
Principles of Concurrency and Parallelism

Xiangyu Zhang
xyzhang@cs.purdue.edu

http://www.cs.purdue.edu/homes/xyzhang
https://piazza.com/purdue/fall2014/cs353/home

CS 353 Topics
 Posix threads
 Principles of concurrency
 Mutual exclusion
 Correctness criteria
 Sequential consistency, linearizability

 Memory models
 Races, atomicity violations, deadlocks and linearizability

violations
 Detection techniques

 Data structures and algorithms
 Queques, heaps, trees, and lists
 Sorting, graph algorithms

CS 353 Topics
 Message passing and Erlang
 Program parallelization
 cost models, notions of speedup and efficiency, and

tradeoffs between concurrency, latency and throughput

Grading
 Quizzes 15%
 Presentation 20%
 Each student will give a 20 mins presentation about a

paper chosen from a pool
 Programming Assignments 65%
 6 projects (roughly one project per 2 weeks)

Projects
 Using posix threads to build a parallel version of a prime

number identification algorithm
 Deterministic Scheduler
 CHESS and Data race detection
 Using Java atomics to build lock free data structures
 Using Erlang
 Program parallelization

What is Concurrency
 Traditionally, the expression of a task in the form of

multiple, possibly interacting subtasks, that may
potentially be executed at the same time.

 Concurrency is a programming concept. It says nothing
about how the subtasks are actually executed.

 Concurrent tasks may be executed serially or in parallel
depending upon the underlying physical resources
available.

7Principles of Concurrency

Why Concurrency?

 Concurrency plays a critical role in sequential as well as
parallel/distributed computing environments.

 It provides a way to think and reason about
computations, rather than necessarily a way of
improving overall performance.

7

8Principles of Concurrency

Why Concurrency?

 In a serial environment, consider the following simple
example of a server, serving requests from clients (e.g., a
web server and web clients)

t = 0
request 1request 2

Non-concurrent
serial server

9Principles of Concurrency

Serial Processing
server
t = 0

request 1request 2

server

request 1 completerequest 2

server

request 2 complete

Total completion time = 8 units,
Average service time = (6 + 8)/2 = 7 units

t = 6

t = 8

1
0

Principles of Concurrency

Concurrent Processing

server

t = 0

request 1

request 2

request 1

request 2

server

t = 1

request 1

request 2

server

t = 2

1
1

Principles of Concurrency

Mean Service Time Reduction

server

t = 3

server
t = 4

server

t = 8

Total completion time = 8 units,
Average service time = (4 + 8)/2 = 6 units 11

both requests
complete

1
2

Principles of Concurrency

Why Concurrency?
● The lesson from the example is quite simple:

Not knowing anything about execution times, we can reduce
average service time for requests by processing them
concurrently!

● But what if I knew the service time for each request?
Would “shortest job first” not minimize average service time
anyway?
Aha! But what about the poor guy standing at the back never
getting any service (starvation/ fairness)?

1
3

Principles of Concurrency

Why Concurrency?

● Notions of service time, starvation, and fairness motivate
the use of concurrency in virtually all aspects of
computing:

Operating systems are multitasking
Web/database services handle multiple concurrent requests
Browsers are concurrent
Virtually all user interfaces are concurrent

13

1
4

Principles of Concurrency

Why Concurrency?

● In a parallel context, the motivations for concurrency
are more obvious:

Concurrency + parallel execution = performance

1
5

Principles of Concurrency

What is Parallelism?

● Traditionally, the execution of concurrent tasks on
platforms capable of executing more than one
task at a time is referred to as “parallelism”

● Parallelism integrates elements of execution --
and associated overheads

● For this reason, we typically examine the
correctness of concurrent programs and
performance of parallel programs.

Why Parallelism
 We can broadly view the resources of a computer to

include the processor, the data-path, the memory
subsystem, the disk, and the network.

 Contrary to popular belief, each of these resources
represents a major bottleneck.

 Parallelism alleviates all of these bottlenecks

Why Parallelism
 Parallelizing disks
 I/O (disks) represent major bottlenecks in terms of their

bandwidth and latency
 Parallelism enables us to extract data from multiple disks

at the same time, effectively scaling the throughput of the
I/O subsystem
 An excellent example is the large server farms (several

thousand computers) that ISPs maintain for serving content
(html, movies, music, mail).

Why Parallelism
 Most programs are memory bound – i.e., they operate at

a small fraction of peak CPU performance (10 – 20%)
 They are, for the most part, waiting for data to come

from the memory.
 Parallelism provides multiple pathways to memory –

effectively scaling memory throughput as well!

Why Parallelism
 The processor itself is the most obvious bottleneck.
 Moore's law states that the component count on a die

doubles every 18 months.
 Contrary to popular belief, Moore's law says nothing

about processor speed.
 What does one do with all of the available “components”

on the die?

Parallelism in Processors
 The primary motivation for multicore processors,

contrary to belief is not speed, it is power.
 Power consumption scales quadratically in supply

voltage.
 Reduce voltage, simplify cores, and have more of them –

this is the philosophy of multicore processors

