Static Program Analysis

Xiangyu Zhang

What is static analysis

@ Static analysis analyzes a program without
executing it.

@ Static analysis is widely used in bug finding,
vulnerability detection, property checking

* Easier to apply compared to dynamic analysis (as
long as you have code)
" The user does not even need to know how to run it
* Better scalability compared to some dynamic
analysis (e.g. tracing)

* Findbug, coverity, codesurfer

Two kinds of Static Analysis

@ Syntax/structure oriented analysis

* They don't try to understand the semantics of a
program. Instead, they look at syntax and structure
of a program

* CFG, dominator, post-dominator, loop detection

* A lot of applications

» Code clone detection (text comparison, AST comparison, CFG
comparison)

* Malware analysis

® Serve as the foundation for other advanced static/dynamic
analysis

* Limitation: cannot reason about program semantics
and program state

@ Semantics oriented analysis (our focus)

Lets start with the Simplest Static

—_— Analysis

@ What are the possible definitions for each use

z=..

X=...

it C)
X=...

else
sl

©Co~NOOOUOPWNLE

@ What are the possible call targets

p=F1 /*F1, F2, F3, F4, F5 are functions*/
q=F2
x=1nput ()
it)
q=F3
else
p=F4
it ()
p=F5
10 else
11 P=q;
12 Cp) ()

©Co~NOOOUOPMWNLE

@ What is the range of possible values for a
integer var.

x=10

y=input()

I=X+y

1T (i>20)
1=20

else
z=1nput()
1T (3<z<h)

1=1-Z
O print z

P OOO~NOOTA,WNEPE

The first ingredient of static

—_—analysis

@ Abstract domain

* The results we want to compute by static
analysis

@ Transfer function

*How the abstract values are
computed/updated at each relevant
iInstruction

®* Need to consider the instruction semantics

@ What are the possible call targets

x=F1 /*F1, F2, and F3 are functions*/

y=F2

q=&Xx

it)
X=F3

else
p=&X

it ()
P=q

10 else

11 p=&y;

12 *C*p) (.)

©Co~NOOOUOPMWNLE

What about loops

@ When shall we terminate a loop path?
* Analyze the possible sign of a variable

1 x=input(Q)
2 while (.)
3 X=-X

; @Since we are always interested in the
. aggregation of abstract values along all
paths. If the aggregation stabilizes, we
shall ferminate

* Monotonically growth

* The abstract domain is finite

Semi-lattice

@ A semi-lattice is a domain of values V and a
meet operator A such that,

* VY q, b, &ceV:
1. anra-=a/(idempotent)
2. anb=bnaa(commutative)
3. ar(bac)=(an b) c(associative)

* A imposes a partial orderon V,vV a,b,&c < V:
1. asbesanb=b
2. a>beazbandazb
3. axband bzxc,thenazc

* A semi-lattice has a top element, denoted T
I.Va eV, a<T
2.Va eV, Tara=a

10

Semi-lattices for previous examples
@ Def[x@n]: the possible definitions of x at n

{} T
4/1\>

id,} {dy} {ds}

id;, dy} iy, é3} {ém ds}

= Y=

{d,, d,, ds} 1

11

@ Lattice + monotonicity + finite height =
termination

@ Are we there yet?

* Path explosion, e.g. a program with n diamonds.

12

Avoid Analyzing Individual Paths

@ Analyze multiple paths at a time and compute
aggregate information directly.

* Def, [x@n]: all the possible definitions of x along
some path reaching n (before getting through n)
Defm[x@n]= Nnrs predecessorn,, Defout[x@ n]
* For any xl=y (node nis "y=...")
Def,:[x@n]=Def, [x@n]
* Def,,, [y@n]=(n)

13

Other Examples

@ Call target analysis
@ Range analysis

14

e
o=
s
&
~
o
=]
o]
Ll
=
o
o
~
Ll
=]
rQ

Worklist Algorithm

For each block node n and every variable x
AD"[x@n]-Ad,,[x@n]= O
change = true;
while change do begin
change = false;
for any n and x
AD‘"[x@n]=/\n's predecessorn,, ADout [X @ n]
oldvalue = Ad_[x@n];
Ad, [x@n] = F(AD"[x@n])
if Ad,[x@n] = oldvalue then change = true;
end
end

15

Example for Computing Dependences

1 Input (X,Yy);
2 1f (x<0)

3 pP=-Y;

4 else

S p=y;

6 z=1

7 while (p!'=0)
8 Z=Z*X

9 p=p-1;

10 Output(z);

16

Lost of Precision by Directly Computing
— Aggregate Information

1 x=Foo(): 1 iaf ()
2 y=gee(); 2 a=1;
3 if () 3 b=2;
4 P=8X; 4 else

5 q=&X; 5 a=2
6 else 6 b=1;
/ p=&y; 7 c=atb
8 q=&y:

o) *p:*q

10 *(*p) O

@ Distributive analysis: the aggregation of
individual path analysis results is equivalent to
computing the aggregate information directly

F(anb)=F(a)AF(b)

17

=]
[S]
Ll
=}
(¢
(¢
H
L
=]
[S]

Analyzing Model Output Value Range

for (L=1 to 2) {
for (1=0 to 1) {

a[L,1]=0;

for (J=0 to 1) {
a[L,i]=a[L,1]+w[L,i,j]*a[L-1,])]:;

}

a[L,i]=a[L,i]+b[i];

1T (a[L,1]<0)
a[L,1]=0;

w[ol= { {2.4}, {1,3}} wl[1]={ {3.2}, {7.1}}
b[0]=10 b[1]=-20

18

°
=
o
H
(4]
B

]
L
=
(¢
(4]
H
P
B

]

Alias Analysis

@ For each pointer variable, determine the set of global
variables and the heap objects that may be pointed-to
by the variable

* One of the most important analyses

19

=]
[S]
Ll
=}
(¢
(¢
H
L
=}
[S]

~N o g Ry R

P=&x
g=malloc(10)
*q=p

t=g+2
*t=malloc(5)
r=(*t)

(*r)=&p

Example

20

A More Efficient Alias Analysis

@ Traversing different paths is very expensive

@ How about we ignore the control flow

* Eliminate strong update
" x =.. never overwrites the PointsTo set of x, but rather add to it

x=&y
x=4&z
t=X

21

e
-]
s
&
~
o
=]
o]
—
=
o
o
~
Ll
=]
rQ

Analysis Rules

X =&y x = lmalloc(y)
xX—=Yy x— L

x=y y-ot (xx)=y y->t x—-p
X -1 p—ot

X=y+z y-ot x=(xy) y-ot t-ogq

X -t X —(q

22

=]
[S]
Ll
=}
(¢
(¢
H
L
=]
rQ

p=malloc (10)
(*p)=&x
g=p+l
(*q)=&y
r=g+1

(*r)= &z
I=0;

=p;

while (i<3) {
10: Z=(*t);
11: t=t+2;
12: i=i+1;
13: }

14: x=(*2);

Example

23

Flow Sensitive and Flow Insensitive

—_— Analysis

@ With and without respecting control flow

@ The analyses we have learned, except the preceding
alias analysis, are flow sensitive

@ Other flow insensitive analysis
* Type inference

24

Summary

@ The essence of static analysis is similar to dynamic
analysis

* Execute it without the concrete values (abstract
interpretation)

* We can express our analysis with abstract semantics just like
concrete semantics
" You can implement static analysis just like a dynamic analysis

* Two important properties: termination and soundness

@ For better scalability, we come up with different
approximations
* Merge-before-continue semantics
* Flow insensitive analysis

25

