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We describe ConTest, a tool for detecting
synchronization faults in multithreaded JavaTM

programs. The program under test is seeded with
a sleep¼, yield¼, or priority¼ primitive at shared
memory accesses and synchronization events. At
run time, ConTest makes random or coverage-
based decisions as to whether the seeded
primitive is to be executed. Thus, the probability
of finding concurrent faults is increased. A replay
algorithm facilitates debugging by saving the
order of shared memory accesses and
synchronization events.

The increasing popularity of concurrent Java**
programming in Web applications on the Inter-

net, as well as other distributed, mostly client/server,
applications, has brought to the forefront the anal-
ysis of defects in concurrent programs. Such concur-
rent defects—for example unintentional race con-
ditions and deadlocks—are difficult to uncover and
analyze, and often remain undetected past the prod-
uct deployment.

There are a number of reasons for this difficulty:

● For a given functional test, the size of the set of
possible interleavings is exponential in the length
of the program, and it is not practical to test them
all (except for small programs1,2). Only a few of
the interleavings actually produce the concurrent
fault, and thus the probability of producing the con-
current fault is very low.

● Since the scheduler is deterministic, the execution
of short tests that are independent of I/O delays
and network load will usually create the same in-
terleaving regardless of the environment. This is

also the case when long tests that are not too de-
pendent on I/O delays and network load are exe-
cuted in a similar environment.

● Tests that reveal a concurrent fault in a produc-
tion environment or in stress test are usually long
and run under various environmental conditions
(such as system load or software version). As a re-
sult, such tests are not necessarily repeatable, and
when a fault is found, much effort is invested in
recreating the conditions in which it occurred.

Research on finding concurrent faults focuses on de-
tecting actual data races (e.g., References 3, 4, and
5 among others), using algorithms for efficient iden-
tification of race conditions in the current run. As
mentioned above, the chance that a race condition
will occur is low, and the race detection tool does
nothing to increase it. Moreover, if the race is in-
tentional, false alarms will result. Furthermore, some
concurrent defects are not captured by the formal
definition of a race condition. For example, one could
write a faulty program that depends on the sched-
uling algorithm.6

Researchers have also looked at the problem of re-
play in distributed and concurrent settings. In a dis-
tributed setting, processes might synchronize by
sending and receiving messages. For a given run, an
order is determined over the message sending and
message receiving events. A replay for a distributed
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setting is a re-execution of the program in which all
these events occur in the same order as in the orig-
inal run. In a concurrent setting, a replay algorithm
preserves the order of shared memory access and
synchronization events. (This problem was solved for
the Java language in Reference 7.) Replay support
facilitates debugging as it removes nondeterminism
from the execution of a distributed or concurrent
program.

Deterministic testing or debugging of distributed or
concurrent programs is discussed in References 8 and
9. It is a weak form of replay in which some of the
dependencies between processes are captured at run
time. Next, during subsequent runs, the debugging
tool attempts to force these dependencies. In con-
trast to replay, no guarantee is provided that the same
timing will be obtained in each run.

Model checking has been applied to testing of mul-
tithreaded Java programs in Reference 10. In model
checking each process is modeled by a state machine.
State machines might communicate by sending and
receiving messages. An additional state machine
models the predicate to be checked. Together the
process state machines and the predicate state ma-
chine form the Cartesian product state machine.
State space exploration is applied to the Cartesian
product state machine. At state space exploration
time, the predicate state machine is used to deter-
mine if the predicate is violated. Systematic state
space exploration has inherent scalability issues.11

In this paper we study the problem of generating dif-
ferent interleavings for the purpose of revealing con-
current faults. Since the size of the search space is
exponential in the program length, we take a heuris-
tic approach. We study whether seeding the program
with sleep¼, yield¼, and priority¼ primitives in-
creases fault detection capability. We seed the
program at shared memory access events and syn-
chronization events. At run time, we make random
or coverage-based decisions as to whether seeded
primitives are to be executed. Using the seeding tech-
nique, we were able to dramatically increase the
probability of finding typical concurrent faults6 in-
jected in Java programs. The probability of observ-
ing the concurrent faults without the seeded delays
was very low. In addition, we found that the sleep¼
primitive was almost always better at finding the in-
jected defects than the yield¼ and priority¼ primi-
tives. Finally, we defined and implemented an
architecture, ConTest, that combines the replay al-

gorithm introduced in Reference 7, which is essen-
tial for debugging, with our seeding technique.

Our experiments were conducted on a single pro-
cessor. Any concurrent defect found by the seeding
technique on a single processor is also a defect on
a multiprocessor.

Although the seeding technique gives good results
in practice, it has inherent limitations. First, the in-
terleaving space is exponential in the length of the
program. In addition, different interleavings occur
with different probability. We discuss how coverage-
directed generation of interleavings can be used to
overcome these limitations.

We utilize the test suites employed in functional test
and system test to detect concurrent faults. A test
suite definition includes the expected results, which
are used to indicate if a fault occurred. We rerun
each test many times. The seeding technique causes
different interleavings to occur. The final results are
examined to determine if a fault was observed. This
approach integrates seamlessly into standard test-
ing practices. The automated tests are simply re-
executed. Our approach can be combined with race
detection tools to improve the detection of concur-
rent faults.

The rest of the paper is organized as follows. In the
next section, we cover race detection and replay. In
the section “Use scenario,” we describe a typical use
of ConTest for testing multithreaded Java applica-
tions. The section “Architecture” explains ConTest’s
architecture and discusses some design issues. Next,
we describe the seeding technique, and then we ex-
plain how coverage can be used to improve it. The
section “Experiments” details six experiments in
which some commonly found concurrent defects are
detected. We present our conclusions in the last
section.

Race detectors and replay

In this section we discuss existing race detection and
replay algorithms in the context of debugging syn-
chronization faults. For the purposes of our work,
we define an interleaving as a complete order over
the operations of the program, such that on a sys-
tem with a single processor there is a possible run
in which this was the temporal order of the execu-
tion. In multiprocessor systems the definition of
temporal order is more complicated, but for our
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purposes any reasonable definition will do (see Ref-
erence 12, for example).

Detecting race conditions. Many concurrent defects
result from data-race conditions. A data-race con-
dition is defined by Savage4 as two accesses to a
shared variable, at least one of which is a write, with
no mechanism used by either to prevent simulta-
neous access.

A race condition is a possible source for a defect,
since the value of the variable at the time of reading
depends on the scheduling. However, not all race
conditions are defects. For example, the following
code swaps two integers. There is a race condition,
but no defect, as the swapping occurs regardless of
the interleaving.

class Change{
static int x 5 4, y 5 5;
//Used to implement a busy wait.
static int z1 5 21, z2 5 21;
//Swap the value of x and y concurrently
public static void main(String args[ ]){

(new Thread(new ChangeA( ))).start( );
(new Thread(new ChangeB( ))).start( );}

}
class ChangeA implements Runnable{

public void run( ){
Change.z1 5 Change.x;
while(Change.z2 55 21)

System.out.println(“A is waiting”);
Change.x 5 Change.z2;}}

class ChangeB implements Runnable{
public void run( ){

Change.z2 5 Change.y;
while(Change.z1 55 21)

System.out.println(“B is waiting”);
Change.y 5 Change.z1;}}

It should be noted that race conditions are execution-
dependent: a program might be in a race condition
in one execution and not in another. Therefore, tools
that detect races at run time (or by analyzing the trace
of a given run) are likely to miss some potential data
races.

In addition, the use of locks might prevent race de-
tection tools from exposing a concurrent defect which
is not a race condition. For example, suppose there
are two accesses to a variable, and suppose there is
a lock associated with that variable. If the lock is ob-
tained before each access and released just after it,
then the order of the accesses is arbitrary. If this is

unintentional, it might be a defect; however, formally,
there is no race condition, and race detection tools
will not alert us to the problem.

In conclusion, race detection tools, having no knowl-
edge of the function of the program, would miss de-
fects on the one hand and result in false alarms on
the other. The “benign” data race cited above is an
example of code that results in a false alarm.

Replay. Deterministic programs are debugged by re-
peatedly executing the program using the test that
produced the fault. Since multithreaded programs
are nondeterministic, re-executing the program may
not reproduce the fault. As a result, there is a need
for a record and replay algorithm that will force the
same order of shared variable access and synchro-
nization events within the different threads.

The purpose of a replay algorithm is to reproduce
a concurrent fault. But because the replay algorithm
also introduces delays, it changes the interleavings
of a specific run whenever scheduling decisions are
recorded. This, in turn, may increase or decrease the
chance that a concurrent fault will occur. Since the
replay algorithm is not designed to find concurrent
faults, it does not systematically cover the space of
possible interleavings. Concurrent faults usually oc-
cur in the field when the software is running and the
replay facility is turned off. When the replay facility
is turned on in order to record the concurrent fault
and its environment, there is a chance the fault dis-
appears! This is due to the delays introduced by the
replay algorithm itself. It follows that in practice
many faults cannot be reproduced in this way.

An algorithm that defines “logical time” for a dis-
tributed send/receive environment is discussed in
Reference 13 (pages 591–598). This algorithm was
originally designed by Lamport.12 Because logical
time defines a linear order of send and receive op-
erations, the algorithm can be used for replay pur-
poses. It employs local process clocks and synchro-
nizes them on receive operations. In Reference 7,
this idea was adapted to multithreaded, shared mem-
ory Java programs. In order to enable replay, only
the following events, denoted concurrent events, must
be captured:

● Shared variable accesses. Some accesses to a
shared variable may occur in the wrong order and
cause a faulty value.

● Synchronization events, e.g., synchronized, wait¼
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and notify¼ primitives. Such events may change
the order of access to shared variables.

The Java replay algorithm in Reference 7 produces
sufficient trace information to determine a linear
order on concurrent events. A global variable,
global_clock, is updated atomically with each execu-
tion of a concurrent event (with the exception of the
monitorenter bytecode instruction and wait¼ synchro-
nization primitive). After the execution of a concur-
rent event, the global variable, global_clock, is com-
pared with a thread scoped local clock variable to
determine if a context switch occurred. In order that
the linear order be consistent with each thread ex-
ecution order and with the execution order of syn-
chronization events, accessing the global variable,
global_clock, and executing the concurrent event
must be done atomically. Since global variable ac-
cess and concurrent event execution are handled
atomically, the replay algorithm adds synchroniza-
tion to the program under test. For example, shared
variables that were not synchronized in the original
program are synchronized in the modified program.
A naive implementation of a race detection algo-
rithm might cause race conditions to be masked as
a result of the added synchronization. We discuss
this effect further in the architecture section.

Since we are able to reproduce the correct linear or-
der of concurrent events, we can also reproduce con-
current faults when they occur.

This algorithm was implemented in Reference 7 by
changing a Java virtual machine implementation.

Working at the Java virtual machine level makes the
implementation easier because the scheduler can be
directly modified. However, an implementation that
requires a specific Java virtual machine is limiting.
Furthermore, for every new version of the Java vir-
tual machine, a new version of the modified sched-
uler is needed. For these reasons we decided to im-
plement the replay algorithm above the Java virtual
machine level.

Use scenario

In a typical ConTest user scenario, a given functional
test t is run (without human intervention) against P,
the program under test. This is done repeatedly un-
til a coverage target is achieved. The common prac-
tice in unit, function, and system tests (but not in
load testing), is to execute the test once, unless a fault
is found. The process is depicted in Figure 1. Load
testing, i.e., testing the application under a real or
simulated workload, increases the likelihood of some
interleavings that are unlikely under light load. How-
ever, load testing is not systematic, is expensive, and
can only be performed at the very end of the testing
cycle.

The process of re-executing tests using ConTest is
depicted in Figure 2. Each time the functional test
t is run, ConTest produces, as a result of the seeding
technique, a potentially different interleaving. Dur-
ing the execution of the functional test t, coverage
and replay information is produced and collected.
For example, we might collect, as coverage informa-
tion, data about whether or not a context switch oc-
curred while executing a program method. Test re-
sults are checked at the end of the run. If a fault is
observed, replay information is saved for later use
in the debugging process.

In order to carry out the scheme above it is required
to have a test whose result can be checked automat-
ically. This is the case when a regression test suite
is developed. During manual testing or even during
debugging, ConTest may still be used if the test re-
sult is captured by some capture-and-replay tool. In
addition, when a fault is detected, the debugging pro-
cess is greatly facilitated by ConTest’s replay sup-
port. The seeding technique causes the fault to oc-
cur while the replay algorithm is executing. As a
result, no additional work is needed to reproduce
the fault.

Figure 1 Conventional testing
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Architecture

ConTest has several components. The first of these,
the replay component, is implemented by adapting
the replay algorithm introduced in Reference 7 to
source level instrumentation. When t is executing
against P, the replay component is called every time
a concurrent event occurs, both before and after the
event. Thus, the replay component wraps each con-
current event. The next component is the (heuris-
tic) seeding component. Sleep¼, yield¼, and prior-
ity¼ primitives are seeded into the program, in order
to increase the probability of producing different in-
terleavings on each run. The seeding component
wraps the replay component (see Figure 3). Finally,
the fault detector component (not shown) is used to
determine whether or not a fault occurred. The fault
detector checks that the program behaved correctly
on a given test. A race detection tool may be used
to augment this component. A race detection tool
can spot potential problems even if the program ter-
minated correctly (there was a race but the final re-
sult is correct) or can be used in the absence of a
fault detection component. Then, the race detection
tool should disregard synchronization events intro-
duced by the replay algorithm.

Under the current implementation, the schedule is
changed using standard methods of the Java Thread
class. For example, delays are introduced using
sleep¼. Thus, ConTest is not part of the scheduler
and has no special system privilege. This is one pos-
sible implementation of ConTest. A different ap-
proach would be to implement ConTest as part of
the Java virtual machine. Although similar interleav-
ing generation techniques are then possible, the ar-
chitecture is less portable.

We collect coverage data, which represent the ex-
tent to which the interleaving space is covered when
t is repeatedly executed against P. Then, we use heu-
ristics to determine the probability and type of de-
lays introduced.

We next discuss some ConTest design issues. The
replay algorithm presented in Reference 7 was im-
plemented as part of the Java virtual machine. Con-
Test, on the other hand, implements the replay al-
gorithm by instrumentation of the Java source code
under study. This approach is less efficient in terms
of required execution time, but it is more portable
(for example to C11).

The replay algorithm wraps every concurrent event:
synchronization events and shared variable accesses.

The seeding technique is based on adding the syn-
chronization events, sleep¼, yield¼, and priority¼,
to P, the program under test. Each new synchroni-
zation event introduced by the generation algorithm
is wrapped by the replay algorithm.

We observe that this is not really necessary. The
methods we use, (sleep¼, yield¼, and priority¼), only
impact the time slice allocated to a thread by the

Figure 2 Re-executing tests using ConTest
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scheduler. Thus, if the replay algorithm only captures
the linear order of shared memory access and syn-
chronization events of the original program, this lin-
ear order is a legal linear order of the original
program under some (possibly other) scheduler.
Therefore, replay can be ensured by simply captur-
ing the concurrent events of the original program.
As a result, seeded sleep¼, yield¼, and priority¼ syn-
chronization primitives are not treated as concur-
rent events for the purpose of replay, and the global
clock variable is not updated when they are executed.

A Java scheduler is not required to be fair.13 The
seeding technique is applicable even if the scheduler
is fair. In Appendix A we discuss the validity of the
seeding technique under a fair scheduler.

Source code level instrumentation introduces some
unique design issues. A Java expression might in-
clude reads and writes in arbitrary subexpression lo-
cations. ConTest is required to instrument a Java
expression so that its semantics is preserved and con-
trol is passed to ConTest before and after a read or
a write occur. In addition, ConTest should be able
to perform its calculation and the read or the write
atomically. This is done by defining before and after
concurrent event methods that accept as input the
value read (or written). Overloading of after_write¼
and before_write¼ is used to identify the variable
type. For example, the subexpression

x 5 someExpression;

is changed to

(type of x) after_write(
(x 5 (type of x)

before_write(someExpression))).

As described in the beginning of this section (see also
Figure 3), control is passed to ConTest by the in-
strumentation before and after each concurrent
event. This example details how this is done at the
source code level. In the above instrumentation ex-
ample, the before_write¼ method passes control to
ConTest before the write operation to variable x, the
concurrent event in this case, is executed. The
after_write¼ method passes control to ConTest af-
ter the write operation to variable x is executed. This
order of control is achieved as the Java virtual ma-
chine first calculates someExpression. Next, the
before_write¼ method is executed. Control is passed
to ConTest, at which time ConTest executes its heu-

ristics and replay algorithms. In addition, the pro-
tocol of the before_write¼ method is that someEx-
pression is passed unharmed as the return value of
the before_write¼ method. In the next stage of ex-
ecution the return value of before_write¼, someEx-
pression, is assigned to x. Finally, after_write¼ is
executed. Again, control is passed to ConTest, as
required, right after the assignment to variable x has
been performed.

The seeding technique

In this section we describe and compare the seeding
techniques used to obtain new interleavings and re-
veal concurrent faults. The following three seeding
techniques were implemented at concurrent events:

● A sleep¼ statement is executed with some prob-
ability, which will cause the thread to be blocked
for a randomly selected period of time.

● A yield¼ statement is executed with some prob-
ability, which will pass the control to another
thread. If only one thread is active, the execution
of the yield¼ statement has no effect.

● A priority¼ primitive, which causes a change in
thread priority, is executed with some probability.
Depending on the way the scheduler interprets the
change of priority, this might impact thread sched-
uling.

For a single processor, we found that when there are
many concurrent threads, yield¼ and sleep¼ gave
similar results. A thread starts executing when its
start¼ method is invoked. It is observed, in the sub-
section “First experiment,” later, that if yield¼ was
performed after a new thread instance was created
and before it started executing, control was not likely
to be transferred to the new thread. On the other
hand, if sleep¼ was performed after a new thread
instance was created and before it started execut-
ing, control was likely to be transferred to the new
thread. As a result, seeding the program with the
yield¼ primitive has less effect if the implementa-
tion of the Java virtual machine causes the current
thread to continue its run. Seeding the program with
priority¼ statements revealed the injected defect in
many cases, but priority¼ statements did not perform
as well as either sleep¼ or yield¼ statements (see
the section “Experiments in the detection of con-
current faults,” later, for details).

As a result, sleep¼ was chosen as the preferred seed-
ing primitive. Actual defects identified by ConTest
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were found using the heuristic seeding of the pro-
gram with the sleep¼ synchronization primitive.

Using coverage to improve the seeding
technique

The seeding technique described in the previous sec-
tion produces good results in practice, but it also has
inherent limitations. The interleaving space is expo-
nential in the program length and the probability of
occurrence varies for different interleavings. Thus,
low probability faulty interleavings may be masked.
In this section we discuss how to overcome the lim-
itations of the seeding technique through coverage-
directed generating of interleavings.

Coverage analysis formally defines the concept of a
“good” set of tests. The purpose of coverage anal-
ysis is to direct the test sampling process to effec-
tively detect defects. In addition, coverage is used
to handle exponentially large spaces by covering
them with polynomial-sized partitions. A list of cov-
erage tasks (the testing requirements) is defined, with
each task corresponding to one element of the par-
tition. Each task should be exercised by some test
in the test set.

The result of a concurrent program depends on the
order in which different concurrent events are per-
formed. Thus, a test of a concurrent program is de-
termined by a program input and an interleaving.14

As described in the earlier section “Use scenario,”
ConTest is based on the assumption that the user
created a good test suite that covers the program in-
puts. The seeding technique is used to obtain addi-
tional tests by generating different interleavings for
a given input.

In the literature there are a number of coverage mod-
els for concurrent and distributed programs. Taylor
et al. generalize serial models by applying them to
the “execution graph” of the concurrent program.15

Yang et al. apply the define-use coverage criterion
to a generalized control graph of the parallel pro-
gram.16 Marick’s GCT (Generic Coverage Tool) “race
coverage” requires that if a method can be executed
by two threads simultaneously, this simultaneous ex-
ecution will in fact occur.17

We introduce two new coverage models to control
the way interleavings are generated. These models
satisfy several important requirements:

● The sampling is directly defined on the interleav-
ing space and is not a generalization of a sequen-
tial coverage criterion.

● The size of the model is polynomial in the number
of seeded primitives. We would like to create a hi-
erarchy of models of increasing size so that the test-
ing effort can be controlled.

● The coverage model is derived from a general de-
fect pattern (as in mutation coverage18).

● The information derived from the coverage model
can be used to improve the seeding technique.

A synchronized method is typically obtained in Java
by adding the synchronized keyword to a method’s
prototype. At run time, a lock is captured before a
synchronized method is executed, and released af-
terwards. A typical concurrent defect occurs when
the user does not notice that the method prototype
needs to be synchronized or drops the synchronized
keyword to improve performance. We attempt to
capture this defect pattern with the following two
coverage models.

Our first coverage model determines whether the ex-
ecution of each method was interrupted by a con-
text switch.19 There are two tasks for every method,
one that requires that the method be interrupted and
another that requires that it not be. This model con-
forms to the above list of requirements. As in state-
ment coverage, the number of tasks in this model is
linear in the length of the program and not propor-
tional to the number of interleavings, which is ex-
ponential. It is therefore feasible to attempt to cover
all the tasks in this model.

The test generation scheme that creates good cov-
erage for the first model is trivial; we use the seed-
ing technique to cause a context switch whenever we
are executing a method in which no context switch
occurred in past executions. If a context switch did
occur, we do not cause a thread switch. Thus, we in-
crease the probability of covering both tasks for each
method.

A second model determines if a method’s execution
was interrupted by any other method. A coverage
task of the form (method A, method B) is covered
if method A performed a context switch while exe-
cuting under thread D, and before control returned
to thread D method B was executed in a different
thread, F.

The size of the second coverage model is of order
O(n p n), where n is the number of methods in the
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program under test. As a result, this coverage model
is larger than the first. Nevertheless, it is still far from
exponential in the program length. This model is also
stronger than the first model. For example, in the
first model, we only check whether there was a con-

text switch that interfered with method execution,
whereas in the second and stronger model, we also
check the source of the context switch interference.

The test generation scheme that creates good cov-
erage for the second model is more complex. First
we create the task list (all possible pairs of methods).
At run time, assume that the program is currently
executing method M, that other threads are execut-
ing methods N, K, . . . , L, and that we are about
to decide whether or not to force a context switch.
We force a context switch if either ^M, N& or ^M,
K&, . . . , ^M, L& satisfy new coverage tasks or there
are uncovered coverage tasks starting with N or
K, . . . , L. This way every context switch will either
cover new tasks from the set {^M, N&, ^M, K&, . . . ,
^M, L&} or prepare the way for new tasks that start
with the methods {N or K, . . . , L} to be covered.
The decision to force a context switch is nondeter-
ministic; if there is a possibility of satisfying a new
coverage task, it is done with higher probability.

A method in main¼, executing before additional
threads are invoked, cannot be interrupted. As a re-
sult, coverage tasks that capture such a method in-
terference are uncoverable. Because the heuristics
for detecting such tasks are not directly related to
the main focus of this paper, they are omitted.

Experiments in the detection of concurrent
faults

In this section we show how our seeding technique
revealed concurrent faults in fault-injected and real-
life multithreaded Java programs. All of the exper-
iments, unless otherwise specified, were run under
a stable environment, a single processor, and IBM

Java version and run-time environment 1.3.0, with
the IBM Just-in-Time Compiler enabled. The oper-
ating system used was AIX*4.3 and the hardware plat-
form was RS6000*. In most cases, seeding the sleep¼
primitive found defects more often than the other
seeding options.

First experiment. The program under test creates
three threads. Each thread checks a global param-
eter, denoted First. If First is true, it changes it to false
and prints “race.” The fault occurs when a context
switch happens between the time that First is checked
and the time it is set to false. More than one thread
then determines that it is the first, and more than
one thread prints “race.”

This fault was never found in 1000 executions of the
unseeded program under test. Indeed, when the pro-
gram is not seeded, and there is no environmental
interference, each thread is completed before the next
thread starts. A timing diagram of the execution
might look like this:

Main – – – –
Thread1 – – – –
Thread2 – – – –
Thread3 – – – –
– – – – – – – – – – – – – – – – – – – – . time

The seeding technique will not only cause different
interleavings, such as thread 2 before 1, but also dif-
ferent execution times for the threads. For example,
the following interleaving may occur.

Main – – – –
Thread1 – – – – – – – – – – – –
Thread2 – – – – – – – – – – – – – – –
Thread3 – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – . time

The generated interleaving space is very sensitive to
whether sleep¼ or yield¼ are invoked at some con-
current event. A thread starts executing when its
start¼ method is invoked. It was observed that if
yield¼ was performed after a new thread instance
was created and before it started executing, control
was not likely to be transferred to the new thread.
On the other hand, if sleep¼ was performed after
a new thread instance was created and before it
started executing, control was likely to be transferred
to the new thread. ConTest (using sleep¼) found
faults in 200 out of 1000 runs. Using yield¼, three
faults were found in 1000 runs. This is explained by
the fact that threads are longer in the seeded pro-

In most experiments, seeding
with sleep( ) uncovered defects

more often than seeding with
yield( ) or priority( ) primitives.
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gram. In the original program, 1000 executions never
revealed the fault.

Second experiment. The program under test was cre-
ated by Sun to demonstrate a possible concurrent
defect.20 A description of the program follows.

The main¼ routine starts many threads of type
move_money¼. These threads are assigned high pri-
ority. move_money¼ repeatedly chooses two global
array locations, representing accounts, adds a ran-
dom amount to one location (account) and subtracts
the same amount from the other. main¼ then calls
check_sum¼, which checks the total amount of
money each user has. check_sum¼ is called a num-
ber of times.

A fault occurs if there is a thread switch in
move_money¼, and check_sum¼ is executed after
adding to one global array location (account) and
before subtracting from another.

We ran the tests 1000 times under three different
Java virtual machines. The results reported below
were independent of the particular machine being
used.

In the unseeded program we found the fault in about
40 percent of the runs. When running the program
seeded with sleep¼s, we found the faults in 85 per-
cent of the runs. The probability of revealing the fault
increased dramatically in this case.

In addition, we observe that check_sum¼ reports an
error if a context switch at a specific program loca-
tion occurred in at least one move_money¼ invoca-
tion. The probability of a correct run depends on all
the threads not switching at a particular program lo-
cation. If we assume there is a probability p that a
single thread does not switch, and that the threads
behave independently, then the probability of a cor-
rect run for n threads is p n for a single execution of
the check_sum¼ routine. The probability of a correct
execution is p nm for m such executions. The prob-
ability decreases rapidly as the number of threads
and the number of executions of check_sum¼ in-
crease.

To better emulate real-life conditions, we modified
the original program so that move_money¼ con-
tained busywork (a loop of empty writes). This
greatly reduced the probability that a thread switch
would occur at the “correct” location, that is, the one
that reveals the fault. Nonetheless, after this mod-

ification, faults were found 80 percent of the time
using ConTest. Faults were not found with the un-
seeded program, where the changes had also vastly
reduced the probability of a thread switch at the pre-
cise location that reveals the fault. On the other hand,
the probability of revealing the fault did not change
much in the seeded version of the modified program.
This was due to the correct placement of the seed-
ing primitives at concurrent events.

Third experiment. In this experiment there are a
number of threads that execute the following code:

class ChangeNotification implements Runnable{
static boolean notified 5 false;
public void run( ){

while(notified 5 5 false)
{Thread.currentThread( ).yield( );};

System.out.println(
“subject current value is:” 1
subject.currentValue¼);

}

public void changeNotification(Subject subject){
notified 5 true;
this.subject 5 subject;

}}

These threads wait until notified is true and print
subject.currentValue¼. However, if in the main thread
there is a thread switch after notified 5 true, then sub-
ject is not initialized (i.e., this.subject 5 subject is not
executed) and an exception occurs. In the original
code the fault was never observed (500 executions
with 2000 threads altogether). In the code seeded
with yield¼ or sleep¼ the fault was observed about
700 times in 2000 tests. The reason this fault does
not occur in the uninstrumented version is that the
main thread is short (relative to the scheduler time
slice); therefore, there is no thread switch after no-
tified 5 true. Here, however, yield¼ operates as well
as sleep¼, as all the threads are alive at this time.

Fourth experiment. In this experiment the program
being run creates n threads recursively. If control
shifts to a new thread immediately after it is created,
then the new thread looks for the received param-
eter in a hash table before the hash table entry is set
by the creating thread. This causes an exception
which is handled by the program. Interestingly, in
AIX version 4.3, when the main thread (i.e., the thread
that executes main¼) creates a new thread, the prob-
ability that control will immediately switch to this
thread is about one-third. When any thread other
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than the main thread creates a new thread, control
does not immediately shift to it. In Windows NT**,
the probability that the control will immediately shift
is very low (we have never seen it) for any thread,
including the main thread.

If the control shifts to the new thread as the threads
are created, then the program generates concurrent
Thread_Number threads. If control does not shift to
new threads, then only one thread at a time is cre-
ated. We find that we will rarely have more than one
thread in normal execution. We almost always have
one executing thread and one that is waiting for its
turn. The exact interleaving depends somewhat on
the hardware/software combination on which we ex-
ecute, but tends to be consistent for any such com-
bination. There are many possible behaviors, all sat-
isfying the Java thread behavior requirements.

If the seeded program executes a sleep¼ before pass-
ing the parameter to the new thread, control will al-
ways shift and an exception (the manifestation of a
defect in this program) will always be observed. If
a yield¼ is used by the seeded program, then con-
trol will shift most of the time. The reason for the
difference is that performing a yield¼ by the only run-
ning thread has no effect, while performing a sleep¼
by the only running thread introduces a delay and
might result in a context switch.

Each test was executed with main¼ starting ten
threads. We ran 1000 tests. Table 1 shows the num-
ber of times each depth (number of concurrent
threads) was reached. In the unseeded program there
was never more than one concurrent thread. The
faults in the unmodified program, when run on AIX
version 4.3, were always found in the transition be-
tween the main thread and the first created thread.
These faults were not found on NT using Sun’s Java
virtual machine.

This experiment shows that behavior of multi-
threaded programs greatly depends on the system

in which they are executed. If a ConTest-like tool
is used, the dependency can be reduced. The ram-
ifications of this will be discussed in the conclusions.

Dining philosophers and deadlock detection. Con-
Test is also useful for deadlock detection. To dem-
onstrate this, we have implemented the classical sym-
metric dining philosophers algorithm. The symmetry
of the algorithm may cause it to run into a deadlock.
While the deadlock did not occur when running the
symmetric dining philosophers algorithm without
ConTest for a quarter of an hour, it occurred almost
immediately every time it was run using the seeding
technique (seeding the program with sleep¼s). We
next describe the symmetric dining philosophers al-
gorithm and an interleaving that causes the dead-
lock. We explain why the seeding technique in-
creased the probability of deadlock detection.

The dining philosopher problem is described infor-
mally. There are n philosophers who sit around a
table and think. Between each pair of philosophers
there is a single fork. From time to time a philos-
opher gets hungry. In order to eat, the philosopher
requires exclusive use of two forks, the one to the
immediate right and the one to the immediate left.
After eating, the philosopher relinquishes the two
forks.

Each philosopher executes the same symmetric al-
gorithm. For example, each philosopher might at-
tempt to pick up the left fork. If successful, the phi-
losopher then picks up the right fork and eats. A
deadlock occurs if all of the philosophers pick up
their left fork and then attempt to pick up their right
fork. Because picking up a fork contains concurrent
events, the probability of executing a context switch
after the left fork is picked up is increased when ex-
ecuting the seeded program. As a result, the prob-
ability of observing the deadlock increases.

A real-life race condition defect. A crawler algorithm
is embedded in an IBM product. The crawler algo-

Table 1 Number of concurrent threads reached

Faults Depth
0 1 2 3 4

NT 370 10000 10000 0 0 0
yield 12 2764 6280 6068 3457 1098
sleep 0 5259 9037 4640 956 100
priority 6 7569 9223 2099 634 266
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rithm is implemented using a worker thread design
pattern (see Reference 21, pages 290–296). Thus,
the implementation uses synchronization primitives,
such as synchronized block, wait¼, and interrupt¼,
for worker and manager coordination. The worker’s
objective is to search for relevant information.

A skeleton of the crawler algorithm was tested. The
skeleton has 19 classes and 1200 lines of code. Al-
though the code skeleton has a small number of lines,
it is complicated by the worker and manager com-
munication protocol. In fact, worker threads wait for
connection, and the connection manager waits for
live connections in order to be released. (In both
cases the wait¼ primitive is performed.) A queue of
connections is handled by the manager. If the queue
is either full or empty, threads execute the wait¼
primitive. This causes threads to wait, until they are
interrupted by the manager. In addition, idle work-
ers are retrieved by the manager. Finally, access to
shared data structures by different workers is syn-
chronized so as to merge retrieved information in
a consistent way.

ConTest was able to find an unknown race condi-
tion defect in the algorithm within one hour of its
execution. The fault was a null pointer exception
(java.lang.NullPointerException). A description of the
defect follows. The finish¼ method of the Worker
class has the following line:

if(connection ! 5 null) connection.setStopFlag( );.

If the connection variable is not null and then a con-
text switch occurs, the connection variable might be
set to null by another thread. If this happens before
connection.setStopFlag¼ is executed, a null pointer
exception (java.lang.NullPointerException) is taken. To
fix this defect, the above statement should be exe-
cuted within an appropriate synchronized block.

Conclusions

The main contribution of this work is an effective
method for finding concurrent defects. The major
advantages of this method are, first, it does not re-
quire additional user involvement and, second, it
does not give false alarms if a correct functional test
is used.

This technology has great potential because it en-
ables the early detection of concurrent defects. In
addition, the technology can be adapted to work in

the distributed setting, using the replay algorithm de-
fined in Reference 22.

The technology embodied in ConTest is currently
applicable to functional and system testing. The main
requirement is that the test results can be verified
automatically. This usually applies to regression test-
ing and not to unit testing. Coupling the technology
with some tool that captures results and then replays
the test will enable the use of ConTest in unit test-
ing as well.

The seeding technique introduces additional context
switching, which degrades performance. Future work
should address this issue in system testing. In test-
ing small components this issue is less important.

In the future ConTest will be used to simulate ex-
ecution in various Java environments. Different en-
vironments interpret the Java thread semantics in
different ways (all of which are correct). If the test-
ing is done on one operating system, there is no guar-
antee that the application will work on another. Us-
ing ConTest, we can cause any program to behave
as if it is running on any given environment.

The seeding technique can be further improved by
creating interleavings that provide high coverage for
a multithreaded coverage model. We have imple-
mented, but not yet tested, a number of methods to
achieve this aim. One way to create interleavings that
provide high coverage is to use previously collected
coverage information15,23–25 in the interruption de-
cision.

The seeding technique can be further improved by
considering the history of previous interruption deci-
sions when arriving at the next one. Otherwise, if the
probability of interruption is high, the probability of
a long, uninterrupted run is very low. Consider a pro-
gram in which two threads are created, each having
100 concurrent events in which an interruption de-
cision is made. If the original program is run in a
stable environment, thread A will always run from
start to finish, after which thread B will run. In the
seeded program, if the probability of an interrup-
tion is kept reasonably high regardless of previous
interruption decisions, then the likelihood of the
original interleaving is practically nil. Yet the orig-
inal interleaving might be the one containing the
fault. Thus, not interrupting the program for a
lengthy stretch of execution may be the appropriate
course of action.
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Appendix A: Validity of the seeding
technique

In the section “Architecture” we claimed that an in-
terleaving obtained by the seeding technique is a pos-
sible interleaving of the original program. This claim
is trivial when the scheduler is not fair. Indeed, a Java
scheduler is not required to be fair. In this section
we prove that the interleaving obtained by the seed-
ing technique is a possible interleaving of the un-
instrumented program under some fair scheduler.
We prove this claim in a theoretical setting. We
choose sleep¼ as the primitive to be used by the seed-
ing technique because it was found to be most effec-
tive in detecting faults.

We start with some definitions. Informally, an asyn-
chronous shared memory system (Reference 13,
pages 237–241) consists of a finite collection of pro-
cesses that interact using a finite set of shared var-
iables. More precisely, an asynchronous shared mem-
ory system is a simple type of state machine, or
automation, in which the operations are associated
with named actions. The actions are classified as ei-
ther input, output, or internal. Input and output ac-
tions are used for communication with the autom-
aton’s environment. An I/O automaton is composed
of processes, each with a number of operations. Each
operation has a precondition on inputs and internal
variables, as well as an effect. Each effect may be ex-
ecuted whenever the precondition of that operation
is satisfied. Only one operation in a process is ex-
ecuted at a time.

For a given automaton A, a trace is a list of A’s op-
erations. The list can be either finite or infinite. An
execution of a trace (operation1, operation2, . . . ) un-
der an automaton A is a sequence of triples,

((beforeState1, operation1, afterState1),
(beforeState2, operation2, afterState2), . . .)

where operationi, i 5 1, 2, 3, . . . , is an operation, and
beforeStatei, afterStatei, i 5 1, 2, 3, . . . , are states. In
addition, the precondition of operationi is met in be-
foreStatei and the state that results from applying op-
erationi to beforeStatei is afterStatei. Finally, afterStatei

is the same state as beforeStatei11.

For a given execution

((beforeState1, operation1, afterState1),
(beforeState2, operation2, afterState2), . . . )

under automaton A, its corresponding trace is a list-
ing of the operations in the order of their executions,
i.e., (operation1, operation2, . . . ).

A trace a of an automaton A is said to be fair if the
following conditions hold for each process (Refer-
ence 13, pages 212–215):

● a represents an execution of A.
● If a 5 ((beforeState1, operation1, afterState1), . . . ,

(beforeStatek, operationk, afterStatek)) is finite, then
no operation is enabled in the final state of a
(afterStatek).

● If a is infinite, a’s execution contains, for a pro-
cess i, infinitely many operations or infinitely many
occurrences of states in which no operation is en-
abled.

According to this definition, a scheduler provides a
process with infinite opportunities to execute. When-
ever there is such an opportunity, the process exe-
cutes if it is enabled.

Given an automaton A with n processes, we model
the seeding technique by defining an automaton A9
as follows. For each process i, 1 # i # n, we define
an internal Boolean variable, sleepi, initialized to
false. For each of process i’s operations, j, we re-
place its precondition, prei,j, with the precondition
(¬sleepi ∧ prei,j). We call such an operation obtained
from A an original A operation.

For each process i, we add the operations Sleep and
Awake. Sleep and Awake model the intervention
caused by the seeding technique. The Sleep oper-
ation has the precondition

{(sleepi 5 false) `
~ (on all preconditions of operations in i)}

and the effect sleepi 5 true. Awake has the precondi-
tion sleepi 5 true and the following effect:

● sleepi 5 false
● Execute one of the original A operations that are

currently enabled.

A Sleep operation of process i disables all of the orig-
inal A operations in i. However, since Awake sets
sleepi to false, sleepi’s value does not disable orig-
inal A operations. Awake then ensures that at least
one of the original A operations is executed if there
is an original A operation enabled.
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To state our claim, we use the following construc-
tion. Given a trace a9 of a fair execution of A9, we
construct a new trace a as follows:

● We remove all the Sleep operations from a9.
● We remove from a9 all the Awake operations that

did not perform an original A operation during
(a9)’s execution.

● For every Awake operation in a9 that performed
an original A operation during (a9)’s execution,
we replace the Awake operation with that original
A operation.

Claim A.1 a is a trace of a fair execution of A.

By considering a fair trace a9 of A9, we model that
the instrumented program A9 is executed under a
fair scheduler. If the above claim is true, then a is
a fair trace of A. Thus, a could have been produced
by executing a on A using a fair scheduler, and a
defect identified by a9 is a defect of the original au-
tomaton A.

Proof: Let a9 be a fair trace of A9. Consider the trace
a obtained from a9 by removing all the Sleep op-
erations and replacing every Awake operation with
the original automaton operation performed during
its execution, if one existed. Clearly, a is a legal trace
of A, and if sleepi is disregarded, the execution of
a by A results in the same sequence of memory states
as the execution of a9 by A9.

We first assume that a9 is finite. A Sleep operation
that belongs to process i cannot be the last opera-
tion in a9, as it will set sleepi to true. As a result, the
Awake operation that belongs to process i becomes
enabled. This contradicts the fact that a9 is a fair ex-
ecution of A9.

Assume that the last operation of a9 is one of the
operations obtained from A, op, or Awake. From the
fairness of a9, we have that sleepi is false at the end
of the execution of a9; otherwise, Awake is enabled.
From the fairness of a9 we also have that no original
A operation is enabled at the end of the execution
of a9. As the memory state at the end of the exe-
cutions of a9 by A9 and a by A are the same when
sleepi is disregarded, process i’s operations in A are
also disabled at the end of a’s execution. Thus, a is
fair.

Consider next the case of an infinite trace. If the Sleep
operation of process i is executed, then Sleepi is set

to true. As a result, the Awake operation of process
i becomes the only enabled operation of this pro-
cess. Since a9 is fair, process i will eventually get a
chance to execute an enabled operation. As the only
enabled operation of process i at this stage is its
Awake operation, this operation will be executed. As
a result, every Sleep operation of process i that ap-
pears in a9 has a matching Awake operation of pro-
cess i that appears in a9, with no operation of pro-
cess i appearing between the Sleep and Awake
operations. We call such a pair of Sleep and Awake
operations a matching pair.

If the number of matching pairs for process i is fi-
nite, then there is an infinite suffix of a9, b9, that con-
tains no matching pairs of process i. We also denote
the matching suffix of a by b. Since a suffix of an in-
finite fair trace is fair, b9 is fair. As b9 has no match-
ing pairs, it is always the case that sleepi is false. Since
b9 is fair, either no operation from i was enabled in-
finitely many times in b9, or an operation of i was
executed infinitely many times in b9. Since sleepi is
false in b9 and the sequence of state changes is the
same in both b9 and b, either i is not enabled an in-
finite number of times in b or an i operation is ex-
ecuted an infinite number of times in b. Thus, as pro-
cess i was arbitrary, b is fair. We deduce that a is
fair.

Assume that the number of matching pairs for pro-
cess i is infinite. There are two cases to consider in
a matching pair’s Awake operation: either an orig-
inal A operation was executed by the Awake oper-
ation or it was not. First consider an Awake oper-
ation that did not execute an original A operation.
Since an Awake operation sets sleepi to false before
checking if an original A operation of process i was
enabled, no original operation will be enabled at
the current stage of execution in a. Next, consider
an Awake operation that executed an original A
operation. As Awake is replaced by the original A
operation and a9 is a legal trace, the original A op-
eration is still enabled at the current stage of a’s
execution. Thus, each matching pair of process i will
either contribute an enabled operation in a or in-
dicate a stage of the execution in which process i was
not enabled in a. An infinite number of such cases
exist. Thus, as process i was arbitrary, we deduce the
fairness of a from the fairness of a9.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
or Microsoft Corporation.
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