
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 7: Mutual Exclusion

 2/16/12

slides adapted from The Art of Multiprocessor
Programming, Herlihy and Shavit

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 2

● “Absolute, true and mathematical time, of itself
and from its own nature, flows equably without
relation to anything external.” (I. Newton, 1689)

● “Time is, like, Nature’s way of making sure that
everything doesn’t happen all at
once.” (Anonymous, circa 1968)

Time

time

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 3

time

● An event a0 of thread A is

− Instantaneous

− No simultaneous events (break ties)

a0

Events

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 4

time

● A thread A is (formally) a sequence a0, a1, ... of
events
− “Trace” model

− Notation: a0  a1 indicates order

a0

Threads

a1 a2 …

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 5

● Assign to shared variable
● Assign to local variable

● Invoke method

● Return from method
● Lots of other things …

Example Thread Events

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 6

Threads are State Machines

Events are
transitions

a0

a1a2

a3

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 7

States

● Thread State
− Program counter

− Local variables

● System state
− Object fields (shared variables)

− Union of thread states

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 8

time

time

● Thread A

● Thread B

Concurrency

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 9

time

Interleavings

● Events of two or more threads
− Interleaved

− Not necessarily independent (why?)

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 10

time

● An interval A0 =(a0,a1) is

− Time between events a0 and a1

a0 a1

Intervals

A0

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 11

time

Intervals may Overlap

a0 a1A0

b0 b1B0

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 12

time

Intervals may be Disjoint

a0 a1A0

b0 b1B0

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 13

time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 14

Precedence

● Notation: A0  B0

● Formally,
− End event of A0 before start event of B0

− Also called “happens before” or “precedes”

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 15

Precedence Ordering

● Remark: A0  B0 is just like saying

− 1066 AD  1492 AD,

− Middle Ages  Renaissance,

● Oh wait,
− what about this week vs this month?

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 16

Precedence Ordering

● Never true that A  A

● If A B then not true that B A

● If A B & B C then A C

● Clearly: A B & B A might both be false!

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 17

Partial Orders
(review)

● Irreflexive:
− Never true that A  A

● Antisymmetric:
− If A  B then not true that B  A

● Transitive:
− If A  B & B  C then A  C

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 18

Total Orders
(review)

● Also
− Irreflexive

− Antisymmetric

− Transitive

● Except that for every distinct A, B,
− Either A  B or B  A

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 19

Implementing a Counter

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
indivisible using locks

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 20

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 21

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release lock

acquire lock

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 22

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 23

Mutual Exclusion

● Let CSi
k be thread i’s k-th critical section

execution

● And CSj
m be j’s m-th execution

● Then either
− or

CSi
k  CSj

m

CSj
m  CSi

k

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 24

Deadlock-Free

● If some thread calls lock()
− And never returns

− Then other threads must complete lock() and unlock()
calls infinitely often

● System as a whole makes progress
− Even if individuals starve

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 25

Starvation-Free

● If some thread calls lock()
− It will eventually return

● Individual threads make progress

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 26

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 27

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism

LockOne

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism

LockOne

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 } Each thread has flag

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism

LockOne

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Set my flag

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism

LockOne

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Wait for other flag to become
false

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 32

●Assume CSA
j overlaps CSB

k

●Consider each thread's last (j-th and k-
th) read and write in the lock() method
before entering

●Derive a contradiction

LockOne Satisfies Mutual
Exclusion

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 33

Deadlock Freedom

● LockOne Fails deadlock-freedom
− Concurrent execution can deadlock

− Sequential executions OK
 flag[i] = true; flag[j] = true;
 while (flag[j]){} while (flag[i]){}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 34

LockTwo

public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 35

public void LockTwo() {
 victim = i;
 while (victim == i) {};
 }

LockTwo Claims

● Satisfies mutual exclusion
− If thread i in CS
− Then victim == j
− Cannot be both 0 and 1

● Not deadlock free
− Sequential execution deadlocks
− Concurrent execution does not

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 36

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 37

Deadlock Free

● Thread blocked
− only at while loop
− only if other’s flag is true
− only if it is the victim

● Solo: other’s flag is false
● Both: one or the other not the victim

public void lock() {
 …
 while (flag[j] && victim == i) {};

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 38

Starvation Free

● Thread i blocked only
if j repeatedly re-
enters so that flag[j]

== true and victim == i

● When j re-enters
− it sets victim to j.
− So i gets in

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}

public void unlock() {
 flag[i] = false;
}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 39

Bakery Algorithm: Generalizing to n
Threads

● Provides First-Come-First-Served
− fairness
− locks have two parts:

● doorway: bounded number of steps

●waiting: potentially unbounded number of steps
− whenever a thread A finishes its doorway before thread B starts

its doorway, A cannot be overtaken by B

● How?
− Take a “number”
− Wait until lower numbers have been served

● Lexicographic order
− (a,i) > (b,j)

● If a > b, or a = b and i > j

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 40

Bakery Algorithm
class Bakery implements Lock {
 boolean[] flag;
 Label[] label;
 public Bakery (int n) {
 flag = new boolean[n];
 label = new Label[n];
 for (int i = 0; i < n; i++) {
 flag[i] = false; label[i] = 0;
 }
 }
 …

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 41

Bakery Algorithm
class Bakery implements Lock {
 boolean[] flag;
 Label[] label;
 public Bakery (int n) {
 flag = new boolean[n];
 label = new Label[n];
 for (int i = 0; i < n; i++) {
 flag[i] = false; label[i] = 0;
 }
 }
 …

n-10

f f f f t ft

2

f

0 0 0 0 5 04 0

6

CS

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 42

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 43

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Doorway

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 44

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

I’m interested

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 45

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Take increasing
label (read labels in

some arbitrary
order)

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 46

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 47

Bakery Algorithm

class Bakery implements Lock {
 boolean flag[n];
 int label[n];

 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested …

… whose (label,i) in
lexicographic order is lower

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 48

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 49

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

No longer
interested

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 49

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

No longer
interested

labels are always increasing

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 50

Timestamps

● Label variable is really a timestamp
● Need ability to
− Read others’ timestamps

− Compare them
− Generate a later timestamp

● Can we do this without overflow?

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 51

● One can construct a
− Wait-free (no mutual exclusion)

− Concurrent

− Timestamping system
− That never overflows

The Good News

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 52

● One can construct a
− Wait-free (no mutual exclusion)

− Concurrent

− Timestamping system
− That never overflows

The Good News

This part is hard

Bad

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 53

Deep Philosophical Question

● The Bakery Algorithm is
− Succinct,

− Elegant, and

− Fair.

● Q: So why isn’t it practical?

● A: Well, you have to read N distinct variables

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 54

Shared Memory

● Shared read/write memory locations called Registers
(historical reasons)

● Come in different flavors
− Multi-Reader-Single-Writer (Flag[])
− Multi-Reader-Multi-Writer (Victim[])
− Not that interesting: SRMW and SRSW

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 55

Bad News Theorem

At least N MRMW multi-reader/multi-
writer registers are needed to solve
deadlock-free mutual exclusion.

(So multiple writers don’t help)

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 56

Theorem (For 2 Threads)

Theorem: Deadlock-free mutual
exclusion for 2 threads requires at least
2 multi-reader multi-writer registers

Proof: assume one register suffices
and derive a contradiction

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 57

Two Thread Execution

● Threads run, reading and writing R
● Deadlock free so at least one gets in

BA

CS

Write(R)

CS

R

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 58

Covering State for One
Register Always Exists

Write(R)

B

In any protocol B has to write to the
register before entering CS, so stop

it just before

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 59

Proof: Assume Cover of 1

A B

Write(R)

CS

A runs, possibly writes to the register,
enters CS

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 60

Proof: Assume Cover of 1

A B

CS

B Runs, first
obliterating
any trace of A,
then also enters
the critical
section

Write(R)

CS

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 60

Proof: Assume Cover of 1

A B

CS

B Runs, first
obliterating
any trace of A,
then also enters
the critical
section

Write(R)

CS

Wednesday, February 15, 12

CS390C: Principles of Concurrency and Parallelism 61

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that
suggests that the authors endorse you or your use of the
work).

– Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission
from the copyright holder.

• Nothing in this license impairs or restricts the author's moral
rights.

Wednesday, February 15, 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

