CS590 Program Analysis for
Deep Learning

Xiangyu Zhang
Fall 2019

This Course

- Using program analysis to address deep learning problems
- Model security, testing, debugging, verification, and optimization

- Target audience
- With deep learning background

. Or with program analysis background and interested in various deep learning
applications

This Course

- Objective
- Get familiar with various program analysis techniques and their applications in
deep learning
- Understand the state-of-the-art techniques in the various applications
- Hands-on experience
- Presentation skills
. Potential research paper

This Course

- Project intensive
- Three small and one large

. Paper presentation, discussion and quiz
. (Take-home) midterm

- Details on the course website

Program Analysis

- Dynamic

- Static

- Symbolic

- Verification

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

- Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

- Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

Al Driven Computing

- Al Models are becoming an integral part of modern computing
- Autonomous vehicles, Apple Face ID, iRobots, Cotana, and computer games

- Al Models are shared/reused just like software components
- Python face recognition package

big@ ,__..f-."'_openML Gradientzoo nl.\

Al Driven System Engineering

Tuning / Debugging / Optimization

Implementation (including training)

Evaluation

Al Models Are Prone to Bugs and
Vulnerabilities Just Like Software Components

- Al models are programs with special semantics
- Python program with vectors (DL semantics are implicitly encoded in weight values)

. Traditional engineering bugs (i.e., bugs in general program semantics)
- E.g., type errors, data format problems

- Model bugs — misconducts in the Al model engineering process leading to
undesirable consequences (i.e., bugs in the deep learning semantics)

- Root causes: biased training data, defective model structure, hyper-parameter(s),
optimization algorithms, batch size, loss function, activation function(s)

- Symptoms: low model accuracy, vulnerable to adversarial sample attacks, back-doors

- E.g., State-of-the-art pre-trained models can only achieve 80% accuracy on an
ImageNet classification challenge; 73% accuracy on Children’s Book Test challenge.

Debugging Al Models

* Debugging is hard

* DNNs are not human understandable/interpretable
e Fach neuron denotes some abstract feature

 Lack of scientific way of locating the root causes
* Trial-and-error

* Unclear how to fix bugs
e Cannot directly change weight values
e Cannot train with failure inducing inputs

Al Model Bugs

. Input related bugs
. Biased training inputs -- overfitting and underfitting

Stereo-typing defect caused by overfitting

ResNet110 on ImageNet

B

(a) Basketball (78%) (b) Top 1 feature

Al Model Bugs

. Input related bugs
- Biased training inputs -- overfitting and underfitting

Model back-doors caused by overfitting

“u
]
"!?- jf VGG on CIFAR1O0:
Any image stamped with the pattern
cause mis-classification to DEER

N g #F g ':‘I- I

i ¢ &

4 ‘ F ' _
- ot ' ‘-*‘ d -.‘ i -

Al Model Bugs

. Input related bugs
. Biased training inputs -- overfitting and underfitting

Vulnerabilities to adversarial sample attacks by underfitting

Pixel-wise differences

Model ' \
(x50 times) 3

C&W, attack A.J. Buckley

Al Model Bugs

. Input related bugs
- Biased training inputs -- overfitting and underfitting

- Inclusion of problematic inputs in the training set leads to difficulty of
convergence
- Using reinforcement learning to train a model to perform integer addition
- Training does not converge after 24 hours
- Two problematic training inputs: 12+11=23 21+11 =32

Al Model Bugs

- Input related bugs
- Biased training inputs -- overfitting and underfitting

- Inclusion of problematic inputs in the training set leads to difficulty of convergence
- Training a model to evaluate propositional logic expression

- Problematic input embedding (for RNN models)

- Similar embeddings do not entail similar semantics
- “new” and “create”

« Structural bugs
- Redundant/insufficient layers/neurons
- In-effective structures
- Forget gates in (LSTM) do not retain/throw-away certain contextual information

- Suboptimal setting of reward values leading to extremely long training time in
reinforcement learning

Quad

time = 0.0000s
frame = 0

roll = 0.0000
pitch = 0.0000
yaw = 0.0000

x_dot = 0.0000 N amm
y_dot = 0.0000
z_dot = 0.0000

After fixing the reward setting (four hours training)

X Quad

time = 0.0000s
frame = 0

roll = 0.0000

pitch = 0.0000

yaw = 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000 e L
x_dot = 0.0000]
y_dot = 0.0000

z_dot = 0.0000

N« X =0T

Al Model Bugs

Input related bugs
Biased training inputs -- overfitting and underfitting

Inclusion of problematic inputs in the training set leads to difficulty of convergence

Problematic input embedding (for RNN models)
Embedding of training inputs does not provide good coverage

Similar embeddings do not entail similar semantics
General embeddings may not work well for domain-specific applications

. Structural bugs
- Redundant/insufficient layers/neurons
In-effective structures
Forget gates in (LSTM) do not retain the appropriate contextual information

. ISuboptlmal setting of reward values leading to extremely long training time in reinforcement
earning

Prior Work: Data Augmentation & Retraining

* Pre-defined data
augmentation techniques

e E.g., crop, soften, brighten,
sharpen, mirror, rotate,
transparency, contrast

Brock, Andrew, Jeff Donahue, and Karen Simonyan. "

Random

Source

Generator Real Example Discriminator

* Generative models, e.g.,
Generative Adversarial
Network (GAN)

* Generate new samples which
follow similar distributions
with provided training dataset

Large scale gan training for high fidelity natural image synthesis." arXiv preprint arXiv:1809.11096 (2018). 20

r~

‘ective

Using GAN is Not That E

Use 14 GANs downloaded from various sources for MNIST to generate inputs

For each GAN, randomly select 40,000 generated inputs as additional training data
to fix a MNIST model that has an underfitting bug for digit 5 (only 74% accuracy)

7 GANSs fail to improve either digit 5 or the whole model, 4 improve the model but
not digit 5, and only 3 can improve both (digit 5 to 83% after 1 hour of training)

* MODE can improve to 94% in 5 mins
Root Cause: does not consider the reasons why a NN misbehaves

ol<]x]5]515

Traditional software defect diagnosis

¢ T
Do im 7 = aB+D

Inputs Programs State Analysis Bug Locating Bug Fix with Patches

:def fib(n): elfdef fib(n): : {x = -1} || main: {x = 6}
. 02: assert(n>=0) .

if n == 0 or n == 1: 03: ifn-=0orn == 1: : {n = -1} || fib : {n = 6}

return n ' - T : {n = -2} ||fib : {n = 5}

' . . 04: return n) ~ S ~

g: return £1b(n-1)+f1b(N1 5. return fib(n-1)+fib(n-2) | E: - Z% EE : E: - ;‘%
) .) 06: : ~ S ~

o7 input(“Input:y: | 87ideF main(): | Dr i N
: e PUL=")" Tog: x = input(“Input:’): I) B

@8: print fib(x) 09: print fib(x) .1ing Run Successful Run

Program Analysis Execution Traces

Our ldea: From Program Analysis Perspective

[X)
.

01:def DNN():
©2: for 1 in model.layers():

03: if(i==0): x; = input ,»"0“4
: : _ * A
04 : else: x;,; = f;(wW;*x;+b;) D>

g
&

|

Activation value.

Borrow the ideas from traditional software defect diagnose to
understand misclassification.

Workflow

S, +
Input Selection &
Model Retraining

7]

Inputs Model State Analysis Neuron Locating

Identifying the neurons
that contribute to the
misclassification based
on two datasets:
correctly classified and
misclassified datasets.

Mis-classified inputs

Input layer Layer1 layer2 guiput layer

Understanding neuron importance

<, , , >< >
<a,,b,,c,, d,><e,, f,, g, h,>
<a,, by, c3, d3> <ey, f;, g5, hy>

7 ’ ’

V4 V4 V4 ’ V4 V4 V4 V4
<a/,b/,c/ d/'><e/, f’ g’ h/>

V4 7 V4 4 V4 V4 7 V4
<a,,b,,c,),d,’><e), f,), g,/ h/>

V4 V4 V4 ’ V4 ’ V4 ’
<a), by, ¢}, dy’ ><ey, 3, g5, hy'>

Mis-classified Image \ / ~ — J .

Layer1 Layer 2 Output layer

Input layer

Find the important neurons: Linear Regression
 O=B,E+B,F+B,G+L,H+..

. =<e,, e,, €3, €, ...>

* Weight value B, B, Bs, B, represent the importance of each neuron

Understanding misclassification

Input layer

Layer 1 Layer 2 Output layer

/

True: 1, Prediction: 1

Important neurons: IE, F}

Linear Regression
« O=B,E+B,F+B,G+B,H+..
* E=<ej,e)e3€,.>
« O=B/F+B,/F+B,/G+B,/H +..
e E=<e/,e),e),e/,.>
e Diff= <ﬁ1" ﬁz’, ﬁg’r ﬁ4’> - <Blr BZI ﬂ3' B4>

» Diff tells us the different importance level of each
neuron on the two datasets

H

% True: 1, Prediction: 2

Important neurons:ﬁE, F, H}

Understanding Misclassification

<a, b, c,d><e, f, g, hp>
<a,, b, ¢, d,><e,, f, g, h,>
<a,, b, c;, dy> <ey, f5, g5, hy>
<a,,b/,c/ d/'><e/, f’ g/ h/>
<a,,b,,c,),d,’><e), f,), g’ h/>
<ajy, by, ¢, dy’ ><e), f), g, hy'>

Input layer Layer 1 Layer 2 Output layer

Using SoftMax instead of linear regression

- SoftMax has similar meanings with linear regression. It is a more generalized analysis method,
and can model non-linear functions and high dimensional space.

Visualization of Importance

NOTE: Heat-map versus Gradient

* Input gradients gauge how much output changes can be induced by input value
(neuron activation value) changes

* However, gradients are computed for a given input, whereas heat-map denotes
aggregated importance over a large set of inputs

* We cannot fix model bug by looking at one particular input

Step 2: Differential analysis to identify underfitting
root cause: other digits are mis-classified to digit 1

i

hi

R 1

HM, HM, D correct mis-classified to 2

- Using heatmaps to find unique features

- HM: trained with all correctly classified images for output label 1
- HM,: trained with all correctly classified images for output label 2
- DHM ,: highlight unique features of output label 1

Step 3: Input Selection

7) 1
.0

= DHM (differential heatmap) is a vector pointing to the most promising
direction to fix the problem

Score = A(l) + DHM, A(l) is the activation values of input |

HE

= Dot product measures the significance of the vector A(l) along the direction
DHM

= Select the ones with high Score values

Differential analysis to identify overfitting root cause:
some digit Os are mis-classified as other digit

HM, HM, DHM,

* HM;: trained with all the correctly classified images for output label O
* HM,: trained with all the label O images mis-classified to others

* DHM, ;:The red regions in the DHM denote the features helpful for generalization,
the blue regions denote the overfitted features.

* Larger-sized O are needed

Evaluation Setup

All models are pre-trained models downloaded from Github and
TensorFlow model zoos etc.

New input source
- GAN generated inputs
- Real inputs from other datasets on the same deep learning task

No. of new inputs (for retraining) is decided by tasks type
- Simple: 2,000; middle: 4,000; complex: 6,000

Retraining is using the same hyper-parameters used to train these
downloaded models (extracted from their documents)

Comparison: random selection
- GAN generated inputs
- Real inputs from other datasets

Comparison using gan inputs

Dataset Ori. Acc. # New Sample MODE Acc. Random Acc.
95.2% 2,000 97.4% 94.8% ‘
MNIST
93.4% 2,000 96.8% 94.3% ‘
87.6% 2,000 92.3% 88.9% ‘
Fashion MNIST
91.6% 2,000 92.6% 88.5% ‘
87.3% 4,000 93.2% 87.3% ‘
CIFAR-10
88.4% 4,000 92.8% 88.2% ‘
Average 90.58% 94.18% 90.33%

Real inputs from other datasets

Original Model MODE Model Random Model
New Samples
Acc. Acc. Acc.

Face
Recognition

Object
Detection

Age
Classification

Al Model Bugs

Input related bugs
Biased training inputs -- overfitting and underfitting

Inclusion of problematic inputs in the training set leads to difficulty of convergence

Problematic input embedding (for RNN models)
Embedding of training inputs does not provide good coverage

Similar embeddings do not entail similar semantics
General embeddings may not work well for domain-specific applications

. Structural bugs
- Redundant/insufficient layers/neurons
In-effective structures
Forget gates in (LSTM) do not retain the appropriate contextual information

. ISuboptlmal setting of reward values leading to extremely long training time in reinforcement
earning

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

. Software security versus Al model security
- CIA

- Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

CIA — Confidentiality, Integrity, Availability

CIA in Software CIA in Al model
- Confidentiality . Confidentiality
- Information leak - Data privacy

- Privacy protection

. Integrity - Integrity
. Zero-day attacks: code - Adversarial sample attacks
injection, rop . Back-doors
- Availability . Availability
. Access control . ?P?7

- Deny of service

Adversarial Samples in Deep Neural Networks

- Adversarial samples are model inputs generated by adversaries to fool
neural networks

Pixel-wise differences
(x50 times)

Model ‘- v

Adversarial Sample Wrong Label

Existing Adversarial Attacks

- Semantic based perturbations

- Change a/a few region(s) of the image
- Simulate real world scenarios

- Pervasive perturbations

- Alter images in pixel level
- Different distance metrics: Ly, L,, L.,

n v
Az, 2') = [|lz — 2|, = (Z |z — ﬂ?é\p>
1=1

Representative Attacks

- Semantics based perturbations

. Rectangle:
. Brightness:
Dirt: Camera . Camera lens .
Different Trojan:
lens have . are blocked
. lighting Watermarks.
dirt. i, by another
conditions. ,
object.

- Pervasive perturbations

FGSM DeepFool JSMA

Existing Detection Methods

Many detection and defenses have been proposed, we just list a few
detection approaches here

Characterizing the dimensional properties of adversarial regions
« LID from ICLR 2018, oral presentation

Denoisers that can remove/reform perturbations
- MagNet from CCS 2017
- HGD from CVPR 2018

- First place in the NeurlPS 2017 competition on defense against adversarial attacks

Prediction inconsistency
- Feature Squeezing from NDSS 2018

However

- We found that most existing detection methods work on a subset of
existing attacks or datasets (will show in evaluation later)

- Similar results are found by other researchers

All (evaluated) detection methods show comparable discriminative ability against
existing attacks. Different detection methods have their own strengths and
limitations facing various kinds of adversarial examples.l%

[0]: Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li and Ting Wang, DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Models, IEEE S&P, 2019

Program Invariants in Software Engieering

Ol1l: def fib(n):
: 02: assert(n>=0)
03: assert(from line 6 or 10)

04: iITn=0o0orn-==1:

05: return n
06: return fib(n-1)+Ffib(n-2)
07:

08: def main():
09: x = 1nput("Input a number:*")
10: print fib(Xx)

Key idea: using invariant checks to allow correct behaviors and
forbidden other possible (malicious) behaviors.

DNN Invariants

* \Value invariants

* Possible neuron value distributions
of each layer

* Provenance invariants

* Possible neuron value patterns of
two consecutive layers

* |f an input violates either kind of
invariant, it is considered an
adversarial sample

01:def DNN():

©2: for L in model.layers():
03: if(Ll==0): x, = input
04 : else: x,,;, = f, (w *x+b,)

DNN Value Invariant

Activation of a benign sample of digit 1:
<A: 20, B: 30, C: 0, D, 0> <E: 40, F: 20, G: 0, H: 0>

Activation of an adversarial sample of digit 1:
<A: 10, B: 10, C:10,D, 10><E: 10, F: 11, G: 9, H: 10>

Layer1 Layer2 @~
Input layer Output layer

o2 Meoeoo

DNN Value Invariant

* Perturbations will change

the activation patterns

* Many attacks have new activation
patterns in hidden layers

* Value Invariant

* Trained classifiers that capture the
activation patterns (of benign input
samples) in each layer

FGSM

BIM

C&W,

Dirt

Brightness

|il1

=

Rectangle _'3

Train DNN Value Invariant

1. Trace neuron activation values (for
each layer) for all benign samples

Sample 1:<A: 20, B: 30, C: 05, D, 05>
Sample 2:<A: 40, B: 20, C: 15, D, 13>
Sample 3:<A: 30, B: 34, C: 35, D, 52>

’

Activation of a benign sample of digit 1:
<A: 20, B: 30, C: 5, D, 5> <E: 40, F: 20, G: 3, H: 3>

Activation of an adversarial sample of digit 1:
<A:10,B:10,C: 10, D, 10><E: 10, F: 11, G: 9, H: 10>

2. Train a classifier for each layer
(One-class SVM)

48

DNN Provenance Invariant

Activation of a benign sample of digit 1:

<A: 20, B: 30, C: 0, D: O>|<E: 40, F: 20, G: O, H: 0>
Activation of a benign sample of digit O:

<A: 0, B: 30, C: 40, D: 0> <E: 30, F: 60, G: 50, H: 0>

Activation of an adversarial sample:
<A:22,B:34,C:0, D: O>J<E: 28, F: 54, G: 46, H: 0>

—
WA —

Input layer Layer1 Layer2 Output layer

ot

DNN Provenance Invariant

* DNN model may focus on different
parts of the input in different layers

* The patched image looks similarto 1 in
layer 1 and look similar to O in layer 2

* Using individual value invariants can DeepFool
not detect such attacks
* Provenance invariant

. . JSMA
* Trained classifiers that capture the

activation patterns across two

consecutive layers

e Reduce dimensions to the number of
output labels

Train Provenance Invariant

1. Lower the dimensions of neurons in hidden layers

Sample 1:<A: 0.3, B: 0.5, C: 0.1, D: 0.1>
Sample 1:<E: 0.6, F: 0.2, G: 0.1, H, 0.1>
Sample 2:<A: 0.2, B: 0.4, C: 0.3, D: 0.1>
Sample 2:<E: 0.3, F: 0.4, G: 0.2, H, 0.1>

2. Train a classifier on 2 consecutive layers
Sample 1:<A:0.3,B:0.5,C: 0.1, D: 0.1,
E:0.6,F:0.2,G:0.1,H,0.1>
Layer 1 Layer 2 Sample 2:<A: 0.2,B:0.4,C:0.3,D: 0.1
Input layer Output layer E: 0.3, F: 0.4, G: 0.2, H, 0.1>
* Train on raw neuron values
* Too many of them, hard to train

e Lower the dimensions of individual
layers

51

Evaluation

- Datasets and models
- MNIST: Cleverhans (*2), Carlini’s model from IEEE S&P 2017, LeNet-4/5
- CIFAR-10: Carlini’s model, DenseNet
- ImageNet: ResNet50, VGG19, Inceptionv3, MobileNets
- LFW:VGG19 (Trojan attack)

- Attacks
. Perturbation attacks: FGSM, BIM, C&W attacks, DeepFool, JSMA
- Semantics attacks: Dirt, Brightness, Rectangle, Trajon
- Parameters adopted from previous papers (e.g., Feature Squeezing)

- Comparison with others
- LID, MagNet, HGD, Feature Squeezing

Results

- NIC achieves over 90% detection accuracy on all attacks

- Other methods achieve good results on a subset but fail to work on
some of them (low detection accuracy)

. LID: Good at L., attacks on MINIST and CIFAR, but poor performance large sized
images (e.g., ImageNet)

CIFAR 100% 100% 100%
NIC
ImageNet 100% 90% 100%
CIFAR 94% 84% 90%
LID

ImageNet 82% 83% 79%

53

Results

- NIC achieves over 90% detection accuracy on all attacks

- Other methods achieve good results on a subset but fail to work on
some of them (low detection accuracy)

- MagNet: it does not perform well on many L, attacks, and it is hard to train on
large sized image datasets

MNIST 100% 100% 100%
NIC
CIFAR 100% 100% 100%
MNIST 100% 87% 84%
MagNet

CIFAR 100% 89% 74%

Results

- NIC achieves over 90% detection accuracy on all attacks

- Other methods achieve good results on a subset but fail to work on
some of them (low detection accuracy)

- Feature Squeezing: not good at L., attacks on large sized images (e.g.,
ImageNet) and some patching attacks

MNIST 100% 100% 100%

NIC
ImageNet 100% 90% 100%
[MNIST 100% 100% 94%

Squezzing ImageNet 43% 92% 98%

Results

- NIC achieves over 90% detection accuracy on all attacks

- Other methods achieve good results on a subset but fail to work on
some of them (low detection accuracy)

- Feature Squeezing: not good at L., attacks on large sized images (e.g.,
ImageNet) and some semantics attacks

MNIST 100% 100% 100% 100%
NIC

LFW 100% 100% 100% 100%

Feature MNIST 82% 39% 97% 72%

Squeezing LEW 67% 40% 89% 82%

Other results (summary)

- False positives: 0.2-5.8% for most models, the worst case is 14.6% for
ImageNet (i.e., 0.3-7.2% lower than other techniques)

- Value invariant or provenance invariant

- They are complementary to each other!
- Using just one of the two cannot get good results on all attacks

- Adaptive attacks
- Adversary knows the original model, the detection methods, and all the value
invariants and provenance invariants
- C&W, based attack achieved 97% success on MNIST and CIFAR-10 without
bounding perturbation to a reasonable range
- For MNIST, L, distortion is 3.98 (Feature Squeezing is 2.80)

To Summarize

» The SE concept of invariants works very well for deep learning models
- Invariant derivation does not require negative samples, which is critical to
adversarial sample defense
- However, the way of deriving invariants is different

- Need to consider the unique deep learning semantics and handle unique
challenges, e.g., large dimension (huge buffers)

Inner Neuron Interpretation (NeurlPS’18)

Feature variants

A 4

Model O

7

Attribute witnesses

Attribute preservation l

Model a Feature invariants

Forward: attribute changes -> neuron activation changes

Backward: neuron activation changes —> attribute changes
Backward: no attribute changes —> no neuron activation changes

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

. Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

- Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

- Software testing versus Al model testing
- Software verification versus Al model verification
. Software optimization versus Al model optimization

- Integrating software with Al

Program Analysis versus Al Model Analysis

- Software debugging versus Al model debugging

- Software security versus Al model security
- CIA

- Software testing versus Al model testing

- Software verification versus Al model verification

. Software optimization versus Al model optimization
- Integrating software with Al

Compiler based Software Autonomization (PLDI’19)

MARIO WORLD TIME
000000 it 200 1-1

WORLD 1-1

£ . s

REMEMBER THAT YOU CAN RUN WITH LSHIFT

e User provides the minimal annotation Original | Added
* Places to replace with Al (e.g., keystrokes) LOC LOC
* LLVM instruments program Flappy

Al will learn to operate the software over Bird
time Mario 21k 73

0.8k 40

