
Program Representation
Xiangyu Zhang



2

A
dv. T

esting and D
ebugging

Why Program Representations

Original representations
Source code (across languages).
Binaries (across machines and platforms).
Source code / binaries + test cases.

They are hard for machines to analyze.
Software are translated into certain representations 
before analyses are applied.



3

A
dv. T

esting and D
ebugging

Outline

Control flow graphs.
Program dependence graphs.
Super control flow graphs.



4

A
dv. T

esting and D
ebugging

Control Flow Graph

Chapter 1.14 of “Foundations of Software 
Engineering”
Available on the course website. 
The most commonly used program representation.



5

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Program representation: Basic blocks

A basic block in  program P is a sequence of consecutive 
statements with a single entry and a single exit point.  Thus 
a  block has  unique entry and  exit points. 

Control always enters a basic block at its entry point and exits
from its exit point. There is no possibility of exit or a halt at any 
point inside the basic block except at its exit point. The entry
and exit points of a basic block coincide when the block 
contains only one statement.



6

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Basic blocks: Example

Example: Computing x raised to y



7

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Basic blocks: Example (contd.)

Basic blocks



8

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Control Flow Graph (CFG)

A control flow graph (or flow graph) G is defined as a finite set N of 
nodes and a finite set E of edges.   An edge (i, j)  in E connects two 
nodes ni and nj in N.  We often write G= (N, E) to denote a  flow 
graph G with nodes given by  N  and edges by  E.



9

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Control Flow Graph (CFG)

In  a flow graph of a program, each basic block  becomes a node 
and edges are used to indicate  the  flow of control between  
blocks. 

An edge (i, j) connecting basic blocks bi and bj implies that 
control can  go from block bi to block bj.  

We also assume that there is a node labeled Start in N that has no 
incoming edge, and another node labeled End, also in N,  that has 
no outgoing edge.



10

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7, 
8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4), 
(3, 4), (4, 5),  (5, 6), (6, 5), 
(5, 7), (7, 8), (7, 9),  (9, End)}



11

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7, 
8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4), 
(3, 4), (4, 5),  (5, 6), (6, 5), 
(5, 7), (7, 8), (7, 9),  (9, End)}

Same CFG with statements 
removed.



12

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Paths

Consider a flow graph G= (N, E). A sequence of k edges, k>0,  
(e_1, e_2, … e_k) , denotes a path  of length k through the flow 
graph if the following  sequence condition holds.

Given that np, nq, nr, and ns are nodes belonging to N, 
and 0< i<k, if  ei = (np, nq) and ei+1 = (nr, ns) then nq = 
nr. }



13

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Paths: sample paths through the 
exponentiation flow graph

p1= ( Start, 1, 2, 4, 5,  6, 5, 7, 9, End)
p2= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End)

Two feasible and complete paths:

Bold edges: complete path.

Dashed edges: subpath.

p1= ( (Start, 1), (1, 2), (2, 4), (4, 5),  (5, 
6), (6, 5),  (5, 7), (7, 9), (9, End))

Specified unambiguously using edges:



14

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Paths: infeasible paths

p1= ( Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)
p2= (Start, 1, 2, 4,  5, 7,  9, End)

A path  p  through  a flow graph for 
program P is considered feasible if 
there exists at least one test case which 
when input to P causes p to be 
traversed.



15

A
dv. T

esting and D
ebugging

© Aditya P. Mathur 2005

Number of paths

There can be many distinct paths through a program. A 
program with no condition contains exactly one path that 
begins at node  Start and terminates at node End. 

Each additional condition in the program can increases the 
number of distinct paths by at least one. 

Depending on  their location,  conditions can have a 
multiplicative effect on the number of paths. 



16

A
dv. T

esting and D
ebugging

A Simplified Version of CFG

Each statement is represented by a node
For readibility.
Not for efficient implementation.



17

A
dv. T

esting and D
ebugging

Dominator

X dominates Y if all possible program path from 
START to Y has to pass X. 

1:     sum=0
2:     i=1
3:     while ( i<N) do 
4: i=i+1
5: sum=sum+i

endwhile
6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)DOM(6)={1,3, 6}   



18

A
dv. T

esting and D
ebugging

Dominator

X strictly dominates Y if X dominates Y and X!=Y

1:     sum=0
2:     i=1
3:     while ( i<N) do 
4: i=i+1
5: sum=sum+i

endwhile
6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)SDOM(6)={1,3}   



19

A
dv. T

esting and D
ebugging

Dominator

X is the immediate dominator of Y if X is the last 
dominator of Y along a path from Start to Y.

1:     sum=0
2:     i=1
3:     while ( i<N) do 
4: i=i+1
5: sum=sum+i

endwhile
6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)IDOM(6)={3}   



20

A
dv. T

esting and D
ebugging

Postdominator

X post-dominates Y if every possible program path 
from Y to End has to pass X.

Strict post-dominator, immediate post-dominance.

1:     sum=0
2:     i=1
3:     while ( i<N) do 
4: i=i+1
5: sum=sum+i

endwhile
6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)
SPDOM(4)={3,6}   IPDOM(4)=3



21

A
dv. T

esting and D
ebugging

Back Edges

A back edge is an edge whose head dominates its tail
Back edges often identify loops

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)



22

A
dv. T

esting and D
ebugging

Call Graph

Call graph
nodes are procedures
edges are calls

Hard cases for building call 
graph

calls through function 
pointers

Can the password acquired at A be leaked at G?



23

A
dv. T

esting and D
ebugging

Super Control Flow Graph (SCFG)

Besides the normal intraprocedural control flow 
graph, additional edges are added connecting

Each call site to the beginning of the procedure it 
calls.
The return statement back to the call site.

1:     for (i=0; i<n; i++) {
2:        t1= f(0);
3:        t2 = f(243); 
4:        x[i] = t1 + t2 + t3;
5:    }
6:  int f (int v) {
7:    return (v+1);
8:  } 

1

2

3

4

7



24

A
dv. T

esting and D
ebugging

The Use of SCFG

When reasoning across function boundaries is 
needed.

A mouse click suddenly drives a desktop application 
into a coma, and the operating system declares it 
“not responding”. While the application usually 
responds eventually, no user actions can be taken 
during the wait. 



25

A
dv. T

esting and D
ebugging

Many Other Representations

Points-to Graph.
Static single assignment (SSA).


