
Automated Support for Classifying Software Failure Reports

Andy Podgurski, David Leon, Patrick Francis,
Wes Masfi, Melinda Minch

Electrical Engineering & Computer Science Dept.
Case Western Reserve University

Cleveland, OH 44106
1-216-368-6884

andy@eecs, cwru. edu, dzl~po, cwru. edu,
paf9@po, cwru. edu, qds l @hotmai l. com

m lm 2 4@po. cwru. edu

Abstract

This paper proposes automated support for classi ying
reported software failures in order to facilitate
prioritizing them and diagnosing their causes. A
classification strategy is presented that involves the use
of supervised and unsupervised pattern classification and
multivariate visualization. These techniques are applied
to profiles o f failed executions in order to group together
failures with the same or similar causes. The resulting
classification is then used to assess the frequency and
severity o f failures caused by particular defects and to
help diagnose those defects. The results of applying the
proposed classification strategy to failures of three large
subject programs are reported. These results indicate
that the strategy can be effective.

1. Introduction

Some recent software products such as Netscape
Communicator, Mozilla, and Microsoft Visual
Studio.NET have the ability to detect certain of their own
runfime failures and, with the user's permission, report
these to the software's developer via the Internet. A
transmitted failure report includes information
characterizing the state of the software at the time the
failure was detected, which is intended to assist
developers in diagnosing the failure's cause. Some
applications, including the Visual Studio.NET beta
version, have a feature that allows a user to transmit a
failure report (bug report) to the developer whenever they
believe the application has behaved incorrectly, that is,
even if the application did not detect a failure itself. The
report typically contains the user's characterization of the

Jiayang Sun, Bin Wang
Statistics Department

Case Western Reserve University
Cleveland, OH 44106

1-216-368-0630

j i a y a n g @ ~ n , cwru. edu, bwang@laplace , cwru. edu

failure and may also contain information about the
application state. Such automated support for reporting
failures and collecting diagnostic information is a
significant advance in software development technology.
Traditionally, developers have relied upon users to report
software failures by email or telephone and to provide
detailed information about the conditions under which
they occurred so their cause could be diagnosed. Often,
however, users are unable to provide adequate
information even when they are questioned by support
personnel.

Although automated failure reporting and collection
of diagnostic information facilitates debugging, it is also
likely to exacerbate another problem encountered by
software developers: they often receive many more failure
reports than they have time to investigate thoroughly.
Developers attempt to classify and pfiofitize the failure
reports they receive, so they can address at least the most
significant ones. With automated problem reporting, the
number of failure reports received by developers seems
likely to increase dramatically. If so, manual
classification and pfiofitization of these reports may
become infeasible.

This paper proposes automated support for
classifying reported software failures so as to facilitate
pnofifizing them and diagnosing their causes. A
classification strategy is presented that involves the use of
supervised and unsupervised pattern classification ~ and
multivariate visualization. These techniques are applied
to execution profiles in order to group together reported
failures with closely related causes. Failures are initially

1 Supervised pattern elassitieafion techniques require a training set with
positive and negative instances of a pattern; unsupervised techniques do
not.

0-7695-1877-X/03 $17.00 © 2003 IEEE 465

classified before their cause is investigated manually.
Limited manual investigation may then be done to
confirm or, ff necessary, refine the initial classification.
The resulting classification is then used to assess the
operational frequency and severity of failures caused by
particular defects and to diagnose those defects. We
report the results of applying the proposed classification
strategy to failures of three large subject programs.
These results indicate that the strategy can be effective.

We now outline the remainder of the paper. Section
2 explains how classification of failures facilitates
maintenance. Section 3 outlines our strategy for
classifying failures. Sections 4-7 describe the phases of
the strategy in detail. Section 8 describes our
experimental results, Section 9 surveys related work.
Finally, conclusions and future work are presented in
Section 10.

2. How classification helps

(Note on terminology: We use the terms "software
failure'" and 'failure'" as synonyms for 'failed program
execution ".)

When software has many users it is common for
different users to report failures that are due to the same
defect, although this may not be obvious from the users'
descriptions of the failure. Thus, ff users report m
failures over some period during which the software is
executed n times in total, it is likely that these failures are
due to a substantially smaller number k of distinct
defects. Let F = {f , .~ fro} be the set of reported
failures. For simplicity, assume that all reported failures
are actual ones and that each failure is caused by just one
defect. Then F can be partitioned into k < m subsets F1,
F2 Fk such that all of the failures in Fi are caused by
the same defect di for 1 _< i _< k. We call this partition the
true failure classification. Knowledge about the true
failure classification is valuable to software developers
for the following reasons:
[] k is the number of defects responsible for reported

failures.

[]]F~l/n is an estimate of the frequency with which
defect di causes failures in the field.

[] The failures in Fi are the executions that are most
relevant to diagnosing the defect d~ and to determining
its severity.

[] To diagnose and repair d~, it should usually suffice to
investigate at most a few of the failures in F~ in detail.

Although in principle developers can determine the
true failure classification exactly by manually diagnosing
the cause of each failure ff, 1 _< i _< m, this may be

impractical, and it largely defeats the purpose of
prioritizing reported failures. Instead, we propose using
automatic classification and multivariate visualization
techniques to approximate the true failure classification
with much less human effort. The approximation is
unlikely to be exact, because of estimation error and
because the techniques we employ are based on
correlations that may or may not indicate causation.
Nevertheless, we hypothesize that even a rough
approximation to the true failure classification can be of
great practical value to developers. Moreover, it is
possible to refine the initial classification as more
information is obtained.

Classifying program crashes and aborts is an
important special case of the failure classification
problem that is typically easier to solve than the general
case, provided that information about the program state
just before each crash or abort, such as a call-stack trace,
is available. For example, in postings on the Mozilla
project [22] the fact that multiple crashes occurred at the
same instruction and with the same call stack is used as
evidence that the crashes have the same cause. 2 Note that
this paper addresses the more difficult general case of
failure classification, where a user may not realize that a
failure has occurred until well after the defective code
that caused it has executed.

3. Classification strategy

The basic strategy we present for approximating the
true failure classification has four phases:

1. The software is instrumented to collect and
transmit to the developer either execution
profiles or captured executions, and it is then
deployed. (Captured executions can be replayed
offiine to obtain whatever kind of profile is
desired [27].)

2. Execution profiles corresponding to reported
failures are combined with a random sample of
profiles of operational executions for which no
failures were reported. This set of profiles is
then analyzed to select a subset of all profile
features 3 (a projection) to use in grouping
related failures. The feature selection strategy is
to:

2 James Larus of Microsoft Research informed one of the authors
(Podgurski) that Microsoft Corporation internally uses automated
heuristics to classify crash reports produced by its products.

3 By a feature of an exe ution profile we mean an attribute or element of it.
For example, a fimction call profile contains an execution count for each
function in a program, and each count is a feature of the profile.

466

a. Generate candidate feature-sets and use
each one to create and train a pattern
classifier to distinguish failures Jhom
successful executions.

b. Select the features of the classifier that
performs best overall.

3. The profiles of reported failures are analyzed
using cluster analysis and/or multivariate
visualization techniques, in order to group
together failures whose profiles are similar with
respect to the features selected in phase (2).

4. The resulting classification of failures into
groups is explored in order to confirm it or, i f
necessary, refine it.

The result of approximating the true failure
classification using this strategy is a partition C = {G1,
G2 G~,} of F. We call C the approximate failure
classification. For it to be useful, all or most of the
groups G~ should contain all or mostly failures with
closely related causes.

Phases (1)-(4) of the classification strategy are
described in Sections 4-7, respectively.

4. Applicable forms of profiling

The kind of information that can be used in
automatically classifying arbitrary software failures is not
limited to the kind of information that is typically
considered in debugging, e.g., the value of the program
counter, the values of key variables, and the contents of
the call stack when a failure occurs. Any kind of
execution profile can be used that is potentially relevant
to the occurrence of failures and that can be collected
from the field without inconveniencing users unduly.
This includes both generic and application-specific
profiles characterizing such aspects of a program's
execution as its control flow, data flow, input values and
other variable values, and event sequences. For example,
profiles might include execution counts for basic blocks,
conditional branches, functions, definition-use chains, or
state transitions. Profiles can be augmented with
information obtained from users when they reported
failures, e.g., by having them complete a form.

Both the causes of failures and their effects are
relevant to classifying them, and hence the form of
profiling should be chosen to reflect both ff possible.
Since failures often involve small parts of a large
program, profiles should generally be as detailed (fine-
grained) as possible, considering profiling overhead and
analysis costs. Coarse-grained profiles are unlikely to
distinguish between different defects in the same
fragment of code.

5. Feature Selection

The second phase in our strategy for approximating
the true failure classification involves selecting a subset
of all profile features to use in grouping failures. This
step is necessary because execution profiles typically have
thousands of features, many of which are not relevant to
the occurrence of failures. For example, a profile might
contain an execution count for each basic block in a large
program. We hypothesize that the profile features that
are most relevant to classiJj, ing failures according to
their causes are the features that are most useful for
distinguishing reported failures Jhom successful
executions.
The approach to feature selection used in the

experiments reported in Section 8.1.2 is a modification of
the probabilistic wrapper method of Liu and Setiono
[21]. 4 Random sets of features of given size are
generated iteratively. Each set of features and one part of
the profile data is used to train a classifier. The
misclassification rate of each classifier is estimated using
another part of the profile data, and the features used by
the classifier with the smallest estimated
misclassification rate are chosen for use in phase (3) of
our classification strategy.

Many types of statistically-based classifiers have
been developed by researchers [6][9]. This paper does
not address the issue of which of these types of classifiers
is best suited to classifying program failures. Its goal is
to provide evidence that some classifiers are useful for
this purpose. Hence, in the experiments reported in
Section 8, we employ a widely-used but relatively simple
type of classifier: logistic regression models. Binary
logistic regression is a type of statistical regression in
which the dependent variable Y represents one of two
possible outcomes or responses, such as failure or success
in the case of a program execution [9]. In logistic
regression, the expected value E(Y I x) of Y given the
vector of predictor values x = (x~, x2 xp) is 7t(x) = P(Y
= 1 I x). The conditional probability n(x) is modeled by

eg(x)
~r(x) -

l + e g (x)

where the log odds ratio or logit g(x) defined by

g(x)= 1 - ~ =/~o +,Olx~ +...+/~xp

is a linear function of x. Each coefficient represents the
change in log odds of the response per unit change in the

4 Ill the wrapper approach to feature selection, candidate feature sets are
evaluated by using them to train classifiers, whose miselassification rates
are estimated.

467

corresponding predictor. When logistic regression is
used for classification, the coefficients of g(x) are
estimated from a sample of x and Y values to obtain an
estimator ~(x) for g(x). The outcome for input x is
classified as a 1 ffan only ff ~(x) > 0, that is, ffand only
ff the estimated odds of a 1 exceed the estimated odds of
a 0 .

6. Grouping related failures

We consider two alternative approaches to grouping
related failures in phase (3) of our classification strategy.
The first approach calls for applying automatic cluster
analysis 5 to the sub-profiles induced by the profile
features selected in phase (2). The second approach
involves applying a multivariate visualization technique
such as multidimensional scaling to the aforementioned
sub-profiles to produce a two-dimensional scatter plot
display representing the similarity or dissimilarity of the
sub-profiles to each other. This display is then inspected
and clusters are identified visually. 6

6.1 Automatic cluster analysis

Ideally, the process of grouping failures according to
their likely causes would be fully automated. This
suggests applying automated cluster analysis [8] to the
sub-profiles induced by the profile features selected in
phase (2) of our classification strategy. Cluster analysis
algorithms identify clusters among a set of objects
according to the similarity or dissimilarity of their feature
vectors, as measured by a dissimilarity metric such as d-
dimensional Euclidean distance or Manhaaan distance.
Roughly speaking, objects that are more similar to one
another than to other objects are placed in the same
cluster. In order to automatically group failures
according to their causes, it is necessary to estimate the
number of clusters among them. Although many
approaches to finding the "best" number of clusters in a
population have been proposed (see [8] for examples), the
problem is quite difficult, because there are often several
"reasonable" ways to cluster the same population.
Hence, we have concluded that it is unwise to depend
solely on automatic cluster analysis to group reported
failures according to their likely causes. We propose
instead that cluster analysis be used together with other
techniques, such as multivariate visualization.

5 Cluster analysis is an example o funsuper~sed learning.

6 Note that ff profiles of suecessfid executions are unavailable clustering
can be done based on all profile features, at the cost of some precision.

One widely used measure of the goodness of a
clustering into c clusters, which we employ in Section 8,
is the index due to Calinski and Harabasz [3]:

B/(c - 1)
CH(c) =

W / (n - c)

where B is the total between-cluster sum of squared
distances, W is the total within-cluster sum of squared
distances from the cluster centroids, and n is the number
of objects in the population. To use CH(c), its value is
plotted for c = 2, 3 n, and local maxima are
considered as alternative estimates of the number of
clusters.

6.2 Multivariate visualization

Multivariate visualization methods such as
multidimensional scaling (MDS) represent a set of objects
characterized by dissimilarity or similarity measurements
as points in a low dimensional space such as a two-
dimensional display [2]. A two-dimensional display
produced with MDS is a kind of scatter plot. The points
are positioned so that the distance between each pair of
points approximates the dissimilarity between the
corresponding objects. An arbitrary dissimilarity matrix
can be input to multidimensional scaling, so it can be
used with a variety of dissimilarity metrics.

We propose that multidimensional scaling be used to
display the sub-profiles induced by the profile features
selected in phase (2) of our classification strategy, so that
groups of related failures can be identified by visual
inspection of the resulting scatter plot. We hypothesize
that apparent clusters of points in the display will often
correspond to such groups of failures. With
visualization, users can judge themselves which failures
are most closely related, rather than relying on a fixed
clustering criterion as in automatic cluster analysis. A
drawback of visualization for this purpose is that in
projecting high dimensional data onto just two
dimensions, small dissimilarities may be poorly
represented in the display. Approaches to addressing this
issue are presented in [19]. To better distinguish
individual clusters, automatic cluster analysis should be
used together with visualization. Clusters found
automatically can be highlighted in an MDS display,
e.g., by coloring their points or drawing their convex
hulls.

We have developed a visualization tool that supports
MDS of large sets of execution profiles and provides
features useful for classifying failures, including ones for:
selecting a group of points in the display and determining
the corresponding executions; magnifying regions of the

468

display; and highlighting specified sets of points such as
clusters.

7. Confirming or refining the initial
classification

Given an initial approximation to the true failure
classification, a software developer might choose to use it
"as is" for the purpose of pfioritizing reported failures.
However, it is prudent to do some additional work to
confirm or, ff necessary, refine the initial classification.
This can be done by:

1. Selecting a few failures (two or more) from each
group of failures.

2. Attempting to determine ff the failures selected
from a group actually have closely related
causes, using conventional debugging
techniques.

3. Attempting to determine ff similar groups
contain failures with the same cause.

Step (2) is especially important with clusters that are
elongated or are "loose", because such clusters have high
internal dissimilarity. If all of the failures selected from
a group turn out to have closely related causes, this is
further evidence that all or most of the failures in the
group do. Otherwise the initial classification should be
refined. Step (3) is applicable to neighboring clusters.

One criterion for deciding which failures to select
from a group is that ones with maximally dissimilar
profiles should be chosen. For example, one might select
one failure from each end of an elongated cluster. Such
failures can be selected automatically or by inspection of
a scatter plot display. If the selected failures have the
same or similar causes, one might conclude that all of the
failures between them in the cluster do also. If they have
dissimilar causes, one should seek a good place to split
the cluster into two or more pieces.

8. Experimental validation

In order to evaluate the effectiveness of our
classification strategy, we implemented its first three
phases with three large subject programs. Automatic
cluster analysis was used to classify failures, and the
resulting clusters were then examined manually. To be
thorough, we examined all or most of the failures in each
cluster rather than sampling just a few failures from each
cluster as described in Section 7.

8.1 Experimental methodology

8.1.1 Subject Programs, Inputs, and Profiles. The
three subject programs for this study were all compilers:
the GCC compiler for C [7] and the Jikes [15] andjavac
[14] Java compilers. These programs were chosen for
several reasons: they are large; they can be executed
repeatedly with a script; source code for a number of
versions is available; and self-validating test suites are
available for them. Unfortunately, we did not have
access to failure reports from ordinary users. Instead, our
classification strategy was applied to the failures detected
by self-validating tests.

Version 2.95.2 (Debian GNU/Linux) of the GCC
compiler for C was used. Only the C compiler proper was
profiled. The compiler was executed on a subset of the
regression test suite for GCC, consisting" of tests that
actually execute compiled code. These came from the
test suite shipped with GCC 3.0.2, which included tests
for defects still present in version 2.95.2. GCC was
executed on 3333 tests and failed 136 times. Version
1.15 ofJikes andjavac build 1.3.1 02-b02 were executed
on the Jacks test suite (as of 2/15/02) [11], which tests
adherence to the Java Language Specification [12]. Jikes
was executed on 3149 tests and failed 225 times; javac
was executed on 3140 tests and failed 233 times. Note
that the Jacks test suite contains tests that are specific to
the Jikes andjavac compilers. GCC and Jikes, which are
written in C and C++ respectively, were profiled using
the GNU test coverage profiler Gcov, which is distributed
with GCC. To profile javac, which is written in Java, a
simple profiler was written by using the Java Virtual
Machine Profiling Interface [13]. For each test t of one
of the subject programs, the generated profile consisted of
a vector of counts, with one count per function in the
program. The count for each function f indicated how
many times f w a s executed during test t. Note that GCC
had 2214 functions, Jikes had 3644 functions, andjavac
had 1554 functions.

8.1.2 Feature Selection. Phase (2) of our classification
strategy was implemented using the S-PLUS 6 statistical
computing environment [26]. Logistic regression (LR)
models were used as classifiers. These were
implemented using the S-PLUS function glm. An S
language program was written to iteratively generate
400-500 candidate models per data set and to fit and
evaluate them. Each model included 500 randomly
selected features. 7 The S program output the best model

7 The number of candidate models generated and the number of features
used were selected based on preliminary experiments. They represent a
tradeoffbetween classifier performance and total training time.

469

of a given type. To avoid underestimating the
misclassification rate of models, the original set of
profiles for each subject program was randomly
partitioned into three subsets (Train, TestA, and TestB)
comprising 50%, 25%, and 25% of the original set,
respectively. The profiles in Train were used to train
candidate models; those in TestA were used to pick the
best model (i.e., for model validation); those in TestB
were used to produce a final estimate of the best model's
misclassffication rate.

The measure used to pick the best model was the
average of the percentage of mlsclassified failures and
the percentage of misclassified successes. This measure
gives more weight to the misclassification of failures than
does the overall misclassifieation rate. For each of the
data sets (GCC, javac, and Jikes), the final logistic
regression model correctly classified at least 72% of
failures and at least 91% of successes. It is notable that
S-PLUS reported that a substantial number of selected
features were not used in the fitted logistic regression
models, because they were linearly dependent on other
features. We did not use 'those features for clustering or
visualization either.

8.1.3 Cluster Analysis. To group failures together
automatically, we used the S-PLUS cluster analysis
algorithm clara, which is based on the k-medoids
clustering criterion [18]. To estimate the number of
clusters in the data, the Calinski-Harabasz index CH(c)
was plotted for 2 _< c _< 50 and its local maxima were
examined.

8.1.4 Visualization. For each subject program, the sub-
profiles induced by the features of the best classification
model were displayed using the hierarchical MDS
(HMDS) algorithm described in [19]. This algorithm
was designed to minimize the error in representing small
dissimilarities between execution profiles.

8.1.5 Manual Examination of Failures. In many cases,
we were able to diagnose the specific cause of a group of
failures. In other cases, this was not possible, but other
evidence was found that certain failures had the same
cause. The nature of such evidence varied with the
subject program. The GCC failures were manually
classified by exploiting the organization of the GCC test
suite and information about later versions of the
compiler. Each execution test in the GCC test suite
involves compiling a simple source file and executing the
resulting program. For each source file, multiple tests
are run, each with a different optimization level as some
defects are triggered only at certain optimization levels.
Since each source file is designed to reveal a specific

Table 1. Comparison of automatic clustering
and manual classification for GCC data set.

Number % size of largest group Total failures

of of failures in cluster with (136)
clusters

same cause

21 100 77 (57%)

1 83 6 (4%)

3 75,75, 71 23 (17%)

1 60 5 (4%)

1 24 25 (18%)

defect, we evaluated our automatic classification strategy
with respect to whether it grouped together multiple
failures corresponding to the same source file. We also
checked manually whether different source files triggered
the same defect.

For 12 of the 29 source files associated with GCC
failures, we were able to identify bug fixes in later
versions of the compiler that prevent the failures the files
induce, and we verified that each fix worked when
applied to the version under test (2.95.2). The remaining
GCC failures were classified by determining when the
corresponding test case stopped failing. For example, if
test A is fixed in the CVS version as of January 2000 and
test B keeps failing until July 2001, then we have reason
to believe that they failed because of different defects.
This required checking out, building, and testing enough
versions of the compiler to separate most tests, but it was
still less time-consuming than finding and porting
specific bug fixes. Because of the possibility of
regression defects introduced by changes to the compiler,
the resulting classification is not certain, but we believe it
is a good approximation. Only 3 pairs of source files
were found to induce failures caused by the same defect.
Thus, the GCC failures were apparently caused by 26
different defects.

The automatic clusterings of the javac 1.3.1 and
Jikes 1.15 failures were examined manually in two
stages. In the first stage, the failures in each cluster were
examined to see if they actually had the same cause. In
cases where the failures in a cluster had different causes,
we were often able to identify sub-clusters consisting of
failures with the same cause. In the second phase, the
groups of related failures identified in the first phase
were displayed using hierarchical MDS, and overlapping
groups were examined manually to determine if the
failures they contained actually had the same cause.

In order to determine ff differentjavac 1.3.1 failures
had the same cause, the following activities were

470

l

D

Figure 1. HMDS display of the GCC failure
profiles after feature selection. Convex hulls

indicate results of automatic clustering into 27
clusters.

attempted in the order listed until one of them succeeded,
although activity (5) was always conducted:

1. Debuggingjavac 1.3.1. The causes of many of
the javac 1.3.1 failures were diagnosed using
conventional debugging techniques.

2. Comparing the javac 1.3.1 andjavac 1.4 code
bases. A few of the tests that causedjavac 1.3.1
to fail were found to succeed with javac 1.4 due
to identified bug fixes.

3. Examining error codes. It was found that the
input files corresponding to many of the javac
1.3.1 failures formed groups: the files in each
group were erroneously accepted by javac 1.3.1
but were rejected by javac 1.4 with the same
error code.

4. Inspecting failure-causing source files. It was

Figure 3. HMDS display of the GCC failure
profiles before feature selection. Convex hulls

indicate failures involving same defect.

Figure 2. HMDS display of the GCC failure
profiles after feature selection. Convex hulls

indicate failures involving same defect.

found that many of javac 1.3.1 failures were
caused by language constructs present in
multiple source files.

5. Checking the association between tests and Java
Language Specification sections. Some of the
javac 1.3.1 failures were classified based on the
fact that they involved tests of a language rule
described in a particular JLS section.

To determine if different Jikes 1.15 failures had the
same cause, the same five activities were attempted, with
versions 1.15 and 1.16 of Jikes used in place of versions
1.3.1 and 1.4 ofjavac. Most groups of related failures
were identified using activity (1) or activity (3).

8.2 Results

8.2.1 GCC. The GCC failures were automatically
clustered into 27 clusters, as suggested by the Calinski-
Harabasz index. The failures in each cluster were
analyzed manually to determine the percentage size of
the largest subgroup with the same apparent cause. The
results are summarized in Table 1. Most of the clusters
were comprised of failures caused by the same defect.
Five clusters, of sizes between 5 and 8, contained failures
caused by two different defects. One cluster, however,
contained 25 failures caused by 7 different defects.
Overall, in 26 of the 27 automatically generated clusters,
the majority of failures appear to have the same cause.
Figure 1 shows a hierarchical MDS display of the GCC
failures, calculated using the profile features selected in
phase (2) of our classification strategy. Convex hulls
indicate the results of automatic clustering.

Figure 2 is another HMDS display of the GCC
failures, in which convex hulls are drawn around each

471

Table 2. Results of manual examination of
automatic clustering forjavac data set.

Number of
clusters

% size of largest group

of failures in cluster with

same cause

Total

failures
(232)

9 100 70 (30%)

5 88, 85, 85, 85, 83 64 (28%)

4 75, 67, 67, 57 49 (21%)

2 50, 50 20 (9%)

l i 17 23 (10%)

Table 3. Results of manual examination of
automatic clustering for Jikes data set.

Number of % size of largest group Total

clusters of failures in cluster with failures

same cause (225)

12 100 64 (29%)

5 85, 83, 80, 75, 75 41 (18%)

4 70, 67, 67, 56 25 (11%)

8 50, 50, 50, 43, 41, 33, 76 (34%)
33, 25

group of failures that manual analysis indicated were
caused by the same defect. In this display, groups of
failures corresponding to particular defects are well
separated, suggesting that visual classification of failures
is likely to be successful. Comparing Figure 1 to Figure
2 confirms that automatic clustering tended to group
together failures with the same cause. However, these
figures also indicate that automatic clustering
erroneously split some groups of failures with the same
cause. Of these 26 groups of failures, 5 had their failures
split across two clusters, 2 had their failures split across 3
clusters, and one more was split across 4 clusters.

Figure 3 is an HMDS display of the GCC failures
that was calculated using all profile features. As in
Figure 2, convex hulls are drawn around each group of
failures that manual analysis indicated were caused by
the same defect. There is much more overlap of these
convex hulls than in Figure 2. It turns out that Figure 3
overemphasizes the effect of optimization levels. For
each source file, high optimization tests are placed to the
left of the display, while low optimization tests are on the

right. The difference between Figures 2 and 3 illustrates
the importance of feature selection in our classification
strategy.

8.2.2 javac. The javac failures were automatically
clustered into 26 clusters. The failures in each cluster
were examined manually to determine the percentage
size of the largest subgroup with the same apparent
cause. Table 2 summarizes the results for different
groups of clusters comprising 21 clusters. (The
remaining 5 clusters comprised 4 singletons and 1 cluster
of size 2 whose elements could not be classified
decisively.) Overall, in 22 of 26 automatically generated
clusters (85%), a majority of failures had the same cause.
Note that two large clusters formed by automatic
clustering were found to be heterogeneous. Manual
analysis revealed that both clusters had several sub-
clusters, each consisting of failures with the same
apparent cause.

Figure 4 is a hierarchical MDS display of the javac
1.3.1 failures. Convex hulls have been drawn around

" , . I

........ • : t ' . . , , , " ." i"

/Z ~ " I
Figure 4. HMDS display of thejavac failures. Figure 8. HMDS d~splay of the Jikes failures.
Convex hulls indicate the results of manual Convex hulls indicate the results of manual

classification, classification.

472

groups of failures that manual classification indicated
have the same cause. Some of the convex hulls are
compact and well separated from others, but some are
elongated or overlap. Automatic clustering performed
well in identifying the groups of failures whose convex
hulls were well separated from those of other groups,
even when they were elongated. It is unlikely that the
elongated clusters would be identified by inspection of
the HMDS display, although sub-clusters would. The
groups of failures in the upper right quadrant of Figure 4
whose convex hulls overlapped noticeably were subject to
further manual analysis. It was found that the failures in
the overlapping groups actually had the same cause.
Automatic clustering erroneously split those groups.

8.2.3Jikes. The Jikes failures were automatically
clustered into 42 clusters. The failures in each cluster
were analyzed manually to determine the percentage size
of the largest subgroup with the same apparent cause.
Table 3 summarizes the results for 29 of the 42 total
clusters. (The remaining 13 clusters comprised 9
singletons and 4 clusters whose elements could not be
classified decisively.) Overall, in 30 of 42 automatically
generated clusters (71%), the majority of failures appear
to have the same cause.

Figure 5 is a hierarchical MDS display of the ,likes
1.15 failures. Convex hulls have been drawn around
groups of failures that manual classification indicated
have the same cause. As with the HMDS display of the
javac failures, some of the convex hulls are compact and
well separated from others, but some are elongated or
overlap. Automatic clustering again did a good job of
clustering the groups of failures whose convex hulls were
well separated from those of other groups, even when the
convex hulls were elongated. The groups of failures in
the top left quadrant of Figure 5 whose convex hulls
overlap were subjected to further manual analysis, which
revealed that the failures in those groups had the same
cause. This was also true of one of the pairs of
overlapping groups in the top right quadrant of Figure 5.

8.3 Summary

In most of the clusters created by automatic clustering, a
majority of failures appeared to have the same cause.
However, automatic clustering created a few large, non-
homogeneous clusters with sub-clusters consisting of
failures with the same cause. The sub-clusters were
evident in the corresponding HMDS displays. In other
cases automatic clustering erroneously split groups of
failures with the same cause, but the HMDS displays did
not provide clear evidence that these groups were
homogeneous. Overall, groups of failures with the same

cause tended to form fairly cohesive clusters in the
HMDS displays. Small, tight clusters in the displays
were quite likely to contain failures with the same cause,
although they were not always maximal.

8.4 Threats to Validity

All o f the subject programs used were compilers.
Therefore, it is possible that our results may not
generalize to other types of software. Also, hand crafted
test inputs were used rather than operational inputs. Test
inputs like those in the GCC and Jacks test suites are
generally smaller than typical compiler inputs and so the
corresponding profiles may be less "noisy" than profiles
of operational inputs would be) Additional evaluation of
the classification strategy is necessary, especially with
different kinds of software and with actual failure reports
from users.

9. R E L A T E D W O R K

Several previous papers have addressed issues
closely related to failure classification and prioritization.
Agrawal, et al describe the zSlice tool, which analyzes
system tests to facilitate location of defects [1]. zSlice
visually highlights differences between the execution
slice of a test that induces a failure and the slice of a test
that does not. Reps, et al investigate the use of a type of
execution profile called a path spectrum for discovering
Year 2000 problems and other kinds of defects [25].
Their approach involves varying one element of a
program's input between executions and analyzing the
resulting spectral differences to identify paths along
which control diverges. Jones, et al describe a tool for
defect localization called Tarantula, which uses color to
visually map the participation of each statement in a
program in the outcome of executing the program on a
test suite [16].

Hildebrandt and Zeller describe a delta debugging
algorithm that generalizes and simplifies failure-
inducing input to produce a minimal test case that causes
a failure [10]. Their algorithm, which can be viewed as a
feature-selection algorithm, is applicable to failure
classification in the case that failure-causing inputs
reported by different users simplify to the same minimal
failure-causing input. Note that Hildebrandt and Zeller's
approach requires an automated means of detecting
whether a simplified input causes the same kind of
failure as the original input.

8 On the other hand, operational inputs may tend to form more cohesive
groups, which would aid our strategy.

473

Podgurski, et al used cluster analysis of profiles and
stratified random sampling to improve the accuracy of
software reliability estimates [24]. Leon, et al describe
several applications of multivariate visualization in
observation-based (software) testing, including analyzing
synthetic test suites, filtering operational tests and
regression tests, comparing test suites, and assessing bug
reports [20]. Dickinson, et al present a technique called
cluster filtering for filtering test cases [4][5]. This
technique involves clustering profiles of test executions
and sampling from the resulting clusters. They present
experimental evidence that cluster filtering is effective
for finding failures when unusual executions are favored
for selection. Note that the aforementioned work on
observation-based testing differs from the work reported
here in three main respects:
[] The goal of the previous work was to identify

possible failures in set of mostly successful executions.
The goal of the current work is to identify groups of
failures with closely related causes among a set of
reported failures.

[] The previous work did not involve user feedback; the
current work depends upon failure reports from users.

[] The previous work applied unsupervised pattern
classification techniques to complete program profiles.
The current work uses supervised pattern classification
techniques to select relevant profile features prior to
clustering or visualization.

Finally, Julisch and Dacier demonstrated that a form of
conceptual clustering is effective for grouping similar
alarms from intrusion detection systems (IDS) [17]. We
note that IDS alarms are typically generated by matching
intrusion signatures, hence the attack type is at least
partially known. Alarms typically have many fewer
features than execution profiles do, and most features of
alarms are relevant to classifying them. In many cases,
relatively few features of an execution profile are relevant
to classifying a particular type of failure or attack. Thus,
dimensionality reduction is a much more critical issue in
clustering profiles than it is in clustering alarms. On the
other hand, our approach may be useful for classifying
profiles of intrusions reported by anomaly detection
systems [23].

10. C O N C L U S I O N S

The results of applying our classification strategy to
GCC, Jikes, and javac suggest that the strategy is
effective and scales to large programs, although this must
be confirmed with other subject programs of different
types. It is especially notable that the strategy performed

well with a relatively simple type of classifier and with
coarse-gained execution profiles; it may perform even
better with more powerful classifiers and more detailed
profiles. It is especially important to evaluate our
strategy with deployed software and with failure reports
from users. Other basic issues to be resolved in future
work include the best choices of methods for profiling,
classification, clustering, and visualization and the best
way to integrate these methods during failure
classification. Finally, we note that our approach may be
useful for classifying computer intrusions reported by
anomaly detection systems.

11. A C K N O W L E D G E M E N T S

This work was supported by National Science Foundation
award CCR-0098325 to Case Western Reserve
University.

12. REFERENCES

[1] Agrawal, H., Horgan, J.J., London, S., and Wong, W.E.
Fault location using execution slices and dataflow tests.
6 th IEEE Intl. Syrup. on Software Reliability Engineering
(Toulouse, France, October 1995), 143-151.

[2] Borg, I. and Groenen, P. Modem Multidimensional
Scaling: Theory and Applications. Springer-Verlag, New
York, 1997.

[3] Calinski, R.B. and Harabasz, J. A dendrite method for
cluster analysis. Communications in Statistics 3, 1-27.

[4] Dickinson, W., Leon, D., and Podgurski, A. Finding
failures by cluster analysis of execution profiles. 23 ra Int.
Conf. on Software Engineering (Toronto, May 2001), 339-
348.

[5] Dickinson, W., Leon, D., and Podgurski, A. Pursuing
failure: the distribution of program failures in a profile
space. 10 th European Software Engineering Conf. and 9th
ACM SIGSOFT Syrup. on the Foundations of Software
Engineering (Vienna, September 2001), ACM Press, 246-
255.

[6] Duda, R.O., Hart, P.E., and Stork, D.G. Pattern
Classification, 2 nd edition. Wiley, New York, 2001.

[7] GCC. The GCC Home Page,
www.gnu.org/software/gcc/gcc.html, Free Software
Foundation, 2002.

[8] Gordon, A.D. Classification. Chapman and Hall/CRC,
Boca Raton, 1999.

[9] Hastie, T., Tibishirani, R., and Friedman, J. The
Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer-Verlag, New York, 2001.

474

[10] Hildebrandt, R. and Zeller, A. Simplifying failure-
inducing input. 2000 Intl. Syrup. on Software Testing and
Analysis (Portland, August 2000), ACM Press, 135-145.

[11] Jacks, International Business Machines Corporation, Jacks
Project, www.ibm.com/developerworks/oss/cvs/j acks/,
2002.

[12] Java Language Specification, Sun Microsystems, Inc.,
java. sun. corn/does/book s/j 1 s/second_edition/html/j, title, do
c.html, 2000.

[13] JavaTM Virtual Machine Profiler Interface (JVMPI).
http://j ava. sun.com/j 2se/1.3/docs/guide/j vmpi/j vmpi.html,
2001.

[14] Javac, Sun Microsystems Inc., Java TM 2 Platform, Standard
Edition, java.sun.com/j2se/1.3/, 1995 - 2002

[15] Jikes, IBM develeperWorks, www- 124. ibm. corn/
developerworks/opensource/jikes/, 2002.

[16] Jones, J.A., Harrold, M.J., and Stasko, J. Visualization of
test information to assist fault localization. 24 th
International Conference on Software Engineering
(Orlando, May 2002).

[17] Julisch, K. and Dacier, M.. Mining intrusion detection
alarms for actionable knowledge. 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (Edmonton, Alberta, July 2002).

[18] Kaufman, L. and P.J. Rousseeuw. Finding Groups in
Data. John Wiley & Sons, New York, 1990.

[19] Leon, D., Podgurski, A., and Dickinson, W. Visualizing
distances between executions. Technical Report #02-12,
EECS Dept., Case Western Reserve University.

[20] Leon, D., Podgurski, A., and White, L.J. Multivariate
visualization in observation-based testing. 22 nd Intl. Conf.
on Software Engineering (Limerick, Ireland, June 2000),
ACM Press, 116-125.

[21] Liu, H. and Setiono, R. Feature selection and
classification: A probabilistic wrapper approach. 9 th Intl.
Conf. on Industrial and Engineering Applications of Al
and ES, 1996, 284-292.

[22] The Mozilla Project, www.mozilla.org.

[23]Noel, S., Wijesekera, D., and Youman, C.. Modern
intrusion detection, data mining, and degrees of attack
guilt. Applications of Data Mining in Computer Security,
edited by D. Barbar'a and S. Jajodia, Kluwer Academic
Publishers, 2002.

[24] Podgurski, A., Masfi, W., McCleese, Y., Wolff, F.G., and
Yang, C. Estimation of software reliability by stratified
sampling. ACM Trans. on Software Engineering and
Methodology 8, 9 (July 1999), 263-283.

[25] Reps, T., Ball, T., Das, M., and Larus, J. The use of
program profiling for software maintenance with
applications to the Year 2000 Problem. 6th European
Software Engineering Conf. and 5th ACM SIGSOFT
Syrup. on the Foundations of Software Engineering
(Zurich, September 1997), ACM Press, 432-449.

[26] S-PLUS 6 statistical software, www.insightful.com.

[27] Steven, J., Chandra, P., Fleck, B., and Podgurski, A.
jRapture: a capture/replay tool for observation-based
testing. 2000 Intl. Syrup. on Software Testing & Analysis
(Portland, Oregon, August 2000), ACM Press, 158-167.

475

