
Dynamic Program Analysis

Xiangyu Zhang

2

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Introduction
Dynamic program analysis is to solve problems regarding software
dependability and productivity by inspecting software execution.
Program executions vs. programs

Not all statements are executed; one statement may be executed many times.
Analysis on a single path – the executed path
All variables are instantiated (solving the aliasing problem)

Resulting in:
Relatively lower learning curve.
Precision.
Applicability.
Scalability.

Dynamic program analysis can be constructed from a set of primitives
Tracing
Profiling
Checkpointing and replay
Dynamic slicing
Execution indexing
Delta debugging

Applications
Dynamic information flow tracking
Automated debugging

Program Tracing

4

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.

5

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

What is Tracing

Tracing is a process that faithfully records detailed
information of program execution (lossless).

Control flow tracing
the sequence of executed statements.

Dependence tracing
the sequence of exercised dependences.

Value tracing
the sequence of values that are produced by each instruction.

Memory access tracing
the sequence of memory references during an execution

The most basic primitive.

6

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Why Tracing

Debugging
Enables time travel to understand what has happened.

Code optimizations
Identify hot program paths;
Data compression;
Value speculation;
Data locality that help cache design;

Security
Malware analysis

Testing
Coverage.

7

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.
Trace accessibility

8

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Printf
Max = 0;
for (p = head; p; p = p->next)
{

if (p->value > max)
{

max = p->value;
}

}

printf(“In loop\n”);

printf(“True branch\n”);

9

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Source Level Instrumentation

Read a source file and parse it into ASTs.
Annotate the parse trees with instrumentation.
Translate the annotated trees to a new source file.
Compile the new source.
Execute the program and a trace produced.

10

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example

11

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example

;

printf(“In loop\n”)

12

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Limitations of Source Level Instrumentation

Hard to handle libraries.
Proprietary libraries: communication (MPI, PVM), linear
algebra (NGA), database query (SQL libraries).

Hard to handle multi-lingual programs
Source code level instrumentation is heavily language
dependent.

Requires source code
Worms and viruses are rarely provided with source code

13

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Tracing by Binary Instrumentation

What is binary instrumentation
Given a binary executable, parses it into intermediate
representation. More advanced representations such as
control flow graphs may also be generated.
Tracing instrumentation is added to the intermediate
representation.
A lightweight compiler compiles the instrumented
representation into a new executable.

Features
No source code requirement
Easily handle libraries.

14

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Static vs. Dynamic Instrumentation

Static: takes an executable and generate an
instrumented executable that can be executed with
many different inputs
Dynamic: given the original binary and an input,
starts executing the binary with the input, during
execution, an instrumented binary is generated on
the fly; essentially the instrumented binary is
executed.

15

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Dynamic Binary Instrumentation -
Valgrind

Developed by Julian Seward at Cambridge University.
Google-O'Reilly Open Source Award for "Best Toolmaker" 2006
A merit (bronze) Open Source Award 2004

Open source
works on x86, AMD64

Easy to execute, e.g.:
valgrind --tool=memcheck ls

It becomes very popular
One of the two most popular dynamic instrumentation tools

Pin and Valgrind
Very good usability, extendibility, robust

25MLOC
Mozilla, MIT, Berkeley-security, Me, and many other places

Overhead is the problem
5-10X slowdown without any instrumentation

Reading assignment
Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation (PLDI07)

16

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

pc

pc
BB

New BB
New BB

New pc

state

17

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1

1

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

18

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2; 1: do {

2: i=i+1;
3: s1;
4: } while (i<2)

OUTPUT:

19

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

1: do {
print(“1”)

2: i=i+1;
3: s1;
4: } while (i<2)

OUTPUT:

20

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1

1

1

21

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1 1

5

5
5: s2;

22

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2) 1 1

5: print (“5”);
s2;

23

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

5: print (“5”);
s2;

Valgrind Infrastructure

Binary
Code

VALGRIND CORE

Dispatcher

BB Decoder

BB Compiler

TrampolineTrampoline

Tool 1

Tool 2

Runtime

Instrumenter

Tool n

……

Input

1: do {
2: i=i+1;
3: s1;
4: } while (i<2)
5: s2;

OUTPUT:

1: do {
print(“1”)
i=i+1;
s1;

} while (i<2)

1 1 5

24

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Instrumentation with Valgrind
UCodeBlock* SK_(instrument)(UCodeBlock* cb_in, …)
{

…
UCodeBlock cb = VG_(setup_UCodeBlock)(…);
…
for (i = 0; i < VG_(get_num_instrs)(cb_in); i++) {

u = VG_(get_instr)(cb_in, i);
switch (u->opcode) {

case LD:
…

case ST:
…

case MOV:
…

case ADD:
…

case CALL:
…

return cb;
}

25

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Outline

What is tracing.
Why tracing.
How to trace.
Reducing trace size.

Program Profiling

Xiangyu Zhang

27

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

What is Profiling

Tracing is lossless, recording every detail of a
program execution

Thus, it is expensive.
Potentially infinite.

Profiling is lossy, meaning that it aggregates
execution information to finite entries.

Control flow profiling
Instruction/Edge/Function: Frequency;

Value profiling
Value: Frequency

28

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

GNU gprof Profiler

Gprof is a profiler for C programs.
It profiles execution times for each individual
functions and produces a call graph with call edges
annotated with frequencies.
Working

Gcc with the –p –pg options. –p tells the program to save
profiling information, and –pg saves debug information in the
compiled executable.
Gcc instruments the entry and exit of each function to record
the calling frequency of each function.
Sampling is used to measure execution time.

inaccuracy
A gmon.out file will be created at the end.
Run gprof ./a.out to view the profiler’s information.

29

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

How often does a control-flow path
execute?
Levels of profiling:

blocks
edges
paths

More Advanced: Path Profiling

B C

D

E F

A
343

400

57

Edge profile equivalent to block profile?

30

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Naive Path Profiling

put(“B”)
put(“C”)

put(“D”)

put(“E”)
put(“F”);
record_path();

buffer

B C

D

E F

A put(“A”)
A B D F

31

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A
r = 4

r = 2

r += 1

count[r]++

Path Encoding
ABDEF 0
ABDF 1
ABCDEF 2
ABCDF 3
ACDEF 4
ACDF 5

32

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A

1

2

1

24

6

Each node is annotated with
the number of paths from
that node to the end.

Num(n)= ∑ (child i) Num(i)

33

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Efficient Path Profiling

B C

D

E F

A

count[r]++

1

2

1

24

6

w1 w2 w3

Exit

n1 n2 n3

0 +n1
+(n1+n2)

v

r = 4

r = 2

r += 1

34

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Path Regeneration

1

4

2

P = 3

P = 3 P = 1

P = 1

P = 0

Given path sum P, which path produced it?

w1 w2 w3

Exit

n1 n2 n3

0 n1
n1+n2

v

B C

D

E F

A

35

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Handling Loops

C D

E

G H

A

F

B

C D

E

G H

A

F

B

Entry

Exit
1

6

1

2

3

3

14

3

8 r = 8

r+ = 2

r+ = 3

r+ = 2

r +=2

r +=3

r +=2
count[r]++;
r=8

r+ = 1

r+ = 1

36

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Overhead and Others

EPP causes 40% overhead on average.
The path explosion problem.

If the number of paths is too large to enumerate, which is not
very uncommon, hash maps have to be used.

Can be used to achieve efficient tracing.
Reading assignment

Efficient Path Profiling, by T. Ball and J. Larus, Micro 1996
The optimization (chord algorithm) is not required.

37

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Challenge

Encoding backtrace
A very useful feature of GDB is backtrace, which captures the
sequence of call sites leading from the main function to the current
execution point. For instance, in case of a segfault, the user can use
the “bt” command to investigate the current call sequence.
Consider the sequence of call sites as a path in the call graph from
the main function to the current execution point. Please design an
efficient encoding scheme for call paths. The requirement is that it
should be able to distinguish the multiple call paths to the same
program point. The scheme ought to be minimal, meaning using the
minimal number of ids. Apply your technique to the following program.

A () {
B();
C();

}

B () {
D();
E();

}

C () {
D();

}

D () {
E();
F();

}

E () {
segfault;

}

F () {

}

38

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Delta Debugging

Xiangyu Zhang

39

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Problem

In 1999 Bugzilla, the bug database for the browser
Mozilla, listed more than 370 open bugs
Each bug in the database describes a scenario which
caused software to fail

these scenarios are not simplified
they may contain a lot of irrelevant information
a lot of the bug reports could be equivalent

Overwhelmed with this work Mozilla developers sent
out a call for volunteers

Process the bug reports by producing simplified bug reports
Simplifying means: turning the bug reports into minimal test
cases where every part of the input would be significant in
reproducing the failure

40

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

An Example Bug Report

Printing the following file causes Mozilla to crash:
<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION
VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac
System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System
8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System
9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION

Continued in the next page

41

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION
VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION
VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

42

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Delta-Debugging

It is hard to figure out what the real cause of the
failure is just by staring at that file
It would be very helpful in finding the error if we
can simplify the input file and still generate the
same failure
A more desirable bug report looks like this
Printing an HTML file which consists of:
<SELECT>

causes Mozilla to crash.
The question is: Can we automate this?
Andreas Zeller

43

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Overview

Let’s use a smaller bug report as a running example:

When Mozilla tries to print the following HTML input it crashes:
<SELECT NAME="priority" MULTIPLE SIZE=7>

How do we go about simplifying this input?

Manually remove parts of the input and see if it still causes
the program to crash

For the above example assume that we remove
characters from the input file

44

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

1 <SELECT NAME="priority" MULTIPLE SIZE=7> F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P

4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> P

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

Bold parts remain in the input, the rest is removed

F means input caused failure
P means input did not cause

failure (input passed)

45

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> P

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> P

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F

46

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Example

After 26 tries we found that:

Printing an HTML file which consists of:
<SELECT>

causes Mozilla to crash.

Delta debugging technique automates this approach
of repeated trials for reducing the input.

47

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

A Simplified Description of the Algorithm
Initially, n=2
(1) Divide a string S equally into 1, 2, ... n and the respective

complements are 1, 2, ..., n.
(2) Test each 1, 2, ... n and 1, 2, ..., n .
if (all pass) {

n=2n;
if (n>|s|) return the most recent failure inducing

substring.
else goto (1)

} else if (t fails) {
n=2; s= t
if (|s|==1) return s
else goto (1)

} else { /* t fails */
s= t ; n=n-1; goto (1);

}

48

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Examples

a b c d e f * h
Program fails on any substrings containing ‘*’

a b c d e f g h
Any strings containing a g h fail

abcdef”,
the program fails if both *s appear in the input

49

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Minimality

A test case c  cF is called the global minimum of cF
if
for all c’  cF , |c’| < |c|  test(c’)  F

Global minimum is the smallest set of changes which
will make the program fail

Finding the global minimum may require us to
perform exponential number of tests

50

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Minimality

A test case c  cF is called a local minimum of cF if
for all c’  c , test(c’)  F

A test case c  cF is n-minimal if
for all c’  c , |c|  |c’|  n  test(c’)  F

The delta debugging algorithm finds a 1-minimal test
case

Ex: AAAABBBBCCCC, program fails when
|A|=|B|=|C|>0

51

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Monotonicity

The super string of a failure inducing string always
induces the failure
DD is not effective for cases without monotonicity.

52

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Case Studies

The following C program causes GCC to crash
#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];
}

Continued in the next page

53

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

void copy(double to[], double from[], int count)
{
int n = count + 7) / 8;
switch(count % 8) do {

case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;

} while (--n > 0);
return mult(to, 2);

}
int main(int argc, char *argv[])
{
double x[SIZE], y[SIZE];
double *px = x;
while (px < x + SIZE)

*px++ = (px – x) * (SIZE + 1.0);
return copy(y, x, SIZE);

}

54

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Case Studies

The original input file 755 characters

Delta debugging algorithm minimizes the input file to
the following file with 77 characters

If a single character is removed from this file then
it does not induce the failure

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*
(z[0]+0);}return[n];}

55

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Isolating Failure Inducing
Differences

Instead of minimizing the input that causes the failure we can
also try to isolate the differences that cause the failure

Minimization means to make each part of the simplified test case
relevant: removing any part makes the failure go away
Isolation means to find one relevant part of the test case: removing
this particular part makes the failure go away

For example changing the input from
<SELECT NAME="priority" MULTIPLE SIZE=7>
to
SELECT NAME="priority" MULTIPLE SIZE=7>
makes the failure go away

This means that inserting the character < is a failure inducing difference
Delta debugging algorithm can be modified to look for minimal
failure inducing differences

Although it is not as popular, it is quite useful in some applications.

56

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Failure Inducing Differences:
Example

Changing the input program for GCC from the one on
the left to the one on the right removes the failure

#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];
}

#define SIZE 20
double mult(double z[], int n)
{
int i , j ;
i = 0;
for (j = 0; j < n; j++) {

i + j + 1;
z[i] = z[i] *(z[0]+1.0);

return z[n];
}

Modified statement is shown in box

This input causes failure This input does not cause failure

57

C
S510 S o f t w

 a r e E
 n g i n e e r i n g

Discussions

DD on scheduling decisions:
Given a thread schedule for which a concurrent program works
and another for which the program fails, delta debugging
algorithm can narrow down the differences between two
thread schedules and find the locations where a thread switch
causes the program to fail.

Chipping
Given two versions of a program such that one works correctly
and the other one fails, delta debugging algorithm can be used
to look for changes which are responsible for introducing the
failure

Fault Localization – apply DD to memory state

