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Abstract 

This paper proposes automated support for classi ying 
reported software failures in order to facilitate 
prioritizing them and diagnosing their causes. A 
classification strategy is presented that involves the use 
of  supervised and unsupervised pattern classification and 
multivariate visualization. These techniques are applied 
to profiles o f failed executions in order to group together 
failures with the same or similar causes. The resulting 
classification is then used to assess the frequency and 
severity o f failures caused by particular defects and to 
help diagnose those defects. The results of  applying the 
proposed classification strategy to failures of  three large 
subject programs are reported. These results indicate 
that the strategy can be effective. 

1. Introduction 

Some recent software products such as Netscape 
Communicator, Mozilla, and Microsoft Visual 
Studio.NET have the ability to detect certain of their own 
runfime failures and, with the user's permission, report 
these to the software's developer via the Internet. A 
transmitted failure report includes information 
characterizing the state of the software at the time the 
failure was detected, which is intended to assist 
developers in diagnosing the failure's cause. Some 
applications, including the Visual Studio.NET beta 
version, have a feature that allows a user to transmit a 
failure report (bug report) to the developer whenever they 
believe the application has behaved incorrectly, that is, 
even if the application did not detect a failure itself. The 
report typically contains the user's characterization of the 
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failure and may also contain information about the 
application state. Such automated support for reporting 
failures and collecting diagnostic information is a 
significant advance in software development technology. 
Traditionally, developers have relied upon users to report 
software failures by email or telephone and to provide 
detailed information about the conditions under which 
they occurred so their cause could be diagnosed. Often, 
however, users are unable to provide adequate 
information even when they are questioned by support 
personnel. 

Although automated failure reporting and collection 
of diagnostic information facilitates debugging, it is also 
likely to exacerbate another problem encountered by 
software developers: they often receive many more failure 
reports than they have time to investigate thoroughly. 
Developers attempt to classify and pfiofitize the failure 
reports they receive, so they can address at least the most 
significant ones. With automated problem reporting, the 
number of failure reports received by developers seems 
likely to increase dramatically. If so, manual 
classification and pfiofitization of these reports may 
become infeasible. 

This paper proposes automated support for 
classifying reported software failures so as to facilitate 
pnofifizing them and diagnosing their causes. A 
classification strategy is presented that involves the use of 
supervised and unsupervised pattern classification ~ and 
multivariate visualization. These techniques are applied 
to execution profiles in order to group together reported 
failures with closely related causes. Failures are initially 

1 Supervised pattern elassitieafion techniques require a training set with 
positive and negative instances of  a pattern; unsupervised techniques do 
not. 

0-7695-1877-X/03 $17.00 © 2003 IEEE 465 



classified before their cause is investigated manually. 
Limited manual investigation may then be done to 
confirm or, ff necessary, refine the initial classification. 
The resulting classification is then used to assess the 
operational frequency and severity of failures caused by 
particular defects and to diagnose those defects. We 
report the results of applying the proposed classification 
strategy to failures of three large subject programs. 
These results indicate that the strategy can be effective. 

We now outline the remainder of the paper. Section 
2 explains how classification of failures facilitates 
maintenance. Section 3 outlines our strategy for 
classifying failures. Sections 4-7 describe the phases of 
the strategy in detail. Section 8 describes our 
experimental results, Section 9 surveys related work. 
Finally, conclusions and future work are presented in 
Section 10. 

2. How classification helps 

(Note on terminology: We use the terms "software 
failure'" and 'failure'" as synonyms for 'failed program 
execution ".) 

When software has many users it is common for 
different users to report failures that are due to the same 
defect, although this may not be obvious from the users' 
descriptions of the failure. Thus, ff users report m 
failures over some period during which the software is 
executed n times in total, it is likely that these failures are 
due to a substantially smaller number k of distinct 
defects. Let F = {f ,  .~ . . . . .  fro} be the set of reported 
failures. For simplicity, assume that all reported failures 
are actual ones and that each failure is caused by just one 
defect. Then F can be partitioned into k < m subsets F1, 
F2 . . . . .  Fk such that all of the failures in Fi are caused by 
the same defect di for 1 _< i _< k. We call this partition the 
true failure classification. Knowledge about the true 
failure classification is valuable to software developers 
for the following reasons: 
[] k is the number of defects responsible for reported 

failures. 

[] ]F~l/n is an estimate of  the frequency with which 
defect di causes failures in the field. 

[] The failures in Fi are the executions that are most 
relevant to diagnosing the defect d~ and to determining 
its severity. 

[] To diagnose and repair d~, it should usually suffice to 
investigate at most a few of the failures in F~ in detail. 

Although in principle developers can determine the 
true failure classification exactly by manually diagnosing 
the cause of each failure ff, 1 _< i _< m, this may be 

impractical, and it largely defeats the purpose of 
prioritizing reported failures. Instead, we propose using 
automatic classification and multivariate visualization 
techniques to approximate the true failure classification 
with much less human effort. The approximation is 
unlikely to be exact, because of estimation error and 
because the techniques we employ are based on 
correlations that may or may not indicate causation. 
Nevertheless, we hypothesize that even a rough 
approximation to the true failure classification can be of 
great practical value to developers. Moreover, it is 
possible to refine the initial classification as more 
information is obtained. 

Classifying program crashes and aborts is an 
important special case of the failure classification 
problem that is typically easier to solve than the general 
case, provided that information about the program state 
just before each crash or abort, such as a call-stack trace, 
is available. For example, in postings on the Mozilla 
project [22] the fact that multiple crashes occurred at the 
same instruction and with the same call stack is used as 
evidence that the crashes have the same cause. 2 Note that 
this paper addresses the more difficult general case of 
failure classification, where a user may not realize that a 
failure has occurred until well after the defective code 
that caused it has executed. 

3. Classification strategy 

The basic strategy we present for approximating the 
true failure classification has four phases: 

1. The software is instrumented to collect and 
transmit to the developer either execution 
profiles or captured executions, and it is then 
deployed. (Captured executions can be replayed 
offiine to obtain whatever kind of profile is 
desired [27].) 

2. Execution profiles corresponding to reported 
failures are combined with a random sample of 
profiles of operational executions for which no 
failures were reported. This set of profiles is 
then analyzed to select a subset of all profile 
features 3 (a projection) to use in grouping 
related failures. The feature selection strategy is 
to: 

2 James Larus of Microsoft Research informed one of the authors 
(Podgurski) that Microsoft Corporation internally uses automated 
heuristics to classify crash reports produced by its products. 

3 By a feature of an exe ution profile we mean an attribute or element of it. 
For example, a fimction call profile contains an execution count for each 
function in a program, and each count is a feature of the profile. 
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a. Generate candidate feature-sets and use 
each one to create and train a pattern 
classifier to distinguish failures Jhom 
successful executions. 

b. Select the features of the classifier that 
performs best overall. 

3. The profiles of reported failures are analyzed 
using cluster analysis and/or multivariate 
visualization techniques, in order to group 
together failures whose profiles are similar with 
respect to the features selected in phase (2). 

4. The resulting classification of failures into 
groups is explored in order to confirm it or, i f  
necessary, refine it. 

The result of approximating the true failure 
classification using this strategy is a partition C = {G1, 
G2 . . . . .  G~,} of F. We call C the approximate failure 
classification. For it to be useful, all or most of the 
groups G~ should contain all or mostly failures with 
closely related causes. 

Phases (1)-(4) of the classification strategy are 
described in Sections 4-7, respectively. 

4. Applicable forms of profiling 

The kind of information that can be used in 
automatically classifying arbitrary software failures is not 
limited to the kind of information that is typically 
considered in debugging, e.g., the value of the program 
counter, the values of key variables, and the contents of 
the call stack when a failure occurs. Any kind of 
execution profile can be used that is potentially relevant 
to the occurrence of failures and that can be collected 
from the field without inconveniencing users unduly. 
This includes both generic and application-specific 
profiles characterizing such aspects of a program's 
execution as its control flow, data flow, input values and 
other variable values, and event sequences. For example, 
profiles might include execution counts for basic blocks, 
conditional branches, functions, definition-use chains, or 
state transitions. Profiles can be augmented with 
information obtained from users when they reported 
failures, e.g., by having them complete a form. 

Both the causes of failures and their effects are 
relevant to classifying them, and hence the form of 
profiling should be chosen to reflect both ff possible. 
Since failures often involve small parts of a large 
program, profiles should generally be as detailed (fine- 
grained) as possible, considering profiling overhead and 
analysis costs. Coarse-grained profiles are unlikely to 
distinguish between different defects in the same 
fragment of code. 

5. Feature Selection 

The second phase in our strategy for approximating 
the true failure classification involves selecting a subset 
of all profile features to use in grouping failures. This 
step is necessary because execution profiles typically have 
thousands of features, many of which are not relevant to 
the occurrence of failures. For example, a profile might 
contain an execution count for each basic block in a large 
program. We hypothesize that the profile features that 
are most relevant to classiJj, ing failures according to 
their causes are the features that are most useful for 
distinguishing reported failures Jhom successful 
executions. 
The approach to feature selection used in the 

experiments reported in Section 8.1.2 is a modification of 
the probabilistic wrapper method of Liu and Setiono 
[21]. 4 Random sets of features of given size are 
generated iteratively. Each set of features and one part of 
the profile data is used to train a classifier. The 
misclassification rate of each classifier is estimated using 
another part of the profile data, and the features used by 
the classifier with the smallest estimated 
misclassification rate are chosen for use in phase (3) of 
our classification strategy. 

Many types of statistically-based classifiers have 
been developed by researchers [6][9]. This paper does 
not address the issue of which of these types of classifiers 
is best suited to classifying program failures. Its goal is 
to provide evidence that some classifiers are useful for 
this purpose. Hence, in the experiments reported in 
Section 8, we employ a widely-used but relatively simple 
type of classifier: logistic regression models. Binary 
logistic regression is a type of statistical regression in 
which the dependent variable Y represents one of two 
possible outcomes or responses, such as failure or success 
in the case of a program execution [9]. In logistic 
regression, the expected value E(Y I x) of Y given the 
vector of predictor values x = (x~, x2 ..... xp) is 7t(x) = P(Y 
= 1 I x). The conditional probability n(x) is modeled by 

eg(x) 
~r(x) - 

l + e g ( x )  

where the log odds ratio or logit g(x) defined by 

g(x)= 1 - ~  =/~o +,Olx~ +...+/~xp 

is a linear function of x. Each coefficient represents the 
change in log odds of the response per unit change in the 

4 Ill the wrapper  approach to feature selection, candidate feature sets are 
evaluated by using them to train classifiers, whose miselassification rates 
are estimated. 
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corresponding predictor. When logistic regression is 
used for classification, the coefficients of g(x) are 
estimated from a sample of x and Y values to obtain an 
estimator ~(x) for g(x). The outcome for input x is 
classified as a 1 ffan only ff ~(x) > 0, that is, ffand only 
ff the estimated odds of a 1 exceed the estimated odds of 
a 0 .  

6. Grouping related failures 

We consider two alternative approaches to grouping 
related failures in phase (3) of our classification strategy. 
The first approach calls for applying automatic cluster 
analysis 5 to the sub-profiles induced by the profile 
features selected in phase (2). The second approach 
involves applying a multivariate visualization technique 
such as multidimensional scaling to the aforementioned 
sub-profiles to produce a two-dimensional scatter plot 
display representing the similarity or dissimilarity of the 
sub-profiles to each other. This display is then inspected 
and clusters are identified visually. 6 

6.1 Automatic cluster analysis 

Ideally, the process of grouping failures according to 
their likely causes would be fully automated. This 
suggests applying automated cluster analysis [8] to the 
sub-profiles induced by the profile features selected in 
phase (2) of our classification strategy. Cluster analysis 
algorithms identify clusters among a set of objects 
according to the similarity or dissimilarity of their feature 
vectors, as measured by a dissimilarity metric such as d- 
dimensional Euclidean distance or Manhaaan distance. 
Roughly speaking, objects that are more similar to one 
another than to other objects are placed in the same 
cluster. In order to automatically group failures 
according to their causes, it is necessary to estimate the 
number of clusters among them. Although many 
approaches to finding the "best" number of clusters in a 
population have been proposed (see [8] for examples), the 
problem is quite difficult, because there are often several 
"reasonable" ways to cluster the same population. 
Hence, we have concluded that it is unwise to depend 
solely on automatic cluster analysis to group reported 
failures according to their likely causes. We propose 
instead that cluster analysis be used together with other 
techniques, such as multivariate visualization. 

5 Cluster analysis is an example o funsuper~sed  learning. 

6 Note that ff  profiles of  suecessfid executions are unavailable clustering 
can be done based on all profile features, at the cost of  some precision. 

One widely used measure of the goodness of a 
clustering into c clusters, which we employ in Section 8, 
is the index due to Calinski and Harabasz [3]: 

B/(c  - 1) 
CH(c) = 

W / ( n  - c) 

where B is the total between-cluster sum of squared 
distances, W is the total within-cluster sum of squared 
distances from the cluster centroids, and n is the number 
of objects in the population. To use CH(c), its value is 
plotted for c = 2, 3 . . . .  n, and local maxima are 
considered as alternative estimates of the number of 
clusters. 

6.2 Multivariate visualization 

Multivariate visualization methods such as 
multidimensional scaling (MDS) represent a set of objects 
characterized by dissimilarity or similarity measurements 
as points in a low dimensional space such as a two- 
dimensional display [2]. A two-dimensional display 
produced with MDS is a kind of scatter plot. The points 
are positioned so that the distance between each pair of 
points approximates the dissimilarity between the 
corresponding objects. An arbitrary dissimilarity matrix 
can be input to multidimensional scaling, so it can be 
used with a variety of dissimilarity metrics. 

We propose that multidimensional scaling be used to 
display the sub-profiles induced by the profile features 
selected in phase (2) of our classification strategy, so that 
groups of related failures can be identified by visual 
inspection of the resulting scatter plot. We hypothesize 
that apparent clusters of points in the display will often 
correspond to such groups of failures. With 
visualization, users can judge themselves which failures 
are most closely related, rather than relying on a fixed 
clustering criterion as in automatic cluster analysis. A 
drawback of visualization for this purpose is that in 
projecting high dimensional data onto just two 
dimensions, small dissimilarities may be poorly 
represented in the display. Approaches to addressing this 
issue are presented in [19]. To better distinguish 
individual clusters, automatic cluster analysis should be 
used together with visualization. Clusters found 
automatically can be highlighted in an MDS display, 
e.g., by coloring their points or drawing their convex 
hulls. 

We have developed a visualization tool that supports 
MDS of large sets of execution profiles and provides 
features useful for classifying failures, including ones for: 
selecting a group of points in the display and determining 
the corresponding executions; magnifying regions of the 
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display; and highlighting specified sets of points such as 
clusters. 

7. Confirming or refining the initial 
classification 

Given an initial approximation to the true failure 
classification, a software developer might choose to use it 
"as is" for the purpose of pfioritizing reported failures. 
However, it is prudent to do some additional work to 
confirm or, ff necessary, refine the initial classification. 
This can be done by: 

1. Selecting a few failures (two or more) from each 
group of failures. 

2. Attempting to determine ff the failures selected 
from a group actually have closely related 
causes, using conventional debugging 
techniques. 

3. Attempting to determine ff similar groups 
contain failures with the same cause. 

Step (2) is especially important with clusters that are 
elongated or are "loose", because such clusters have high 
internal dissimilarity. If all of the failures selected from 
a group turn out to have closely related causes, this is 
further evidence that all or most of the failures in the 
group do. Otherwise the initial classification should be 
refined. Step (3) is applicable to neighboring clusters. 

One criterion for deciding which failures to select 
from a group is that ones with maximally dissimilar 
profiles should be chosen. For example, one might select 
one failure from each end of an elongated cluster. Such 
failures can be selected automatically or by inspection of 
a scatter plot display. If  the selected failures have the 
same or similar causes, one might conclude that all of the 
failures between them in the cluster do also. If  they have 
dissimilar causes, one should seek a good place to split 
the cluster into two or more pieces. 

8. Experimental validation 

In order to evaluate the effectiveness of our 
classification strategy, we implemented its first three 
phases with three large subject programs. Automatic 
cluster analysis was used to classify failures, and the 
resulting clusters were then examined manually. To be 
thorough, we examined all or most of the failures in each 
cluster rather than sampling just a few failures from each 
cluster as described in Section 7. 

8.1 Experimental methodology 

8.1.1 Subject Programs, Inputs, and Profiles. The 
three subject programs for this study were all compilers: 
the GCC compiler for C [7] and the Jikes [15] andjavac 
[14] Java compilers. These programs were chosen for 
several reasons: they are large; they can be executed 
repeatedly with a script; source code for a number of 
versions is available; and self-validating test suites are 
available for them. Unfortunately, we did not have 
access to failure reports from ordinary users. Instead, our 
classification strategy was applied to the failures detected 
by self-validating tests. 

Version 2.95.2 (Debian GNU/Linux) of the GCC 
compiler for C was used. Only the C compiler proper was 
profiled. The compiler was executed on a subset of the 
regression test suite for GCC, consisting" of tests that 
actually execute compiled code. These came from the 
test suite shipped with GCC 3.0.2, which included tests 
for defects still present in version 2.95.2. GCC was 
executed on 3333 tests and failed 136 times. Version 
1.15 ofJikes andjavac build 1.3.1 02-b02 were executed 
on the Jacks test suite (as of 2/15/02) [11], which tests 
adherence to the Java Language Specification [12]. Jikes 
was executed on 3149 tests and failed 225 times; javac 
was executed on 3140 tests and failed 233 times. Note 
that the Jacks test suite contains tests that are specific to 
the Jikes andjavac compilers. GCC and Jikes, which are 
written in C and C++ respectively, were profiled using 
the GNU test coverage profiler Gcov, which is distributed 
with GCC. To profile javac, which is written in Java, a 
simple profiler was written by using the Java Virtual 
Machine Profiling Interface [13]. For each test t of one 
of the subject programs, the generated profile consisted of 
a vector of counts, with one count per function in the 
program. The count for each function f indicated how 
many times f w a s  executed during test t. Note that GCC 
had 2214 functions, Jikes had 3644 functions, andjavac 
had 1554 functions. 

8.1.2 Feature Selection. Phase (2) of our classification 
strategy was implemented using the S-PLUS 6 statistical 
computing environment [26]. Logistic regression (LR) 
models were used as classifiers. These were 
implemented using the S-PLUS function glm. An S 
language program was  written to iteratively generate 
400-500 candidate models per data set and to fit and 
evaluate them. Each model included 500 randomly 
selected features. 7 The S program output the best model 

7 The number of  candidate models generated and the number of  features 
used were selected based on preliminary experiments. They represent a 
tradeoffbetween classifier performance and total training time. 

469 



of a given type. To avoid underestimating the 
misclassification rate of models, the original set of 
profiles for each subject program was randomly 
partitioned into three subsets (Train, TestA, and TestB) 
comprising 50%, 25%, and 25% of the original set, 
respectively. The profiles in Train were used to train 
candidate models; those in TestA were used to pick the 
best model (i.e., for model validation); those in TestB 
were used to produce a final estimate of the best model's 
misclassffication rate. 

The measure used to pick the best model was the 
average of the percentage of mlsclassified failures and 
the percentage of misclassified successes. This measure 
gives more weight to the misclassification of failures than 
does the overall misclassifieation rate. For each of the 
data sets (GCC, javac, and Jikes), the final logistic 
regression model correctly classified at least 72% of 
failures and at least 91% of successes. It is notable that 
S-PLUS reported that a substantial number of selected 
features were not used in the fitted logistic regression 
models, because they were linearly dependent on other 
features. We did not use 'those features for clustering or 
visualization either. 

8.1.3 Cluster Analysis. To group failures together 
automatically, we used the S-PLUS cluster analysis 
algorithm clara, which is based on the k-medoids 
clustering criterion [18]. To estimate the number of 
clusters in the data, the Calinski-Harabasz index CH(c) 
was plotted for 2 _< c _< 50 and its local maxima were 
examined. 

8.1.4 Visualization. For each subject program, the sub- 
profiles induced by the features of the best classification 
model were displayed using the hierarchical MDS 
(HMDS) algorithm described in [19]. This algorithm 
was designed to minimize the error in representing small 
dissimilarities between execution profiles. 

8.1.5 Manual Examination of Failures. In many cases, 
we were able to diagnose the specific cause of a group of 
failures. In other cases, this was not possible, but other 
evidence was found that certain failures had the same 
cause. The nature of such evidence varied with the 
subject program. The GCC failures were manually 
classified by exploiting the organization of the GCC test 
suite and information about later versions of the 
compiler. Each execution test in the GCC test suite 
involves compiling a simple source file and executing the 
resulting program. For each source file, multiple tests 
are run, each with a different optimization level as some 
defects are triggered only at certain optimization levels. 
Since each source file is designed to reveal a specific 

Table 1. Comparison of automatic clustering 
and manual classification for GCC data set. 

Number % size of largest group Total failures 

of of failures in cluster with (136) 
clusters 

same cause 

21 100 77 (57%) 

1 83 6 (4%) 

3 75,75, 71 23 (17%) 

1 60 5 (4%) 

1 24 25 (18%) 

defect, we evaluated our automatic classification strategy 
with respect to whether it grouped together multiple 
failures corresponding to the same source file. We also 
checked manually whether different source files triggered 
the same defect. 

For 12 of the 29 source files associated with GCC 
failures, we were able to identify bug fixes in later 
versions of the compiler that prevent the failures the files 
induce, and we verified that each fix worked when 
applied to the version under test (2.95.2). The remaining 
GCC failures were classified by determining when the 
corresponding test case stopped failing. For example, if 
test A is fixed in the CVS version as of January 2000 and 
test B keeps failing until July 2001, then we have reason 
to believe that they failed because of different defects. 
This required checking out, building, and testing enough 
versions of the compiler to separate most tests, but it was 
still less time-consuming than finding and porting 
specific bug fixes. Because of the possibility of 
regression defects introduced by changes to the compiler, 
the resulting classification is not certain, but we believe it 
is a good approximation. Only 3 pairs of source files 
were found to induce failures caused by the same defect. 
Thus, the GCC failures were apparently caused by 26 
different defects. 

The automatic clusterings of the javac 1.3.1 and 
Jikes 1.15 failures were examined manually in two 
stages. In the first stage, the failures in each cluster were 
examined to see if  they actually had the same cause. In 
cases where the failures in a cluster had different causes, 
we were often able to identify sub-clusters consisting of 
failures with the same cause. In the second phase, the 
groups of related failures identified in the first phase 
were displayed using hierarchical MDS, and overlapping 
groups were examined manually to determine if the 
failures they contained actually had the same cause. 

In order to determine ff differentjavac 1.3.1 failures 
had the same cause, the following activities were 
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Figure 1. HMDS display of the GCC failure 
profiles after feature selection. Convex hulls 

indicate results of automatic clustering into 27 
clusters. 

attempted in the order listed until one of them succeeded, 
although activity (5) was always conducted: 

1. Debuggingjavac 1.3.1. The causes of many of 
the javac 1.3.1 failures were diagnosed using 
conventional debugging techniques. 

2. Comparing the javac 1.3.1 andjavac 1.4 code 
bases. A few of the tests that causedjavac 1.3.1 
to fail were found to succeed with javac 1.4 due 
to identified bug fixes. 

3. Examining error codes. It was found that the 
input files corresponding to many of the javac 
1.3.1 failures formed groups: the files in each 
group were erroneously accepted by javac 1.3.1 
but were rejected by javac 1.4 with the same 
error code. 

4. Inspecting failure-causing source files. It was 

Figure 3. HMDS display of the GCC failure 
profiles before feature selection. Convex hulls 

indicate failures involving same defect. 

Figure 2. HMDS display of the GCC failure 
profiles after feature selection. Convex hulls 

indicate failures involving same defect. 

found that many of javac 1.3.1 failures were 
caused by language constructs present in 
multiple source files. 

5. Checking the association between tests and Java 
Language Specification sections. Some of the 
javac 1.3.1 failures were classified based on the 
fact that they involved tests of a language rule 
described in a particular JLS section. 

To determine if different Jikes 1.15 failures had the 
same cause, the same five activities were attempted, with 
versions 1.15 and 1.16 of Jikes used in place of versions 
1.3.1 and 1.4 ofjavac. Most groups of related failures 
were identified using activity (1) or activity (3). 

8.2 Results 

8.2.1 GCC. The GCC failures were automatically 
clustered into 27 clusters, as suggested by the Calinski- 
Harabasz index. The failures in each cluster were 
analyzed manually to determine the percentage size of 
the largest subgroup with the same apparent cause. The 
results are summarized in Table 1. Most of the clusters 
were comprised of failures caused by the same defect. 
Five clusters, of sizes between 5 and 8, contained failures 
caused by two different defects. One cluster, however, 
contained 25 failures caused by 7 different defects. 
Overall, in 26 of the 27 automatically generated clusters, 
the majority of failures appear to have the same cause. 
Figure 1 shows a hierarchical MDS display of the GCC 
failures, calculated using the profile features selected in 
phase (2) of our classification strategy. Convex hulls 
indicate the results of automatic clustering. 

Figure 2 is another HMDS display of the GCC 
failures, in which convex hulls are drawn around each 
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Table 2. Results of manual examination of 
automatic clustering forjavac data set. 

Number of 
clusters 

% size of largest group 

of failures in cluster with 

same cause 

Total 

failures 
(232) 

9 100 70 (30%) 

5 88, 85, 85, 85, 83 64 (28%) 

4 75, 67, 67, 57 49 (21%) 

2 50, 50 20 (9%) 

l i 17 23 (10%) 

Table 3. Results of manual examination of 
automatic clustering for Jikes data set. 

Number of % size of largest group Total 

clusters of failures in cluster with failures 

same cause (225) 

12 100 64 (29%) 

5 85, 83, 80, 75, 75 41 (18%) 

4 70, 67, 67, 56 25 (11%) 

8 50, 50, 50, 43, 41, 33, 76 (34%) 
33, 25 

group of failures that manual analysis indicated were 
caused by the same defect. In this display, groups of 
failures corresponding to particular defects are well 
separated, suggesting that visual classification of failures 
is likely to be successful. Comparing Figure 1 to Figure 
2 confirms that automatic clustering tended to group 
together failures with the same cause. However, these 
figures also indicate that automatic clustering 
erroneously split some groups of failures with the same 
cause. Of these 26 groups of failures, 5 had their failures 
split across two clusters, 2 had their failures split across 3 
clusters, and one more was split across 4 clusters. 

Figure 3 is an HMDS display of the GCC failures 
that was calculated using all profile features. As in 
Figure 2, convex hulls are drawn around each group of 
failures that manual analysis indicated were caused by 
the same defect. There is much more overlap of these 
convex hulls than in Figure 2. It turns out that Figure 3 
overemphasizes the effect of optimization levels. For 
each source file, high optimization tests are placed to the 
left of the display, while low optimization tests are on the 

right. The difference between Figures 2 and 3 illustrates 
the importance of feature selection in our classification 
strategy. 

8.2.2 javac. The javac failures were automatically 
clustered into 26 clusters. The failures in each cluster 
were examined manually to determine the percentage 
size of the largest subgroup with the same apparent 
cause. Table 2 summarizes the results for different 
groups of clusters comprising 21 clusters. (The 
remaining 5 clusters comprised 4 singletons and 1 cluster 
of size 2 whose elements could not be classified 
decisively.) Overall, in 22 of 26 automatically generated 
clusters (85%), a majority of failures had the same cause. 
Note that two large clusters formed by automatic 
clustering were found to be heterogeneous. Manual 
analysis revealed that both clusters had several sub- 
clusters, each consisting of failures with the same 
apparent cause. 

Figure 4 is a hierarchical MDS display of the javac 
1.3.1 failures. Convex hulls have been drawn around 
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Figure 4. HMDS display of thejavac failures. Figure 8. HMDS d~splay of the Jikes failures. 
Convex hulls indicate the results of manual Convex hulls indicate the results of manual 

classification, classification. 
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groups of failures that manual classification indicated 
have the same cause. Some of the convex hulls are 
compact and well separated from others, but some are 
elongated or overlap. Automatic clustering performed 
well in identifying the groups of failures whose convex 
hulls were well separated from those of other groups, 
even when they were elongated. It is unlikely that the 
elongated clusters would be identified by inspection of 
the HMDS display, although sub-clusters would. The 
groups of failures in the upper right quadrant of Figure 4 
whose convex hulls overlapped noticeably were subject to 
further manual analysis. It was found that the failures in 
the overlapping groups actually had the same cause. 
Automatic clustering erroneously split those groups. 

8.2.3Jikes. The Jikes failures were automatically 
clustered into 42 clusters. The failures in each cluster 
were analyzed manually to determine the percentage size 
of the largest subgroup with the same apparent cause. 
Table 3 summarizes the results for 29 of the 42 total 
clusters. (The remaining 13 clusters comprised 9 
singletons and 4 clusters whose elements could not be 
classified decisively.) Overall, in 30 of 42 automatically 
generated clusters (71%), the majority of failures appear 
to have the same cause. 

Figure 5 is a hierarchical MDS display of the ,likes 
1.15 failures. Convex hulls have been drawn around 
groups of failures that manual classification indicated 
have the same cause. As with the HMDS display of the 
javac failures, some of the convex hulls are compact and 
well separated from others, but some are elongated or 
overlap. Automatic clustering again did a good job of 
clustering the groups of failures whose convex hulls were 
well separated from those of other groups, even when the 
convex hulls were elongated. The groups of failures in 
the top left quadrant of Figure 5 whose convex hulls 
overlap were subjected to further manual analysis, which 
revealed that the failures in those groups had the same 
cause. This was also true of one of the pairs of 
overlapping groups in the top right quadrant of Figure 5. 

8.3 Summary 

In most of the clusters created by automatic clustering, a 
majority of failures appeared to have the same cause. 
However, automatic clustering created a few large, non- 
homogeneous clusters with sub-clusters consisting of 
failures with the same cause. The sub-clusters were 
evident in the corresponding HMDS displays. In other 
cases automatic clustering erroneously split groups of 
failures with the same cause, but the HMDS displays did 
not provide clear evidence that these groups were 
homogeneous. Overall, groups of failures with the same 

cause tended to form fairly cohesive clusters in the 
HMDS displays. Small, tight clusters in the displays 
were quite likely to contain failures with the same cause, 
although they were not always maximal. 

8.4 Threats to Validity 

All o f  the subject programs used were compilers. 
Therefore, it is possible that our results may not 
generalize to other types of software. Also, hand crafted 
test inputs were used rather than operational inputs. Test 
inputs like those in the GCC and Jacks test suites are 
generally smaller than typical compiler inputs and so the 
corresponding profiles may be less "noisy" than profiles 
of operational inputs would be) Additional evaluation of 
the classification strategy is necessary, especially with 
different kinds of software and with actual failure reports 
from users. 

9. R E L A T E D  W O R K  

Several previous papers have addressed issues 
closely related to failure classification and prioritization. 
Agrawal, et al describe the zSlice tool, which analyzes 
system tests to facilitate location of defects [1]. zSlice 
visually highlights differences between the execution 
slice of a test that induces a failure and the slice of a test 
that does not. Reps, et al investigate the use of a type of 
execution profile called a path spectrum for discovering 
Year 2000 problems and other kinds of defects [25]. 
Their approach involves varying one element of a 
program's input between executions and analyzing the 
resulting spectral differences to identify paths along 
which control diverges. Jones, et al describe a tool for 
defect localization called Tarantula, which uses color to 
visually map the participation of each statement in a 
program in the outcome of executing the program on a 
test suite [16]. 

Hildebrandt and Zeller describe a delta debugging 
algorithm that generalizes and simplifies failure- 
inducing input to produce a minimal test case that causes 
a failure [10]. Their algorithm, which can be viewed as a 
feature-selection algorithm, is applicable to failure 
classification in the case that failure-causing inputs 
reported by different users simplify to the same minimal 
failure-causing input. Note that Hildebrandt and Zeller's 
approach requires an automated means of detecting 
whether a simplified input causes the same kind of 
failure as the original input. 

8 On the other hand, operational inputs may tend to form more cohesive 
groups, which would aid our strategy. 
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Podgurski, et al used cluster analysis of profiles and 
stratified random sampling to improve the accuracy of 
software reliability estimates [24]. Leon, et al describe 
several applications of multivariate visualization in 
observation-based (software) testing, including analyzing 
synthetic test suites, filtering operational tests and 
regression tests, comparing test suites, and assessing bug 
reports [20]. Dickinson, et al present a technique called 
cluster filtering for filtering test cases [4][5]. This 
technique involves clustering profiles of test executions 
and sampling from the resulting clusters. They present 
experimental evidence that cluster filtering is effective 
for finding failures when unusual executions are favored 
for selection. Note that the aforementioned work on 
observation-based testing differs from the work reported 
here in three main respects: 
[] The goal of the previous work was to identify 

possible failures in set of mostly successful executions. 
The goal of the current work is to identify groups of 
failures with closely related causes among a set of 
reported failures. 

[] The previous work did not involve user feedback; the 
current work depends upon failure reports from users. 

[] The previous work applied unsupervised pattern 
classification techniques to complete program profiles. 
The current work uses supervised pattern classification 
techniques to select relevant profile features prior to 
clustering or visualization. 

Finally, Julisch and Dacier demonstrated that a form of 
conceptual clustering is effective for grouping similar 
alarms from intrusion detection systems (IDS) [17]. We 
note that IDS alarms are typically generated by matching 
intrusion signatures, hence the attack type is at least 
partially known. Alarms typically have many fewer 
features than execution profiles do, and most features of 
alarms are relevant to classifying them. In many cases, 
relatively few features of an execution profile are relevant 
to classifying a particular type of failure or attack. Thus, 
dimensionality reduction is a much more critical issue in 
clustering profiles than it is in clustering alarms. On the 
other hand, our approach may be useful for classifying 
profiles of intrusions reported by anomaly detection 
systems [23]. 

10. C O N C L U S I O N S  

The results of applying our classification strategy to 
GCC, Jikes, and javac suggest that the strategy is 
effective and scales to large programs, although this must 
be confirmed with other subject programs of different 
types. It is especially notable that the strategy performed 

well with a relatively simple type of classifier and with 
coarse-gained execution profiles; it may perform even 
better with more powerful classifiers and more detailed 
profiles. It is especially important to evaluate our 
strategy with deployed software and with failure reports 
from users. Other basic issues to be resolved in future 
work include the best choices of methods for profiling, 
classification, clustering, and visualization and the best 
way to integrate these methods during failure 
classification. Finally, we note that our approach may be 
useful for classifying computer intrusions reported by 
anomaly detection systems. 
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