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Abstract

We present a method for performing fault localization
using similar program spectra. Our method assumes the ex-
istence of a faulty run and a larger number of correct runs.
It then selects according to a distance criterion the correct
run that most resembles the faulty run, compares the spec-
tra corresponding to these two runs, and produces a report
of “suspicious” parts of the program. Our method is widely
applicable because it does not require any knowledge of the
program input and no more information from the user than a
classification of the runs as either “correct” or “faulty”. To
experimentally validate the viability of the method, we im-
plemented it in a tool, WHITHER using basic block profiling
spectra. We experimented with two different similarity mea-
sures and the Siemens suite of 132 programs with injected
bugs. To measure the success of the tool, we developed a
generic method for establishing the quality of a report. The
method is based on the way an “ideal user” would navigate
the program using the report to save effort during debug-
ging. The best results we obtained were, on average, above
50%, meaning that our ideal user would avoid looking at
half of the program.

1 Introduction

Programmers often write almost-correct programs. Such
programs will sustain significant testing without revealing
any bugs. When, eventually, use or further testing uncovers
the bugs, the programmers need to localize the faulty por-
tions of code and correct them. In this paper, we investigate
techniques that leverage the successful test cases to support
the first task, fault localization.

In some cases fault localization is easy. For example,
consider the simple triangleType program in figure 1.
The program fails exactly when line 6 is executed. This
fault is easy to localize using the following strategy: execute
the program on a set of inputs collecting information about

which lines execute in each run; then observe which lines
execute only on inputs for which the program fails.

This strategy fails for most programs and most faults.
The reason is that single lines of code (or even short, con-
tiguous blocks of code) are rarely decisive for the success of
the program: their effect on the outcome depends heavily on
the run-time context in which they execute. This is evident
in the number of remaining bugs in programs that are fully
tested under some code coverage criterion. In our example,
the strategy works because the context is empty. In a state-
less language the context problem is simpler [25], but in
general differences between which blocks of code execute
in failing and successful runs are potentially significant only
if the runs are similar.

Research in this area has addressed the run similarity
problem by minimizing differences in inputs [23, 27, 29].
These techniques require knowledge of the inputs’ structure
and methods to manipulate them minimally. They make the
more covert assumption that similar inputs lead to similar
runs. These limitations mean that the techniques are not
readily applicable to arbitrary, or even most, programs.

In this paper we show how to use successful runs to ad-
dress the limitations of input-based techniques. To avoid
trying to localize two faults at once, we consider a single
failing run at a time. The key idea is to define a similarity
measure directly on the executions of the program, and then
use it to select a successful run that is as similar as possible
to the faulty run. The technique does not require knowl-

1triangleType(float a, float b, float c)
2{
3if (a == b && b == c) return Equilateral;
4if (a == b || b == c || c == a)
5return Isosceles;
6return Isosceles; /* should be Scalene */
7}

Figure 1. A small faulty program



edge of the bug or the input structure of the program, and is
therefore widely applicable with little effort.

To evaluate this technique experimentally we developed
a tool, WHITHER, which we used on an established suite
of programs with injected faults. WHITHER has an open
architecture, allowing a number of previous approaches to
be expressed in a common framework.

To measure WHITHER’s success, we designed and im-
plemented a method for the evaluation of fault localization
tools. The method can assign a score to the report of a fault
localization system, depending on the size of the report and
how closely to the actual fault it is. Proximity to the fault
is defined based on the program dependence graph. To our
knowledge, this is the first such measure based on program
semantics.

The rest of this paper is structured as follows: in section
2 we review previous research that lead to our work. In sec-
tion 3 we describe a generic architecture for fault localiza-
tion systems that use multiple successful runs and a single
faulty run. Then we show the nearest neighbor concept and
how it fits in the architecture. In section 4 we detail our
method for quantifying the success of a fault localization
system. In section 5 we describe the implementations of the
architecture we have performed experiments with. Sections
6 and 7 describe our experiments and results respectively.
Finally, section 8 summarizes our results and describes how
our framework relates to other state-of-the-art tools.

2 Motivation

Existing fault localization systems manipulate program
inputs to create two very similar inputs, one which causes
the program to succeed and one which causes the program
to fail. Assuming that similar inputs result in similar runs,
programmers can then contrast the two runs to help locate
the fault.

Whalley [27] presents vpoiso, a tool to localize bugs in
a compiler. A bug is detected by comparing the output
of a program compiled with the buggy compiler with one
compiled with a “correct” compiler. For bugs in the opti-
mizer runs are contrasted at the optimization phase level. If
the optimization phases are p1, p2, . . . , pn vpoiso orders the
set {{p1}, {p1, p2}, . . . , {p1, p2, . . . , pn}}, under the usual
subset relation. Then, for every such set, it turns the in-
cluded optimizations on, and checks the result. vpoiso per-
forms a binary search on the set, isolating a fault induc-
ing set {p1, p2, . . . , pm} such that {p1, p2, . . . , pm−1} is
not faulty. vpoiso assumes the phases independent, there-
fore it blames phase pm. For non-optimizing bugs, vpoiso
does not localize the bug, although it isolates a minimal
input for which the compiler fails. It orders the functions
{f1, f2, . . . , fn} of the subject program, and considers the
subsets {f1}, {f1, f2}, . . . , {f1, f2, . . . , fn}. For each one

of them, it compiles the set’s members with the suspect
compiler, and the other functions of the subject program
with a trusted compiler. Similar to the optimizing case,
a function set {f1, f2, . . . , fm} is isolated such that com-
piling all of its functions with the suspect compiler reveals
the fault, while compiling only {f1, f2, . . . , fm−1} with the
suspect compiler does not. Compilation of fm is blamed.

Whalley’s techniques work under strict rules: the op-
timizing phases are assumed totally independent, and an
error in compiling one function cannot be masked by
wrongly compiling another one. Essentially, the power set
of {p1, . . . , pm} has to be totally ordered. Moreover, its
mapping to failure or success has to be monotonic: if a set
fails, all its supersets fail, and if it succeeds, all its sub-
sets succeed. Zeller [29] extended these input minimizing
techniques to handle cases where there is no monotonicity,
while giving weaker guarantees on the minimality of the
input. His technique, delta debugging, is a greedy algo-
rithm that examines potentially a quadratic number of input
subsets, although it is cleverly tuned to make full use of
Whalley’s assumptions if they hold. The first application of
the technique on input was on the input of a web browser,
but Zeller has applied this technique in other debugging do-
mains, such as comparing thread schedules and looking at
changes between two versions of a program.

Reps et al. [23] present DYNADIFF, a tool that isolates
faults at the level of acyclic, intraprocedural control paths.
They start with a business program they suspect of the Y2K
bug, and run it twice, once with the system clock set to the
end of 1999, and once with the clock set to the beginning
of 2000. Then they inspect the control flow paths that the
program takes, trying to find paths that were never taken in
the former case, but were taken in the later. The idea is that
paths taken only after the crucial date are suspect of bugs.

All three of these techniques depend strongly on spe-
cific kinds of input. It is hard to see how similar techniques
would apply to arbitrary programs with generally unstruc-
tured inputs such as sets of numbers. For example, the tcas
program, part of the Siemens suite [16] commonly used in
testing research simulates the decision process that planes
follow about ascending or descending. Its input is a se-
quence of 13 numbers, describing the plane’s state.

A fault localizer that does not depend on knowledge of
the input structure must rely on features of the program ex-
ecution that are universal among programs. At the same
time, these features must be attributable to specific portions
of the source code.

Collections of such features are called program spectra.
The term “spectrum” was introduced in Reps et al. [23], for
(acyclic, intraprocedural) path spectra, and generalized in
Harrold et al. [11]. One example of a program spectrum
is profiling data that shows the number of times each line
of the program is executed. This spectrum concentrates on
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Figure 2. A pipe-and-filter architecture for fault localization

control flow and abstracts the overall execution into a rel-
atively small set of counts. Other proposed spectra con-
sider function call counts, program paths, program slices,
and use-def chains.

Program spectra are a natural basis for fault localiza-
tion. Harrold et al. [11] performed a large scale experi-
ment on program spectra. The result was that, although an
unusual spectrum does not necessarily signal a faulty run,
faulty runs tend to have unusual spectra. Further work by
Podgurski et al. [5] applies clustering techniques to obser-
vation testing. They find that the profiles of failing runs tend
to belong in smaller clusters and be further away from their
nearest neighbor than successful runs.

In a sense, these results are not surprising. Programs
that succeed on a large number of inputs (almost-correct
programs) must encompass a lot of knowledge about the
typical inputs and consequently, typical runs.

Our general fault localization strategy uses program
spectra to identify a failing run that is similar to a success-
ful run and then uses the difference between the spectra of
these runs to help isolate the location of the bug. In the next
section, we describe this strategy in detail.

3 Architecture

We first define a general architecture for fault localiza-
tion. Our architecture is essentially a typed pipe-and-filter
architecture [26]. The input of the system is a set of pro-
gram traces, containing a single trace from a failing run. A
trace is simply as much information about a run as we can
collect.

The architecture then comprises the following phases, as
shown in figure 2:

1. A classification phase, in which an oracle classifies the
traces as successful or failing.

2. A trace abstraction phase, that converts traces to ab-
stract representations of runs. Following [11, 23], we
will call these abstract representations spectra. The
distinction between successful and failing traces car-
ries over to spectra.

3. A modeling phase, that converts the successful spec-
tra into a model of successful runs, perhaps taking

into account the failing spectrum. The outputs of this
phase are the model and the spectrum of the faulty run,
passed intact.

4. A differencing phase, which contrasts the model and
the spectrum of the failing run to produce a difference.

5. A source mapping phase, which maps the difference to
a report, a set of program locations.

The data type flowing on any pipe must lend itself to all
the succeeding operations. In particular, every modeling
process demands that the spectra afford specific operations.
For example, a naive model could simply include a ran-
dom successful spectrum. Such a model demands a kind
of spectrum that affords defining a difference operation on
two spectra. The later phases demand that this difference is
attributable to source code.

We differentiate between kinds of spectra according to
the operations that we can perform on them, and therefore
the kinds of models we can build from them. In the rest of
this section, we discuss two possible kinds of spectra and
the models they support.

3.1 Set Spectra and the Union and Intersection
Models

A simple kind of spectra afford a single operation: con-
version to a set of program features. We will call this kind
set spectra. For example, a set spectrum could encode the
pieces of code that executed during the run it represents.
Such pieces of code could be basic blocks, functions, paths,
or slices.

Based on set spectra, a simple model is one that, given
a failing run f and a set of successful runs S, computes
the union of all the successful runs

⋃

S

s and the difference
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⋃

S

s. In essence, this “union model” tries to find features

that are unique to the faulty run. A complementary model is
the “intersection model”, which tries to find features whose
absence is discriminant for the faulty run:

⋂

S

s − f . Exten-

sions to these models are proposed in [3, 21] based on “soft”
unions and intersections that incorporate frequency criteria.



3.2 Distance Spectra and the Nearest Neighbor
Model

They key idea in DYNADIFF and vpoiso is the careful se-
lection of a single successful run to contrast with the faulty
run. Selecting the run according to its input has the disad-
vantages we discussed in section 1.

A distance spectrum is a spectrum that affords a distance
operation, which allows us to lift both difficulties. The dis-
tance operation should be a measure of dissimilarity. Ideally
the distance operation implements a metric; in other words,
it is symmetric and obeys the triangle inequality. A plausi-
ble model consists of a single successful spectrum, the one
closest to the failing spectrum. We will call this the nearest
neighbor model.

It becomes essential that the distance spectra supply a
contrast operation, which attributes the distance between
two spectra to a set of program features. This way, the two
spectra can be used to produce a fault localization report.

A set spectrum can be trivially augmented with a dis-
tance function, using the Hamming distance1 over the rep-
resentation of the two sets as binary vectors.

The difference function that is most consistent with the
Hamming distance computation is the symmetric set differ-
ence between the two sets, putting the blame on all features
that appear in one but not the other (the Hamming distance
is the size of the symmetric set difference). However, this
would mean that features absent in the failing run get re-
ported, which is generally not desirable. Instead, we can
just use the non-symmetric difference f − s and report fea-
tures that are only present in the failing run. The trivial fix
to this asymmetry is to compute the distance in the space
defined by the features present in the successful run. But
this space is smaller, and we will see that the size of the
space is important.

4 Evaluation Framework

To evaluate different instances of the architecture we
need a quantitative measure of the quality of a fault localiza-
tion report. Previous research does not provide such mea-
sures, relying instead on case studies for evaluation. This
hinders comparing fault localization systems.

Formally, given a report R, that is, a list of program fea-
tures the localizer indicates as possible locations of the bug,
we want to compute and assign a score to it. We want the
scoring function to represent an estimate of the effort to find
the bug starting with the report. To allow for direct compar-
ison between reports on different programs, we want the
scoring function to assign a perfect score, say 1, to perfect

1The Hamming distance is defined as the number of positions at which
the two vectors disagree.

reports, and 0 to the worst possible reports. We now need to
define a perfect report, and to define a way to measure how
far any report is from a perfect report.

For the purpose of evaluating a fault localizer, we can
assume the existence of a correct program; the differences
between the correct program and its faulty version point to
where the fault is. The general problem of taking differ-
ences between programs is difficult [12], but in fault local-
ization the granularity of differences is dictated by the trac-
ing process. This makes the problem much easier than the
general case. A perfect report should directly point to the
fault and should also be as small and specific as possible:
a report that includes the whole program would definitely
include the bug, but it would be far from perfect. However,
the exact location of the bug can be difficult to pin down,
either because there can be a lot of ways to fix the bug or
because fixing the bug requires changes scattered through-
out the code. In the first case, we would say that the bug
is at any of those locations; in the second, that the bug is
at all of them. To handle all cases in a uniform and simple
manner, we say that a report is still perfect if it points to at
least one faulty location, and no correct locations. Then, the
worst possible report is the one that points to all the correct
locations and none of the faulty ones.

Deciding how close a report is to a perfect report is more
difficult. At any level of granularity, the perfect report and
the report we are trying to assign a score to are sets of pro-
gram features. The correspondence of such sets is com-
monly measured by comparing the size of their intersection
with the sizes of the sets themselves. But this treats pro-
grams as unstructured sets, which is not an accurate repre-
sentation.

We propose an approach based on static program depen-
dencies. At the level of granularity we choose, we construct
a program dependence graph (pdg) [14], a graph that con-
tains a node for each expression in the program, and two
kinds of edges: data dependency edges between two nodes
that use the same value, as reflected in their use of vari-
ables, and control-dependency edges, if one node controls
the execution or not of the other. We mark the nodes of pdg
as “faulty”, if they were reported by differencing the cor-
rect and the faulty versions of the program, and “blamed”
if they are reported by the localizer. We assign to all edges
the same arbitrary, constant weight.

Then, for each node n, we define the k-dependency
sphere set (DSk). The DSk of a node n is the set of nodes
m for which there is a directed path of length no more that
k that joins m and n. For example, the DS 0 is n itself. DS 1

includes the node itself, and also all the nodes m such that
there is a edge from m to n, or from n to m. DS 2 includes
DS 1, and also all the nodes m such that there is a directed
path of length 2 from m to n or from n to m. The k depen-
dency sphere of a report is simply the union of the DS ks of



all the nodes in the report.
Let us consider a report R, and let us call DS ?(R) its

smallest dependency sphere that includes a faulty node. The
score we assign to R is based on the size |DS ?(R)| of that
sphere. We want to normalize the scores with respect to the
number of nodes in the overall graph |PDG |, and we also
want a higher score to signify a better report. Therefore the
formula we use for the score is

1 −
|DS?(R)|

|PDG |

As a special case, we assign a zero score to empty reports.
If a report R includes a faulty node, then its score will

be 1 − |R|
|PDG| . A report that includes every node would

therefore get a score of 0. A report that includes a single
node which is far from faulty nodes will get a score close
to, or sometimes exactly, zero. The scoring function assigns
higher scores to reports that contain the bug, but a report
cannot achieve that by including as many nodes as possible.
At the same time, the scoring function will assign a high
score to a report that includes a few nodes, at least one of
which is very close to a faulty node.

The scoring function reflects the amount of code an ideal
user would have to read. Our ideal user starts with the report
and then, using knowledge of the program, works outwards
from the locations in the report. This corresponds to do-
ing a breadth-first search of the dependency neighborhoods.
We assume that the ideal user recognizes faulty nodes on
sight and thus stops as soon as a faulty node is encountered.
Thus the score reported is proportional to the amount of the
program left unexamined by the ideal user.

5 Implementations of the Architecture

In order to explore different fault localization ap-
proaches, we implemented four instantiations of the general
fault localization architecture. One of these uses the union
model, one uses the intersection model, and two use the
nearest neighbors model. The first three use a simple binary
coverage spectrum, while the fourth uses a more detailed
coverage spectrum. This lets us compare the nearest neigh-
bor model with other models, and evaluate the impact of the
choice of spectrum and the availability of trace information
on the results.

In the binary coverage spectrum, a run is represented as
the set of basic blocks (pieces of code that execute atomi-
cally) that executed during it. We used gcov, the basic block
level profiler of the GNU compiler suite, to get counts of ex-
ecutions for each basic block, and mapped the zero counts
to zero and the non-zero counts to one. The binary coverage
spectrum is trivially a set spectrum, and therefore the union,
intersection, and Hamming distance nearest neighbor mod-
els are supported as discussed in section 3.1. The choice

of the Hamming distance (a symmetric operation) and the
asymmetric set difference operation for the nearest neigh-
bor model means that it is possible for a pair of runs to have
non-zero distance and an empty difference.

The binary coverage spectrum is extremely simple, and
we use it to provide a base case and to provide rough com-
parisons. A more interesting spectrum would make use of
the actual basic block execution counts. There is negligi-
ble extra cost in collecting them, and representing runs as
vectors of integers allows a multitude of choices for the dis-
tance function, such as the Euclidean distance.

However, using such vectors for determining the differ-
ence between a successful and a failing run in order to find
the potentially faulty locations is difficult. The standard el-
ementwise vector difference will not do; long runs can ac-
tually be very close to shorter runs (going though a loop
10 times in one example and 10,000 in another) but ele-
mentwise difference will not preserve this information. The
same is true for the case that two loops in the program ex-
ecute an equal number of times within each run, but the
numbers are different between the two runs. We could nor-
malize the vectors before subtracting them. But then the
components that execute the same numbers of times (for
example, the first line of the main function in a C program,
which executes exactly once) would appear different for any
run of even miniscule length differences. What we need is a
technique that would keep the relevant execution counts of
the runs, but not the counts themselves.

We therefore represent each run as the sorted sequence
of its basic blocks, where the sorting key is the number of
times that basic block executed, and measure distance be-
tween the sequences as the distance between two permuta-
tions. Distances between permutations are generally based
on the cost of transforming one to the other given a certain
set of operations (for a quick introduction, see [4]). This is
equivalent to considering one of the permutations as sorted,
and counting the number of operations we need to sort the
other one. If the operations we allow are only adjacent ex-
changes (as when we sort by insertsort or bubblesort), the
resulting distance is called Kendall’s τ . If we allow arbi-
trary exchanges, the distance is called Cayley’s distance.
Ulam’s distance is the distance we get if we allow arbitrary
moves. For example, the permutations a, b, c, d and a, c, d, b

are at distance 1, because we can transform the first one
to the second by simply moving the b to the end. Allow-
ing such operations captures the phenomenon of executing
the body of one loop more or fewer times than the body
of another. Additionally, we want to attribute the differ-
ence between two spectra to the basic blocks involved in
the editing operations; Kendall’s and Cayley’s methods in-
volve too many. For these reasons, we use Ulam’s distance
as our measure. Ulam’s distance is also easy to implement
efficiently [15].



6 Experimental Setup

Using the four instances defined in the previous section,
we wanted to validate experimentally three hypotheses:

• It is possible to locate bugs with the spectra we have.

• The nearest neighbor model outperforms the union and
intersection models.

• Comparing a failing run with its nearest neighbor is
more beneficial to fault location than comparing the
failing run with some other, random run.

Throughout, we will explore how the actual choice of spec-
trum affects the answers to these questions. As mentioned
previously, we developed a tool, WHITHER, that implements
the union, intersection and nearest neighbor models, the
last one with two spectra, the coverage spectrum and the
permutations spectrum. WHITHER is about 1000 lines of
Ocaml [19].

Our subject faulty programs come from the GeorgiaT-
ech version [24] of the Siemens suite [16]. The Siemens
test suite consists of 132 C programs with injected faults
(Table 1). Each program is a variation of one of seven
“golden” programs, ranging in size from 170 to 560 lines,
including comments. Each faulty version has exactly one
fault injected, although the faults are not necessarily local-
ized; some of them span multiple lines or even functions. A
significant number of the faults are simple code omissions:
some of them make some condition in the program stricter,
some make a condition laxer, and some omit a statement
from a sequence. We made some slight cosmetic modifica-
tions to the programs, largely to tune them to the available
tools. For example, we joined lines that were part of the
same statement. The most important change we performed
was to align the programs with the correct one, so that all
bugs were just line modifications, as opposed to line inser-
tions and deletions.

To obtain the pdg, we used CodeSurfer [1], a commer-
cial program slicing tool, which exports a pdg. We had to
convert the exported pdg to a graph over lines, our level of
profiling. We did this by adding a node to the pdg for ev-
ery line, and connecting all line nodes to the pdg nodes that
represented the line. We gave such edges weight 0. The
distance between any two lines is the length of the shortest
directed path between them.

Each of the seven program families comes with a test
suite that exposes the bugs in each of the faulty versions. To
separate the fault inducing inputs from the non-fault induc-
ing inputs, we run the golden version on each of the inputs
and compared the result with the result of running a faulty
program on the same input. An overwhelming number of
tests succeed for each version. Column 6 (#Failed Tests)
of table 1 shows the range of the number of faulty runs for

each program family. For example, a version of print tokens
failed on only 6 of 4072 inputs, and another version of the
same program failed on 186 inputs. Two programs (version
32 of replace and version 9 of schedule2) gave us no faulty
runs. In the first one, the inserted bug was the exchange of
a logical and operation for a bitwise and operation, but on
the system we run the programs this had no effect. For the
second program, the inserted bug exchanges a function call
for another, but the intended function is called transitively
(and the result discarded). We excluded these two programs
from the rest of our experiments. To examine our third hy-
pothesis, we need to consider every pair consisting of a suc-
cessful and a failing run of every specific program version.
The number of such pairs per program version ranges from
about 1500 to about two million. The total number of such
pairs over all programs exceeds 34 million.

While collecting traces, we observed that in some cases,
spectra of successful and failing runs collided. That is, the
spectra of some failing runs were indistinguishable from
the spectra of some successful runs for the same version
of the program. We observed 2888 such collisions with the
coverage spectrum, and 1088 such collisions with the per-
mutation spectrum. Naturally, all the runs that collide in
the permutations spectrum also collide for the binary cov-
erage spectrum. We chose to exclude all the failing runs
with collisions in the binary coverage spectrum from our
experiments, for three reasons. First, when two spectra col-
lide, all the techniques we are concerned with will produce
empty reports, and therefore those runs provide no compari-
son points. Second, any score we would assign to empty re-
ports would be arbitrary since empty reports are obviously
not good reports, but at least they would not mislead the pro-
grammer. Last, we expect the occurrence of collisions to be
rare when using more elaborate spectra. Once we exclude
all failing runs with collisions, there are no failing runs left
for some programs. This left 109 programs that we actually
used in the experiment.

7 Results

We are interested in the average behavior of each
method. We cannot simply average all the scores that each
method achieves for each failing run, because certain pro-
grams have many more runs than others, and the simple
average would be skewed to reflect those programs more.
Instead, we will average the scores in stages, obtaining a
weighted average with every program version having the
same weight.

Let us focus on a program version P , and let us call
F its set of failing runs, S its set of successful runs and
scoreU (f) the score of the union method, when it uses a
failing run f . Then the score of the union method for P is
the average of the scores of the reports based on each failing



Program Description Versions LOC #Tests #Failed Tests Versions with collisions only
print tokens lexical analyzer 7 565 4072 6–186 0
print tokens2 lexical analyzer 10 510 4057 33–518 0
replace pattern replacement 32 563 5542 3–309 1
schedule priority scheduler 9 412 2627 7–293 1
schedule2 priority scheduler 10 307 2683 2–65 1
tcas altitude separation 41 173 1592 1–131 18
tot info information measure 23 406 1026 3–251 2

Table 1. Overview of the Siemens suite.

Score Inter. Union NN/Cov NN/Perm
0-10% 108 101 31 19

10-20% 0 0 7 0
20-30% 0 0 15 2
30-40% 0 0 15 7
40-50% 0 0 10 4
50-60% 0 0 8 21
60-70% 0 0 4 15
70-80% 0 1 5 13
80-90% 0 1 9 10
90-99% 1 4 5 18
100% 0 2 0 0

Table 2. Distribution of scores per method.

run of that program:

scoreU (P ) =

∑

F

scoreU (f)

|F |

The formula for the intersection model is similar.

For the nearest neighbor techniques, the score of the
technique depends not only on the failing run, but also on
the nearest neighbor the technique picks to contrast with
it. If there are multiple nearest neighbors the technique
could uniformly pick any of them. Therefore, to compute
the score for the failing run, we average over the scores ob-
tained by selecting each neighbor. More formally, if each
failing run f in the set of all failing runs F , has a set of
nearest neighbors Nf , then the nearest neighbor score for
the run is

scoreNN (f) =

∑

Nf

score(f, n)

|Nf |

Then the score for a program is defined as in the union and
intersection cases.

7.1 Technique Performance

Table 2 shows the distribution of scores for the four tech-
niques.

The intersection technique, gives an empty report and
achieves a zero score for all programs bar one (version 9
of schedule), for which it gives an almost perfect report.
The reason for the proliferation of empty reports is the fol-
lowing: our test suites assure program coverage. There-
fore, every top-level condition in every program has to be
true in some execution and false in some other. When it
is true, the parts of the code that are in the false branch
are excluded from the intersection. Conversely, when the
condition is false, the parts of the code that are in the true
branch are excluded from the intersection. Therefore, every
line of code that is guarded by at least one top-level con-
dition, cannot appear in the intersection. Note that this is
dependent only on branch coverage of top-level conditional
statements, which even a rudimentary testing suite would
include. The only parts of the program that could appear in
the intersection under top-level coverage are the ones that
are not guarded by anything. But those statements will be
always executed, even in the failing runs we examine. The
intersection technique achieves a high score for version 9 of
schedule for an interesting reason: the program ends pre-
maturely (with a segmentation fault) producing an empty
profile. The bug now is actually in the first executable line
of the main function. Obviously, all successful runs execute
that line; the failing run also executes it, but because of the
segmentation fault, it is not reflected in the spectrum.

The union model did succeed in finding some bugs. The
interesting thing about it though, is its almost bimodal be-
havior. The union model reports either nothing, or things
very close to the bug. It depends on almost the reverse of
what the intersection depends on: it has to be impossible to
achieve full code coverage with only successful runs. This
means that the bug has to be very well localized at the level
of abstraction the spectra provide.

The average score for the nearest neighbor model was
56% with the permutation spectrum, and 35% with the cov-
erage spectrum. The nearest neighbor models give us con-
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Figure 3. Distribution of the difference in
scores between the nearest neighbor model
(with the coverage spectrum) and the union
model for our subject programs

sistently better results than the union and intersection mod-
els, even if the bugs are not found exactly. Nearest neigh-
bors are not hindered by coverage issues. Having a large
number of runs helps, because it is easier to find a close
neighbor of failing run, but it is the existence of a close
neighbor, not the number of runs that matters. This is an
important property. For the union and intersection models
the set of successful runs has to be large enough (to exclude
all irrelevant parts of the program) but not too large, because
then the successful runs shadow the bug. This is why pre-
vious work that is based on these models has to use slicing,
introducing an a priori relevance of the spectra to the bug.
Thanks to the nearest neighbor models we can answer affir-
matively our first question, about the possibility of locating
bugs with the given spectra.

7.2 Technique Comparison

The second question is how the nearest neighbor tech-
niques perform in comparison with the union and intersec-
tion techniques. The comparison with the intersection tech-
nique is not very interesting; in the one case it locates the
bug, the bug is also found by the nearest neighbor tech-
niques (for the same reasons). On the other hand, the in-
tersection technique produces mostly empty reports, so at
least it does not mislead the user.

The question of the behavior of the nearest neighbors
with respect to the union technique is a little harder to an-
swer. The union technique gets a perfect score for two pro-
grams, and gets more scores above 90% than the nearest
neighbor with the coverage spectrum. However, it achieves
fewer scores above 80%. The distribution of the differ-
ence of scores between the union and the nearest neighbor
method is shown in figure 3. The average difference is 27
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Figure 4. Distribution of the difference in
scores between the permutation spectrum
and the coverage spectrum, with the nearest
neighbor model

points. The nearest neighbor does better in all cases but 7.
Not surprisingly, 6 of these cases are the ones where union
gets a score above 90%. However, it is also true that for
those cases, the difference in scores is large, which means
that the nearest neighbor is not performing well. Note
though that this is the average nearest neighbor, and that
among these cases, in two of them there is a particular run
for which the nearest neighbor finds the bug.

Figure 4 shows a similar graph for the difference be-
tween the nearest neighbor with the coverage spectrum and
the nearest neighbor with the permutation spectrum. The
permutation spectrum performs considerably better. On av-
erage, it achieves a score 10 points higher. Still, there are
few cases in which the simpler spectrum does better. The
reason is that, in these cases the more complex spectrum,
which is symmetric, gives us a few more nodes than just the
faulty ones, and therefore the score is a little lower.

7.3 Nearest Neighbor vs. Random Selection

The third hypothesis we wanted to test requires that we
evaluate the utility of selecting the nearest neighbor for
comparison with the failing run as opposed to selecting a
run randomly. Figure 5 shows the distribution of the dif-
ferences of scores between using the nearest neighbor and
using any run. That is, given a failing run, what score would
we get if instead of going through the trouble of choosing
the nearest neighbor, we chose some arbitrary successful
run?

Surprisingly, in the simple spectrum case, the average
run performs a bit better! The simple explanation we have
is that the space that the coverage spectrum defines is too
compact. Because of this, there is always a run that, when
compared with our failing run, it will isolate the faulty line.
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Figure 5. Distribution of the difference in
scores between choosing the nearest neigh-
bor and choosing any successful run uni-
formly (coverage spectrum)
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Figure 6. Distribution of the difference in
scores between choosing the nearest neigh-
bor and choosing any successful run uni-
formly (permutation spectrum)

If this intuition is correct, then enlarging the space, by using
a more complete spectrum, should increase the difference
from the average. Indeed, in figure 6 we show the distri-
bution of the difference between the score of the nearest
neighbor using the more complex spectrum and the average
score of using any run, instead of the nearest neighbor. This
difference is 10 points on average, suggesting that indeed,
in more elaborate spaces, selecting the nearest neighbor sig-
nificantly outperforms selecting a random run.

8 Discussion

We presented a technique for fault localization based on
distances and differences between abstractions of program
runs. We defined a generic architecture for fault localiza-

tion systems based on spectra and models. We defined a
novel evaluation strategy for fault localization systems, and
we used it to compare four instantiations of the architec-
ture: three based on coverage spectra (using a union, an
intersection, and a nearest neighbor model), and one based
on a new abstraction of profile data and the nearest neigh-
bor model. Our experiments showed that the intersection
model performs badly, the union model is bimodal, that the
nearest neighbor model outperforms them on average, but it
only becomes effective for the more elaborate spectra.

There are some threats to the validity of our results: the
choice of programs, the choice of spectra, and the fact that
we used our own evaluation strategy. The programs in the
Siemens suite are relatively small, and the faults are in-
jected; there is definitely need for more realistic experi-
ments. The spectra we use are simplistic, as witnessed by
the number of spectrum collisions, and there is no guarantee
that the results will hold for more elaborate spectra. Still,
we feel that the idea of using a single similar run to help
isolate faults will hold with more elaborate spectra, as wit-
nessed by previous research that exploited input structure.
Perhaps the strongest threat is that the performance evalua-
tion method is our own. However, its simplicity leads us to
believe that there are no hidden biases in favor of the nearest
neighbor model.

Our technique assumes the availability of a large num-
ber of runs. This need can be addressed by keeping the
results of beta-testing, by a test case generator [18], or by
driving a manual testing process [13], perhaps based on the
fault localization report. We have claimed that our tech-
nique is independent of the input structure. If the test cases
come from a test case generator, the advantage is smaller:
the existence of a test generator assumes knowledge about
the input structure, but our technique alleviates the need for
a distance metric on inputs and it discharges the assumption
that similar inputs lead to similar runs.

More static approaches to fault localization are possible:
Engler et al. [7] discover code structure rules in programs
similar to the subject program, and then check for violations
of those rules.

Our architecture is simply a filtering architecture [6], and
it provides no support for explaining the causes of the error.
Existing work in model checking [2, 9] addresses this need
for faults against a specification. Zeller’s technique for iso-
lating causes by manipulating two program runs [28] pre-
sumably works better when the runs are similar, and there-
fore could use our technique as a preparation step. Our tech-
nique also provides no hint as to which parts of the report
are more likely to be faulty; Jones et al. [17] provide such
a ranking, but their technique assumes multiple faulty runs,
which is problematic in the case of multiple faults.

In future work, we would like to explore the use of more
elaborate spectra. For example, recent work [10, 20, 22]



abstracts runs as collections of predicates or invariants [8]
and we are investigating better models for them.
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