements in which the actual element
being operated on is not a pointer e.g.
prev ! next ! data = d. These state-
ments also provide information about the
shape of the data structure since a node
that is dereferenced cannot be NULL.

Note that in a function that uses pointers to ac-
cess dynamic data structures, the only opera-
tions that are performed on pointer variables are
(i) pointer assignment, (ii) pointer comparison
(either: == or !=) in a branch predicate (also called
an assertion), (iii) dereferencing and (iv) alloca-

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

struct node
f int data;

node *next; g
0: void func1(node *root, int d)
1: node *prev = root, curr;
P1: while (prev ! next != NULL)
2: curr = prev ! next;
P2: if (curr! data == d)
3: prev!next = curr! next;
4: free(curr);
5: else
6: prev = curr;
7: endif
8: endwhile
9: prev! next = malloc(node);
10: prev! next! data = d;
11: prev! next! next = NULL;
12: endproc

(a)

0: void F 0(node **root)
1: p1 = malloc(node);
2: p2 = NULL;
3: p3 = malloc(node);
4: p4 = NULL;
5: p5 = NULL;
6: p6 = NULL;
7: p1!next = p3;
8: p3!next = p5;
9: *root = p1;
10: endproc

(b)

Null

root

(c)

Figure 3. Test path P =f1; P1; 2; P2; 6; P1; 9; 10; 11g in the function func1, the output function F 0

generated by our method, and the corresponding data structure generated by F’.

tion/deallocation. 1 We now show how the con-
straints are derived from these four operations. Let
p and q be two pointer variables that point to the
node type as defined for the function func1 in Fig-
ure 3. Let X and Y be the node-addresses assigned
to two nodes referenced by p and q. Assume that
the next field in the node corresponding to X con-
tains the address of the node Y . This information is
represented in a table shown below. We refer to the
table below as initial table later in this section to il-
lustrate the effect of processing various statements
on the contents of this table.

NA new del ptrVar next Constraints
X p Y

Y q

In this table (called the Node Address Table),
each row stores the information about a node-
address. The column labeled NA lists the node-
addresses. If a node-address is generated by a
malloc statement along P , the column labeled new

is marked in row for this node-address. If a node
is deleted by a statement along the path, the col-
umn labeled del is marked for the row correspond-
ing to this node-address. If a statement on the path
refers to a node-address with del column marked,
a message is displayed that the test path refers
to a deleted node and the shape generation pro-
cess terminates. If the node corresponding to a
node-address is being referenced by a pointer vari-

1This algorithm is not designed to handle functions that use
pointers to access arrays. In such functions other operations like
++, > etc. may be applied on pointer variables. [5] explained
how arrays may be handled

able e.g., p holds the address of the node corre-
sponding to X , then the variable p is listed in the
column named ptrV ar in the row for X . The
ptrV ar column for a node-address may be empty,
if no pointer is referencing the node or may con-
tain more than one pointer if multiple pointers are
pointing to the node. The column labeled next cor-
responds to the node �next pointer field defined
in struct node in Figure 3(a). This field holds the
node-address being referenced by the next pointer
field. If a node has two pointer fields, say left and
right, then there will be two columns in place of
the next column. Thus the presence of this col-
umn varies with the definition of the node-type of
the input linked data structure. Therefore, a sepa-
rate table is maintained for each argument pointer
pointing to a different node-type. However, a single
table is sufficient when several argument pointers
point to the same node-type. The last column called
Constraints contains the constraints on each node-
address and they are generated as the statements
are examined. The NULL pointer is assigned a
node-address equal to 0 in our domain of relative
node-addresses. We use the notation based on col-
umn name such as Constraints(R), to denote the
entry in the Constraints column of a row with the
node-addressR. We use similar notation to refer to
entries in other columns of a node-address.

Our method updates the Node Address Table as
it scans the statements along the test path. The con-
straints on node-addresses are collected from the
final table obtained after scanning all statements
along the path. For each type of pointer operation

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

we show how the contents of the table are updated.
Assignment (p = q): As a result of this assignment,
both p and q point to the same node i.e., node cor-
responding to Y , and the initial table is changed
to:

NA new del ptrVar next Constraints
X Y

Y p, q

Inequality Comparison(p != q): If an assertion
p != q is present in a statement, a constraint X 6= Y
for the node-addresses corresponding to p and q is
added to the rows for X and Y , and the initial ta-
ble is changed to:

NA new del ptrVar next Constraints
X p Y X 6= Y

Y q X 6= Y

Equality Comparison(p == q): If an assertion
p == q is present in a statement, the two nodes re-
ferred by p and q should be same for traversal of
P . Hence we eliminate one of the node-addresses
involved and make both p and q refer to the same
node-address. If Y is eliminated in the initial ta-
ble, every occurrence of Y in the table is replaced
by X and the constraint set of Y is merged with
the constraint set of X . This procedure (called
Compact(X;Y)) is recursively carried out for the
node-addresses in the next(X) and next(Y). Since
the next(Y) is empty, the compaction stops after
substituting Y by X and deleting the row for Y .

NA new del ptrVar next Constraints
X p, q X

Dereferencing(!): If the statement is operating
on a data value dereferenced from a pointer as in
p!data != d, p must refer to a valid node i.e the
node-address cannot beNULL. Hence a constraint
X 6= 0 is generated using the node-address of p.
If a node that does not yet have a node-address is
dereferenced, a new node address is created. For a
statement if(p!data != d), the initial table changes
to:

NA new del ptrVar next Constraints
X p Y X 6= 0

Y q

If a statement is operating on a pointer derefer-
enced from another pointer as in q! next = NULL,
it is treated as a combination of dereferencing and
whatever operation is being done on the pointer;
assignment in the given example. Hence the initial
table is updated to:

NA new del ptrVar next Constraints
X p Y

Y q Z Y 6= 0

Z Z = 0

Allocation/Deallocation: For an allocation of the
type r = malloc(node), a new node-address, say N is
created and a new row is added in the table. The
constraint N 6= 0 is added to the Constraints(N).
We also mark the new(N). For a deallocation of the
type free(p), the del column of the row correspond-
ing to node-address of p is marked.

The Node Address Table discussed so far needs
a refinement. The column named next needs to be
split into two subcolumns called init and curr. The
reason for this is as follows. At any given time
while scanning the statements along P , the Node
address table reflects the current state of the input
data structure. The next field of a node-address
may change as the statements along the path are
scanned. Hence current node-address in the next

field of a node-address may be different from the
initial node-address (i.e, the one assigned to the
next field for the first time). At the time of con-
structing the input data structure, the next fields
of the nodes in the input data structure must be set
using the initial node-address that was assigned to
the next field and not the current node-address in
this field (which may be different from the initial
node-address). We remember these initial node-
addresses in the next fields by splitting the next

column into init and curr subcolumns.

NA new del ptrVar next Constraints
init curr

X p Y

Y q Z Y 6= 0

Z Z = 0

The Node Address Table obtained after scanning
all the statements along P in Figure 3 is shown be-
low. The steps of deriving this table are given in
the Appendix A.

NA new del ptrVar next Constr-
init curr -aints

A root C A 6= 0

B

C curr, prev E F C 6= 0

D

E E = 0

F * G F 6= 0

G G = 0

2.2 Solving the Constraints

The constraints derived in the Constraints col-
umn of the Node address table, after scanning all
the statements along the path, describe the shape
of a linked data structure. For each node-address
N in the Node Address Table, which does not
have any constraints defined, we add the con-
straint N = 0 to Constraints(N). We solve these

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

constraints by whole number assignments to the
various node-addresses that satisfy the constraints.
We make the following two assumptions about the
node-addresses while solving the constraints. (i)
There are only two kinds of node-addresses. Ei-
ther a node-address is 0 (corresponding to NULL

pointer) or a node-address is non-zero, which cor-
responds to a valid address in memory. This is un-
like a real system where we may have invalid non-
zero addresses. (ii) Two node-addresses X and Y

are assumed to be different, unless there is an ex-
plicit constraint X = Y . Based on these assump-
tions, for the above set of constraints: A 6= 0; B =
0; C 6= 0; D = 0; E = 0; F 6= 0; G = 0, we as-
sign the following values to the node-addresses:
A = 1; B = 0; C = 2; D = 0; E = 0; F = 3; G = 0:

2.3 Generating the input data structure

Using the whole number values assigned to
the node-addresses in the previous step, the state-
ments to allocate the shape of the linked data struc-
ture are output. For each distinct non-zero whole
number value, the algorithm allocates a node and
uses a temporary pointer to reference it (Note that
no statements will be output for nodes that have
been marked as new such as node-address F in the
above example). For node-addresses that are zero,
NULL pointer is assigned. For our example the
following statements would be output for the solu-
tion computed in the previous step:

p1 = malloc(node); //for A
p2 = NULL; //for B
p3 = malloc(node); // for C
p4 = NULL; //for D
p5 = NULL; //for E
p6 = NULL; //for G

Then we set up the next fields of the vari-
ous nodes based on the entries in the init col-
umn for each node-address. Finally, we assign the
temporary variables corresponding to the node-
addresses of argument pointers to the respective
argument pointers. In our example this results in
the following statements to be appended to the list
of statements above to generate the output func-
tion F 0.

p1!next = p3;
p3!next = p5;
*root = p1;

Executing the function F 0 derived above (shown
in Figure 3(b)) generates the data structure shown
in Figure 3(c). It has a suitable shape for traversal
of the test path P in Figure 3(a). Once a suitable
shape of the input data structure is generated, the
required values in the data fields can be generated
using the techniques in [5, 6].

3 The Shape Generation Algorithm

In this section, we describe our algorithm for
generating the shape of the input data structure
for execution of a given path in a function. With-
out loss of generality, we assume that the input
is in a C-like source language. The shape gener-
ation algorithm given in Figure 4 takes the set of
statements S along the test path P in the given
function F as input. Its output is the source code
of a function F 0 which upon execution constructs
the desired data structure. We first briefly describe
the following two subroutines, FindNA(ptr) and
Compact(A;B), used in our shape generation al-
gorithm.

� findNA(ptr) subroutine: Given a simple or
a complex pointer ptr, the findNA(ptr) rou-
tine looks up the Node Address Table and
returns node-address of ptr in the table. If
ptr is a simple pointer, it returns the node-
address of row corresponding to ptr. If ptr
is a complex pointer such as q!next, it finds
the node-address of q by a recursive call
findNA(q) and then returns the node-address
of next(findNA(q). If no node-address has
been assigned to ptr, findNA creates a new
node-address, adds a corresponding row in
the table and returns this node-address for ptr.
It returns 0 if ptr is NULL.

� Compact(A,B) subroutine: It combines the
rows for node-addresses A and B into a sin-
gle row in the table. If both A and B are
undefined, it does not do anything. If only
one of A or B is undefined, say B is un-
defined, the result of Compact(A;B) is the
node-address A. If both A and B are defined
and are distinct then the nodes referred by
them are recursively compacted. It merges
the node-addresses in ptrV ar(B) with the
node-addresses in ptrV ar(A), since both sets
of pointer variables now reference the same
node-address. All references to B are replaced
by A in the table, and the Constraints(B)
are added to Constraints(A). Next it recur-
sively compacts the node-addresses in next1,
next2,... fields of A and B by calling
Compact(curr(next1(A)); curr(next1(B))),
Compact(curr(next2(A)); curr(next2(B)))
etc. This is also repeated for the init entry of
all the pointer fields. Finally, the row for B is
removed from the table.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Input: A set S of statements along a path P in the subroutine F .
Output: A function F 0 in C language that constructs the required input data structures.
procedure SHAPEGEN(S)

step 1: Initialize Node Address Table with entries corresponding to the argument pointers.
step 2: for each statement s 2 S, do

switch (s)
case (s has no pointer references): ignore (s);
case (s operates on data dereferenced from a pointer ptr! data):

Let N = findNA(ptr); Add constraint N 6= 0 to Constraints(N);
case (s is pointer assignment p = q): Let N = findNA(q);

if (p is simple pointer) then Let M = findNA(p); Remove p from ptrVar(M); Add p to ptrVar(N);
else (p is complex pointer ptr! next) Let M = findNA(ptr); Set the curr(next(M)) = N ; endif

case (s contains an Inequality comparison p != q): Let M = findNA(p);
Let N = findNA(q); Add M 6= N to Constraints(M) and Constraints(N);

case (s contains Equality comparison p == q):
Compact(findNA(p); findNA(q));

case (s contains a pointer allocation p = malloc(node)):
Create a new node-address N and a row for N in the Node Address Table;
Mark new(N); Add N 6= 0 to Constraints(N);
if (p is a simple pointer) then Add p to ptrVar(N);
else (p is of the form ptr! next) Set curr(next(findNA(ptr))) = N ; endif;

case (s contains a pointer deallocation free(p)): Mark del(findNA(p));
endswitch

endfor
step 3: Add N = 0 to Constraints(N) for each node-address N with no constraints. Collect all the constraints.
step 4: Solve the constraints by assigning whole numbers to node-addresses that satisfy the constraints.
step 5: Use the solution obtained in step 4 to output the Shape-generation function F 0.

endprocedure

Figure 4. Shape Generation Algorithm

We now give a detailed description of the steps of
the algorithm.
Step 1: Initialization. The Node Address Table
is initialized by creating node-addresses (and the
corresponding rows in the table) for the various
argument pointers of the function F . The ptrV ar

column for each node-address is set to the argu-
ment pointer referencing the node. Specifically, for
each argument pointer api, a node-address Ni is
created and added to Node Address Table. For
each Ni, ptrV ar(Ni) is set to api. The table now
contains the node-address entries for each of the
argument pointers. We also keep a list AP =
f(N1; ap1); (N2; ap2); :::g to remember which argu-
ment pointer was assigned to which node-address.
This list is used while generating the statements for
the output subroutine F 0 in the last step.
Step 2: Scan S and build Node Address Table. In
this step, the statements in S are scanned. The rel-
evant information is extracted from each statement
and entered into the table. Depending on the type
of statement s, the following cases are handled.
Case(i) If s does not contain any pointers in it, then
the algorithm proceeds to the next statement.
Case(ii) If s contains an operation on non-pointer

elements, then for each data element dereferenced
through a pointer e.g., ptr!data, the node-address
of ptr is computed by calling findNA(ptr) routine.
Let N = findNA(ptr). The constraint N 6= 0 is
added to Constraints(N). This is done because ptr
can be dereferenced only if it is not NULL.
Case(iii) If s is a pointer assignment of the form
p = q, first the node address corresponding to q is
computed. Let N = findNA(q). Next,

1. If p is a simple pointer, the node-address ref-
erenced by it must be changed to N . Let M =
findNA(p). Remove p from ptrV ar(M) and
add it to ptrV ar(N).

2. If p is a complex pointer as in r ! next, the
pointer field next in the node-address for r

must be set to N . Let M = findNA(r). Set
curr(next((M)) = N . When a pointer field is
set as a result of an assignment, the curr field
alone is set. This is because an assignment
changes the initial state of the data structure.

Case (iv) If s contains an inequality comparison
of the form p != q, then let M = findNA(p) and
N = findNA(q). Add the constraint M 6= N to
Constraints(N) and Constraints(M).

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Case(v) If s contains an equality comparison of
the form p == q, let N = findNA(p) and M =
findNA(q). Call Compact(N;M) to merge the
rows for N and M in the table into a single row.
Case(vi) If s contains a pointer allocation of the
form p = malloc(node), create a new node-address
N , allocate a row in the table for N , place a mark
in new(N) and add N 6= 0 to Constraints(N).
If p is a simple pointer then add p to ptrV ar(N).
If p is a complex pointer as in r! next, com-
pute M = findNA(r). Then the node-address in
curr(next(M)) is updated to refer to N . When a
pointer field in next column is set as a result of a
node allocation, the curr field alone is set. This is
because this statement is changing the initial state
of the data structure.
Case(vii) If s contains a pointer deallocation of the
form free(p), the node addres M = findNA(p) is
computed and del(M) is marked.

Step 3: Collect Constraints. The table now con-
tains the information about the shape of the in-
put data structure. However, there may be node-
addresses in the table which do not have any con-
straints assigned to them. For each node-address
N in the Node Address Table, which does not have
any constraints defined, we add the constraint N =
0 to Constraints(N). We do this to prevent the
final data structure that is generated from having
uninitialized pointer fields. We handle the assign-
ment of NULL pointer to each undefined next

field of non-NULL node-addresses in Step 5 of the
algorithm. We now collect all the constraints from
the Constraints column of the Node Address Ta-
ble into a constraint list CL and pass them to the
constraint solver described in the next step.

Step 4: Solve Constraints. Our technique for solv-
ing the constraints on pointer addresses is based on
the following observation. The constraints gener-
ated by the shape generation algorithm are simple
ones of the form A = B and A 6= B (Either A or
B may be 0). Number 0 has a special meaning as
it represents the node-address for NULL pointer.
Our technique assigns the whole number values to
the node-addresses in the constraint list CL so as
to satisfy the constraints in CL. Note that a con-
straint such as A = 0 already gives the assignment
for A. We first handle such constraints and substi-
tute 0 for every occurrence of A in constraint list
CL. Next we handle the constraints such as B = D

and use these equations to assign natural numbers
to these node addresses so as to satisfy these con-
straints. For example, if there are three constraints
B = D, D = E and F = H , then assigning B = 1,

D = 1, E = 1, F = 2 and H = 2 will satisfy these
constraints. Next we use these assignments to sim-
plify inequalities. For example, an inequality con-
straint G 6= H will get simplified to G 6= 2 using
the above solution. Therefore, assigning G = 3
will satisfy this constraint. For inequalities such
as I 6= J such that neither I nor J has yet been
assigned any natural number, we assign an unas-
signed natural number to I (i.e., I = 4) and a dif-
ferent unassigned natural number to J (i.e., J = 5)
so as to satisfy this inequality constraint. Thus we
obtain a whole number assignment to all the node-
addresses used in CL. If any inequality constraint
of the form B 6= B is obtained during any step
of this process, the constraints on the pointer ad-
dresses are inconsistent. An error message “infea-
sible path” is displayed. Otherwise, the solver re-
turns the set of node-address assignments AL.
Step 5: Output the Shape-generation function F 0.
Based on the assignments AL computed in the pre-
vious step, the algorithm now generates the state-
ments in the shape generation function F 0 as fol-
lows. A temporary pointer pi is created for each
node address Ni and pi is initialized based on the
assignment Ni = v 2 AL depending on the value
of v. However if a node-address is marked as
“new” no allocation is performed for it.

1. If v = 0 then add the statement “node *pi =
NULL;”. Remove Ni = v from AL.

2. If v 6= 0 then add the statement “node *pi
= malloc(node);”. Remove Ni = v from
AL. Scan through AL and if any other node-
address Nj has also been assigned the value v,
then output the statement node *pj = pi and
remove Nj = v from AL.

Next the algorithm sets up the pointer fields
(i.e.. the next1, next2,... fields) of the above allo-
cated nodes. This sets up the shape of the required
data structure. For each node Ni, scan through
the init entries of its next pointer fields in the
Node Address Table. If the entry in the init col-
umn of the next field of Ni contains Nj then out-
put the statement “ pi!next = pj”. On the other
hand, if the entry in the init column of the next

field of Ni is undefined, then output the statement
“pi ! next = NULL”. Finally the algorithm sets
up the argument pointers to refer to the appropri-
ate nodes of the data structure using the argument
pointer list that was computed in the first step of
the algorithm. For each entry (Ni; api) in the argu-
ment list, output the statement “api = pi”.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

4 Experimental Evaluation

Implementation We implemented our shape-
generation algorithm as a C program. It reads in-
put from a text file containing statements along a
test path in a given function. The source language
in the input files was a subset of C. The language
supported a limited set of data types, namely int,
pointers to int, user-defined struct types and point-
ers to these struct types. For pointers only the
equality comparison, inequality comparison, as-
signment, allocation and deallocation operations
were allowed. Our program first parses each state-
ment in the file and stores it internally as an Ab-
stract Syntax Tree (AST). Next the Node Address
Table is set up. The AST’s are examined and the
table entries are filled. Finally the constraints are
collected and solved. Based on the values assigned
to node-addresses, the statements in the shape gen-
eration function F 0 are output to a file.

Experiments We conducted two types of experi-
ments with our shape generation algorithm. First
we verified that the algorithm was working cor-
rectly. We used paths from a Binary Search Tree
(BST) insertion function and a Linked List (LL)
Search function. For each function we randomly
selected different feasible paths of varying lengths.
The program successfully generated the required
input shape for all these cases. Next we intro-
duced a simple error in each function. We deleted
the statement which updated the pointer used for
traversing the linked structure from the loops of
the functions. Deleting the statement causes the
path to become infeasible because the loop termi-
nation condition requires the pointer to become
NULL. When these paths were passed as input to
the program, it detected the infeasibility while try-
ing to solve the constraints and reported it.

Next, we conducted experiments to analyze the
factors influencing the running time of the algo-
rithm. For these experiments we collected vari-
ous statistics: (i) number of statements in the path,
(ii) number of constraints passed to the solver, (iii)
number of node-addresses created in the table, (iv)
number of predicates (assertions) in the program,
(v) time spent updating the Node Address table
and generating and solving the constraints (Table-
Handling time) and (vi) time spent on parsing the
input and outputting the final shape generation
statements (I/O time). The program was again run
with randomly chosen input paths from the BST
insertion routine and the linked list routine.

We conducted the experiments on an Intel

Path # of # of # of # of TH I/O
Stmt. Constr. NA Pred (�sec) (�sec)

Bst1 17 3 3 8 33.17 2235.42
Bst2 19 4 5 8 33.58 2105.17
LL1 23 6 7 16 32.13 1525.37
LL2 36 8 9 26 35.84 1601.96
Bst3 46 10 11 23 39.74 2995.25
LL3 59 15 16 43 58.74 1729.41
Bst4 73 16 17 38 63.09 2005.84
LL4 88 21 22 65 69.05 2483.49
Bst5 100 22 23 53 74.11 2666.54

Figure 5. Timing results for different paths

Pentium 4, 1.7 GHz machine running RedHat
Linux 7.2. The execution time taken by each sub-
task (e.g., I/O) was measured using the gettimeof-
day() system call. During the experiments we no-
ticed that the times measured for a specific task
varied over a range of about 5 �sec. To get accu-
rate results, all experiments were run 50 times and
the average time over these 50 runs are the ones
that have been reported.

Results and Discussion The timing results for the
various paths are shown in Figure 5. In Figure 5,
the Table-Handling (TH) time and I/O time are re-
ported separately since the I/O time was the dom-
inant factor in the total time and was also influ-
enced by the system load. However the TH time
was the true time taken for generating and solving
the constraints. As can be seen from the table in
Figure 5, the TH time steadily increases with the in-
crease in the number of statements along the path.

The Table-Handling time vs. the number of
statements is plotted in in 6(a). The Table-Handling
time vs. the number of constraints generated and
node-addresses generated are plotted in Figures
6(a) and 6(b) respectively. We observe that the
time spent on collecting the constraints increases
almost linearly with the number of statements,
constraints and node-addresses for paths in both
the functions. This is true because the statements
on the paths in both the functions essentially do
similar operation i.e., the pointer traversal opera-
tion. In addition, there are very few statements
(2-3) along these paths that do not refer to the in-
put data structure. For each new node traversal
in these paths, the algorithm creates a new node-
address and generates a constraint for the node
that is being dereferenced. Hence the Table Han-
dling time is directly proportional to the number
of statements, the number of node-addresses cre-

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

30

35

40

45

50

55

60

65

70

75

10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

icr
os

ec
.)

No. of statements

(a) TH time vs. No. of statements

30

35

40

45

50

55

60

65

70

75

2 4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
(m

icr
os

ec
.)

No. of constraints/node-addresses

No. of Node-addresses
No. of constraints

(b) TH time vs. No. of constraints/NA

Figure 6. Factors influencing the time performance of the shape generation algorithm.

ated and the number of constraints generated in
these experiments. It is expected that in general,
the increase in Table-Handling time with the in-
crease in number of statements will be slower than
that observed in plots in Figure 6. This is because
in general, there may be many statements along the
path that do not refer to the input data structure
and hence do not contribute to generation of node-
addresses or constraints in the table. Therefore, in
general we expect better time performance of the
algorithm than that shown in plots in Figure 6.

5 Related Work

Prior work [7] on generating test data for func-
tions with pointer inputs uses a backtracking based
approach to simultaneously generate the shape
and the data values in the input data structure.
This approach is inefficient because in case the
method backtracks due to an incorrect decision
made earlier about the shape of the data structure,
the data values generated after the incorrect deci-
sion may become useless. In addition, there can be
extensive backtracking if the statements along the
paths use pointer aliasing. Since there is no concept
of inconsistent constraints in this approach, a lot of
time could be spent in backtracking for a path for
which no feasible input data structure exists.

In this paper, we have presented a new two
phase approach to generate the test data for func-
tions with pointer inputs. We first generate the
least restrictive shape satisfying the pointer con-
straints imposed by the statements the test path. In
other words, it contains the maximum number of
nodes that can be referred by the statements along
the path, and it still satisfies the pointer constraints
along the path. The importance of this shape can be
seen at the time of generating the data values in the
nodes of the generated input data structure. If the

pointer constraints allowed both a two node data
structure and a coalesced single node data struc-
ture, the single node data structure cannot be as-
signed two different data values if the constraints
on data values require so. However, a data value
in a coalesced single node structure can be copied
to multiple nodes in the least restrictive data struc-
ture. Therefore, if the required data values can be
generated for any other data structure satisfying
the pointer constraints, then it is guaranteed that
the suitable data values can be generated for for
the least restrictive shape.

Our algorithm can easily detect paths for which
no feasible shape exists by presence of inconsistent
pointer constraints. Therefore, given a test path, it
either generates a suitable shape of the input data
structure or determines that no feasible shape ex-
ists for the path.

It also handles pointer aliasing efficiently. After
scanning all the statements along the test path, the
Node Address table always contains a single node-
address for the pointers that are aliases.

6 Conclusions

In this paper we have developed a two phase
approach to generate test data for path testing of
functions with pointer inputs. We first generate the
least restrictive shape of the input data structure
that satisfies the pointer constraints along the path.
The data values in this data structure can then be
generated using any of the existing test data gener-
ation techniques. We have implemented our shape
generation technique and our experiments show
that our technique is more efficient than existing
backtracking based techniques. We further plan to
extend our technique by allowing the user to spec-
ify additional constraints such as there should be
no cycles in the generated input data structure.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Acknowledgments
The authors thank the anonymous referees for
carefully reading the manuscript and providing
helpful comments.

References

[1] L.A. Clarke, “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Transactions
on Software Engineering, Vol. SE-2, No. 3, pages 215-
222, September 1976.

[2] R.A. DeMillo and A.J. Offutt, “Constraint-based Au-
tomatic Test Data Generation,” IEEE Transactions on
Software Engineering, Vol. 17, No. 9, pages 900-910,
September 1991.

[3] M.J. Gallagher and V.L. Narsimhan, “ADTEST: A
Test Data Generation Suite for Ada Software Sys-
tems,” IEEE Transactions on Software Engineering, Vol.
23, No. 8, pages 473-484, August 1997.

[4] A. Gotlieb, B. Botella, and M. Rueher, “Automatic
Test Data Generation using Constraint Solving Tech-
niques,” International Symposium on Software Testing
and Analysis, 1998.

[5] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated
Test Data Generation using An Iterative Relaxation
Method” ACM SIGSOFT Sixth International Sympo-
sium on Foundations of Software Engineering (FSE-6),
pages 231-244, Orlando, Florida, November 1998.

[6] N. Gupta, A. P. Mathur, and M. L. Soffa, “UNA
Based Iterative Test Data Generation and its Evalua-
tion,” 14th IEEE International Conference on Automated
Software Engineering(ASE’99), pages 224-232, Cocoa
Beach, Florida, October 1999.

[7] B. Korel, “Automated Software Test Data Genera-
tion,” IEEE Transactions on Software Engineering, Vol.
16, No. 8, pages 870-879, August 1990.

[8] B. Korel, “A Dynamic Approach of Test Data Gener-
ation,” In Conference on Software Maintenance, pages
311-317, San Diego, CA, November 1990.

Appendix A
Here we show how the Node Address Table is updated
for the statements along the test path P 0 in function
func1 in Figure 3(a). Note that the branch predicates
along the path are written as assertions that must be
true for the traversal of the path.

(1) Initial Node Address Table:
NA new del ptrVar next Constr-

init curr -aints
A root

(2) Stmt scanned: prev = root
NA new del ptrVar next Constr-

init curr -aints
A root, prev
B

(3) Stmt scanned: assert(prev!next != NULL)
NA new del ptrVar next Constr-

init curr -aints
A root, prev C A 6= 0
B

C C6=0

(4) Stmt scanned: curr = prev!next
NA new del ptrVar next Constr-

init curr -aints
A root, prev C A 6=0
B

C curr C6=0
D

(5) Stmt scanned: assert(curr!data != d)
No change in Node Address Table.

(6) Stmt scanned: prev = curr
NA new del ptrVar next Constr-

init curr -aints
A root C A 6= 0

B

C curr, prev C 6= 0

D

(7) Stmt scanned: assert(prev!next == NULL)
NA new del ptrVar next Constr-

init curr -aints
A root C A 6= 0

B

C curr, prev E C 6= 0

D

E E = 0

(8) Stmt scanned: prev!next = malloc(node)
NA new del ptrVar next Constr-

init curr -aints
A root C A 6= 0

B

C curr, prev E F C 6= 0

D

E E = 0

F * F 6= 0

(9) Stmt scanned: prev!next!data = d
No change in Node Address Table.

(10) Final Node Address Table:
Stmt scanned: prev!next!next = NULL

NA new del ptrVar next Constr-
init curr -aints

A root C A 6= 0

B

C curr, prev E F C 6= 0

D

E E = 0

F * G F 6= 0

G G = 0

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

