Finding Application Errors and Security Flaws
Using PQL: a Program Query Language

Michael Martin

Benjamin Livshits

Monica S. Lam

Computer Science Department
Stanford University

{mcmartin,livshits,lami@cs.stanford.edu

ABSTRACT

A number of effective error detection tools have been baitecent
years to check if a program conforms to certain design rulgs.
important class of design rules deals with sequences ofgasro-
ciated with a set of related objects. This paper presentsguéme
called PQL (Program Query Language) that allows prograramer
to express such questions easily in an application-spexifitext.

A query looks like a code excerpt corresponding to the skbrte
amount of code that would violate a design rule. Details efttr-
get application’s precise implementation are abstrackeyaThe
programmer may also specify actions to perform when a match i
found, such as recording relevant information or even ctirrg an
erroneous execution on the fly.

We have developed both static and dynamic techniques to find
solutions to PQL queries. Our static analyzer finds all pidén
matches conservatively using a context-sensitive, flaseisitive,
inclusion-based pointer alias analysis. Static resukisaiso use-
ful in reducing the number of instrumentation points for dyric
analysis. Our dynamic analyzer instruments the sourcerpnodo
catch all violations precisely as the program runs and tmoptly
perform user-specified actions.

We have implemented the techniques described in this papgler a
found 206 errors in 6 large real-world open-source Javaiegpl
tions containing a total of nearly 60,000 classes. Thesg®are
important security flaws, resource leaks, and violationsoofsis-
tency invariants. The combination of static and dynamidyeis
proves effective at addressing a wide range of debuggingpesd
gram comprehension queries. We have found that dynamigsisal
is especially suitable for preventing errors such as sgcwiner-
abilities at runtime.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging—Tracing

This work was supported in part by the National Science Faund
tion under Grant No. 0326227.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OOPSLA'050ctober 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/00108$5.00.

General Terms
Languages, Security, Reliability

Keywords

program traces, pattern matching, web applications, Sgktion,
resource leaks, bug finding

1. INTRODUCTION

Advanced program analysis has been applied fruitfully td fin
large numbers of errors in software [10, 18, 20, 46, 54]. Ruog
checkers are carefully crafted by experts and, as suchaayeted
at finding patterns common to many application programsadt f
these same techniques can also be used effectively to fioidpatr
terns that are specific to individual applications. To eitghte full
potential of this approach, we need to make it easy for agfptio
developers to create their own custom checkers.

This paper presents Program Query Language (PQL), a lan-
guage that allows developers to express a large class a€afph-
specific code patterns. The system automatically genehaies
the query a pair of complementary checkers: a static cheblaer
finds all potential matches in an application and a dynaméckér
that traps all matches precisely as they occur, and caatmitiser-
specified logging or recovery actions upon a match. We have de
veloped a prototype based on these ideas for Java, and used it
find and repair numerous security and resource managemers er
in large open-source applications.

1.1 A Simple Example

PQL focuses on the important class of error patterns thdt dea
with sequences of events associated with a set of relategtsbj
For example, for security reasons, a password received fhem
user should never be written out to disk without encryptiSach
patterns are hard to express using conventional techniitpegsro-
gram assertions. The objects of interest may be stored inssaul
between local variables, passed as parameters, or eveadpass
through generic collections. The sequence of events magdie s
tered throughout many different methods and guarded bypwari
predicates. PQL can express these kinds of patterns asnthe si
plest prototypical code that exhibits the sequence of svehin-
terest. The PQL system automatically finds all the matches in
program that have the equivalent behavior by abstractiray aw
relevant control flow and disregarding how objects are naméte
code.

As an example, let us consider SQL injection vulnerabgifi,

27], ranked as one of the top five external threats to corpdiiat
systems [52]. Applications that use user-controlled ingttings
directly as database query commands are susceptible to SQL i

jections. Consider the following code fragment in a Javalseer
hosting a Web service:

con. execut e(request . get Paranet er ("query"));

tines. Should a match occur, it will intercept the calleteecute
and run theJtil.CheckSQL routine instead.

Because the static results are sound and so have no false nega
tives, any point that the static analysis decides is irelecannot
possibly contribute to a match. The dynamic matcher is thers f

This code reads a parameter from an HTTP request and passes ifo ignore it. PQL combines the two analyses by using the tesfil

directly to a database backend. By supplying an appropuizeey,
a malicious user can gain access to unauthorized data, daimag
contents in the database, and in some cases, even exedtri@arb
code on the server.
To catch this kind of vulnerability in applications, we wighask

generally if there exist some

e objectr of typeHttpServletRequest,

e objectc of typeConnection, and

e objectp of typeString
in the code such that the result of invokiggtParameter onr
yields stringp, and that string is eventually used as a parame-
ter to the invocation oéxecute onc. We can replace the call to
execute With a custom routin&/til.CheckedSQL that validates
the query to ensure that it matches a permissible actionhelf t
query is deemed invalid, the request is not made. Note tlat th
two events in the application need not happen consecutitiedy

the static analysis to remove unnecessary instrumentaltiothis
example, only thosgetParameter andexecute calls returned as
potential matches by the static analysis need to be institede

1.2 Contributions

PQL permits easy specification of a large class of patterns re
lated to sequences of events on objects. A developer whasneed
to mine information from a program run can use it to produce ta
geted instrumentation. One who has just discovered a budnéha
suspects also lurks elsewhere in the code can use it to yuidte
a checker that will search for similar problems. To this dA@L
contributes the following:

Static checkers that leverage powerful analysesAn important
result of this work is that we have placed sophisticated fanog
analyses in the hands of developers. The developers caassxpr
simple queries and static checkers that use context-sengsitinter

stringp can be passed around as a parameter or stored on the heaglias analysis are automatically generated for them. Calyais is

before it is eventually used. We can express such a query in PQ
as shown in Figure 1. The input togetParameter is immaterial,
and is represented by the “don’t care” symbol'.“ Once the first
call has been made, no additional matching is required é&xXoep
trapping the final substitution. Note that SQL injections arore
subtle in general and require more sophisticated pattdimes.full
SQL injection problem is discussed in Section 5.3.

Given an input pattern, the PQL system automatically preduc
a sound static checker that finds all its potential matches in a
program. This checker uses a state-of-the-art contexsitsen
inclusion-based points-to analysis [59]. The results aogv-fl
insensitive with respect to the query; that is, for the quarkig-
ure 1, the static checker would report all cases where thexfigsi-
ment of a call toexecute is found to point to an object returned
by some call tgzetParameter. The static checker does not ensure
that the calls occur in the same order. This, combined withrth
trinsic undecidability of statically matching a query fdr@ossible
runs, means that static results will generally have falsstipes.
Note that, unlike many currently available static techeigjuour
static checkers are sound and will not produce false nezgtany
possible match will be reported.

sound, and as such its answer is guaranteed to include alispoi
that may be relevant to the query. This allows its resultstaged
to optimize the dynamic matcher.

Optimized dynamic instrumentation. PQL automatically gen-
erates a specialized matcher for a query and weaves insitame
tion into the target application to perform the match at imst
These matchers differ from previous techniques in two whkirst,
PQL transcends traditional syntax-based approaches bghimgt
against the history of events witnessed by object instan&es-
ond, the higher-level semantics of PQL make possible theofise
static analysis to reduce the overhead of dynamic checkingy.
system combines the dynamic matcher with sound static regste
to produce its checkers.

Dynamic error recovery. PQL queries may specify functions to
execute as a match is found, optionally replacing the lasttawith

a user-specified function. This functionality can be usegtover
from error conditions or to defend against attempts to bregpli-
cation security.

Experimental evaluation of our approach. All the techniques in
this paper have been implemented in a prototype system tirasw
on Java programs. We have written tens of queries in the eafrs

Dynamic checkers, on the other hand, can only find matches tha developing the tool and as part of our ongoing work. To exbjic

actually occur at runtime, but are precise and permit ontwev-

test its ability to find bugs in large programs, we appliedtdeh-

ery actions to be triggered. When used as a dynamic tool, PQL nique to 6 large real-life applications with nearly 60,008sses

creates an instrumented version of the input program tipattea
runtime match if and only if there are objdaastanceghat match
the query. For the query in Example 1, PQL will instrument the
code to remember all object instances returnegdnParameter
and check them against the parameters suppliegkéaute rou-

query sinpl eSQLI nj ection()
uses
obj ect HttpServl et Request r;
obj ect Connection c;
object String p;
matches { p = r.getParaneter(_); }
repl aces c. execut e(p)

with Util.CheckedSQL(c, p);

Figure 1: Simple SQL injection query.

combined and found 206 errors. We found several securityerul
abilities and object persistence errors in Web applicatibat can
permit database corruption or denial of service attacks. alse
found resource management errors that eventually lead noonye
exhaustion. The queries to find these errors were deriveedaimg
descriptions of the error patterns and APIs of Java libsagad by
exploring the application code using PQL. The runtime ogathin
these experiments ranged from 9% to 125% in the most heawily i
strumented case. In the situations where overhead wasdhtegt,
static analysis was applicable and removed between 8298ta®9
the instrumentation, and cut the overhead below 40%, aedt bft-
low 3%. We also performed tests against standard benchraacks
found that in the extreme where nearly every event in siganific
slowdown peaks at approximately 19 times.

Our experimental result suggests that the language cornéns-a
portant class of program error patterns. Even though we netre

familiar with the benchmarks, we were able to find errors is th
large code base with relatively little effort.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 gives
an overview of the PQL language. Sections 3 and 4 describe our
dynamic and static checkers, respectively. Section 5 gesva de-
tailed experimental evaluation of our analysis approachdsle
Section 6 discusses applications of our analyses in morergen
terms. Finally, Section 7 describes related work and Se&icon-
cludes.

2. PQL LANGUAGE OVERVIEW

The focus of PQL is to track method invocations and accesses
of fields and array elements in related objects. To keep the la
guage simple, PQL currently does not allow references taltes
of primitive data types such as integers, floats and chasater
primitive operations such as additions and multiplicagiomhis is
acceptable for object-oriented languages like Java becsinsll
methods are used to encapsulate most meaningful groupsof pr
tive operations. The ability to match against primitiveasits may
be added to PQL as an extension in the future.

Conceptually, we model the dynamic program execution as a
sequence of primitive events, in which the checkers find il s
sequences that match the specified pattern. We first degbebe
abstract execution trace, then define the patterns desgrbibse-
guences of the trace.

2.1 Abstract Execution Traces

We abstract the program execution as a trace of primitivatsye
each of which contains a unique event ID, an event type, aisd a |
of attributes. Objects are named by unique identifiers. Riguges
on objects, and so it only matches against instructionsdinettly
dereference objects. We also need to be able to detect thefend
the program in order to match queries that demand that sdmee ot
event never occur. As a result, all but the following eigh¢rv
types are abstracted away:

o Field loads and stores. The attributes of these event types a
the source object, target object, and the field name.

e Array loads and stores. The attributes of these event types
are the source and target objects. The array index is ignored

e Method calls and returns. The attributes of these evenstype
are the method invoked, the formal objects passed in as ar-

guments and the returned object. The return event parameter

includes the ID of its corresponding call event.

e Object creations. The attributes of this event type are the
newly returned object and its class.

e End of program. This event type has no attributes and occurs
just before the Java Virtual Machine terminates.

Example 1. Abstract execution trace.

We illustrate the concept of an abstract execution trach thie¢
code below:

1 int len = nanes.|ength;
2 for (int i =0; i <len; i++) {

3 String s = request. get Paraneter (nanmes[i]);
4 con. execute(s);

5 1}

The code above runs through the arnawes; for each element, it
reads in a parameter from the HTTP request and executegit. Fi

Event Caller | Call/ Event
ID ID Return

1 02 = 01[]
2 call 04 = 03.getParameter(o2)
3 2 | return | o4 = o3.getParameter(o2)
4 call os.execute(04)
5 4 | return | os.execute(os4)
6 06 = 01[]
7 call 07 = 03.getParameter (o)
8 7 | return | o7 = os.getParameter(og)
9 call os.execute(o7)

10 9 | return | os.execute(or)

11 call os.execute(og)

12 11 | return | os.execute(os)

Figure 2: Abstract execution trace for Example 1.

information on the event type and its attributes. In thiscexien,
names iS bound to objecb:; o2 andos are elements of array;
(the precise index is abstracted awaygquest is bound to object
03, s is bound to objecbs ando~ in the first and second iteration,
respectively.

This execution yields two matches to thimpleSQLInjection
query in Figure 1. The first match is satisfied with= o3, ¢ = 05,
p = 04, and the second is satisfied wjthmatched taw7, and the
same values for andc. O

2.2 PQL Queries

A PQL query is a pattern to be matched on the execution trace
and actions to be performed upon the match. A match to the/quer
is a set of objects and a subsequence of the trace that togathe
isfy the pattern.

The grammar of a PQL query is shown in Figure 3. The query
execution pattern is specified with a set of primitive everan-
nected by a number of constructs including sequencingiapag-
guencing, and alternation. Named subqueries can be usefine d
recursive patterns. Primitive events are described usifaya-like
syntax for readability. A query may declare typed variapldsich
will be matched against any values of that type and any oliits s
types. The use of the same query variable in multiple evelis i
cates that the same object is used in all of the events.

Section 2.2.1 discusses variables in the context of a qSery
tion 2.2.2 outlines how statements are defined and comb8est,
tion 2.2.3 describes PQL's subquery mechanism, and Sezioh
discusses the options PQL provides for reacting to a match.

2.2.1 Query Variables

Query variables correspond to objects in the program that ar
relevant to a match. They are declared inside of subquenigsie
local to the query they are declared in.

The most common variables represehtects and represent in-
dividual objects on the heap, Object variables have a clasgen
that restricts the kind of object instances that they carcimatf
that name is prefixed with &" then the object mustotbe castable

ure 2 shows an abstract execution trace for the code in the cas to that type. If the same object variable appears multiphesiin a
where thenames array has two elements. Each event in the trace query, it must be matched to the same object instancecdients
is listed with its ID, the ID of the caller in the case of a retuand of the object need not be the same for multiple matches.

queries

query

query*

query qid ([decl[, decl*])

[r et ur ns declList;]

[uses declList;]

[wi t hi n methodinvog]

[mat ches { seqStmt]

[repl aces primStmtwi t h methodlnvog]*
[execut es methodInvod, methodInvol ;]*

methodinvoc — methodNamgdList)

decl — obj ect [!'] typeName id
menber namePattern id
declList — obj ect [!'] typeName iq, id)*|
nmenber namePattern id , id)*
stmt — primStmt| ~ primStmt]|
unifyStmt| { seqStm#
primStmt — fieldAccessid |
id = fieldAcces$
id[]=id|
id=id[] |
id = methodNamé¢ idList) |
id = new typeNam¢ idList)
seqStmt — (poStmt,)*
poStmt — altStmt(, altStmt)*
altStmt — stmt("]|" stmt)*
unifyStmt — id:=id
([idList]) := qid (idList)
typeName — id(.id)*
idList — [id(,id)*]
fieldAccess — id.id
methodName — typeName id
id,qid — [A-Za-z][0-9A-Za-z_]*

namePattern — [A-Za-z*_][0-9A-Za-z*_]*

Figure 3: BNF grammar specification for PQL.

There are alsamnembervariables, which represent the name of
a field or a method. Member variables are declared with téxtua
pattern that the member name must match. A patternofvill
match any method name. If a member variable occurs multiple
times in a pattern, it must represent the same field or methotkn
in each event.

For convenience, we introduce a wildcard symbo! Wwhose
different occurrences can be matched to different memberesa
or objects. However, values matched to wildcard symbolsiafan
be examined or returned.

Query variables are eithargumentgpassed in from some other
query that has invoked itjeturn valueqacted upon by the query’s
action, or returned to an invoking query, or both)jmternal vari-
ables(used inside the query to find a match, but otherwise isolated
from the rest of the system).

2.2.2 Statements

Most primitive statements in our query language corresmtind
rectly to the event types of the abstract execution tracethe
invocations are the exception to this; they match all eveetareen
a call to the method and its matching return event. Refesetwe
objects in a primitive statement must be declared objeatyoueei-
ables, or the special variable ™, which is a wildcard placeholder
for any object not relevant to the query. References to mesnbe
may be literals or declared member query variables. A field or
method in an event need not be declared in the type assouwited
its base variable; in such cases, a match can only occur Haass
defines it.

Primitive statements may be combined into compound state-
ments, as shown in the grammar. A sequeack specifies that
a is followed byb. Ordinarily, this means any events may occur
between them as well—the primary focus is on individual otge
S0 sequences are, by default, not contiguous. An event méor-be
bidden from occurring at a point in the match by prefixing ithwi
the exclusion operator~". Thus, the sequenceg, ~ b; ¢ matches
a followed byc if and only if b does not occur between them. Wild-
cards are permissible, so excluding all possible eventsarar a
sequence to be contiguous in the trace if desired.

The alternation operator is used when we wish to match any of
several events (or compound statements):a@hdb are statements,
thena|b is the statement matching eitheor b.

To match multiple statements independently of one anotier,
use partial-order statements, which separate the staterttebe
matched with commas. The statemenb, ¢; would match the
three statements, b, andc in any order. If a clause in a partial-
order statement is a sequence itself, then sequencingnvitiat
clause is enforced as normal.

Of the three combination operators, alternation has thiedsig
precedence, then partial-order, and lastly sequencingceBrmay
be used to enforce the desired precedence.

Thewithin construct is introduced to allow the specification of
a pattern tdully match within a (dynamic) invocation of a method.
This translates to matching against a method call event,rttach-
ing the pattern—and insisting that the return of the methatcbi-
cur at any point between the call and the full match of thegpatt

Queries that end with excluded events repre$igatess prop-
erties If the query is embedded inwithin clause, then it will
return a match if and when the end of the invocation of the otbth
is reached without the excluded event occurring. If the nyaiery
ends with excluded events, then the match cannot be confumed
til the program exits.

Example 2. Forcing closing of stream resources.

Java has many automatic resource management features, but
system-wide resources such as file handles still must be atignu
released or the system risks resource exhaustion. Somedoéih

gies demand that resources allocated in a method must ble-deal
cated before the method ends [58].

query forceC ose()
uses object InputStreamin;
within _ . _ ();
mat ches {
in = new I nputStrean();
~in.close();

executes in.close();

Figure 4: Checking for potential leaks of file handles.

Shown in Figure 4 is a query that finds all methods that do not
managenputStream resources according to such a methodology.
Here, a match is found if some invocation to methedcreates

an InputStream in, and thatin is not closed before the method
ends. Should it escape the allocating method, a catfitsse is
inserted. Note thatlose need not be invoked directly by:; it

can be invoked by a method called hy. Ordinarily, thewithin
clause specifies a particular method of interest; for thilem,

the pattern applies to all methods, and so both the basetabjdc
the method name are wildcardsd

2.2.3 Subqueries

Subqueries allow users to specify recursive event seqaence
recursive object relations. Subqueries are defined in a enamal-
ogous to functions in a programming language. They canmetur
multiple values, which are bound to variables in the caltjgry.

By recursively invoking subqueries, each with its own setani-
ables, queries can match against an unbounded number ofbje

Values from input and return query variables are transferre
across subqueries by unifying formals with actuals, andgrnetal-
ues with the caller’s variablegJnificationin the context of a PQL
match involves ensuring that the two unified variables anento

to the same value in any match. If one variable has been boundgram behavior.

by a previous event but the other has not, the undefined Variab

instead locate objects of interest and see how these ohjectsed

in the program. PQL makes such explorations easy. For exampl
the query shown in Figure 5 finds all methods invoked on object
read from a network socket. The query first finds all the steeam
derived from the input stream of a socket, then all objecd feom
any of the derived streams. It then matches against any uhetho
represented by the method parameteinvoked upon the objects
read.

2.2.4 Reacting to a Match

Matches in PQL often correspond to notable or undesiralde pr
PQL provides two facilities to log infornoeti
about matches or perform recovery actions.

is bound to the same value. If both have already been bound to The simplest version of these is tkgecutes clause, which

different variables, then no match is possible.

When writing recursive subqueries, it is often necessarytie
base case to force the return value to be equal to one of its arg
ments. PQL provides a unification statement to express thés:
statement := b does not correspond to any program event, but
instead unifies its parameter@ndb.

Example 3. Recursive subqueries.

Recursion is useful for matching against the common idiom of
wrappers in Java. Java exposes higher-level 1/0 functignz@-
viding wrappers over base input streams. These wrappessibre
classes of the top-level interfacesader (for character streams)
and InputStream (for byte streams). For example, to read Java
Objects from some socket one might first wrap the stream with

a BufferedInputStream to cache incoming data, then with an
ObjectInputStream to parse the objects from the stream:

rl = new Bufferedl nput Strean(s.getlnputStream)));
r2 = new Obj ect | nput Strean(r1l);
obj = r2.readject();

In general, there can be arbitrary levels of wrapping. Tdwap
this, we need to use a recursive pattern, as shown in Figuraé.
base case iderivedStreansubquery declares that any stream can
be considered derived from itself; the other captures desingap-
per and then re-invokegerivedStreamecursively. O

query derivedStrean(object |nputStream x)
returns object |nputStreamd;
uses object InputStreamt;
mat ches
d:=x
| {t = new I nputStrean(x);
d := derivedStrean(tnp); }

}

query main()

returns nethod * m

uses
obj ect Socket s;
obj ect InputStreamx, vy;
obj ect Cbject v;

mat ches {
X = s.getlnputStrean();
y := derivedStrean(Xx);
v = y.readCbject();
v.m();

executes Util.PrintStackTrace(*);

Figure 5: Recursive query for tracking data from sockets.

It is natural to ask how a developer should go about writing a

names a method to run once the query matches. PQL subqueries
may also have one or moreplaces clauses. These name a state-
ment to watch for, and a method representing the action taxéde e
cuted in its place. This method may take query variables @s ar
ments. Passing the special symbe! &s an argument will pack-

age every variable binding in the match into a collectiort ttean

be handled generically.

Some basic actions are defined as methods in a tlass
as part of the base system; the two most frequently used are
Util.PrintStackTrace, which takes the #" argument and
dumps information about the variable values and the staatetr
where the final event occurred, adil.Abort, which takes no
arguments and terminates the program immediately. Botlinare
tended for theexecutes clause.

When implementing actions, the method must retustd for
executes clauses, or a value of the same type of the replaced event
for replaces. Each argument to the action is represented as an
array of Objects. Arrays are necessary because multiplehmsat
may complete on a single event. Each index into the argument
array corresponds to a single match that has completed.

2.3 Expressiveness of PQL

PQL as a pattern language is fundamentally concerned with ob
jects. It seeks to find a set of heap objects (disregardingthew
are named syntactically in the code) to parameterize a xbnte
sensitive pattern of events over the execution trace.

The events in these patterns do not refer to primitive vadues
as integers or individual characters, and so PQL is not dapmtb
tracking them.

The subquery mechanism introduces a call chain that permits
the matcher to match context-free grammars. Each produiiio
such a grammar can be considered to be independently diaditen
quantified with respect to objects on the heap. This means tha
despite the fact that any query can only refer to a finite nurobe
variables, any number of objects may be involved in a matcha on
recursive query.

PQL does not directly provide a Kleene-star operator. Hanev
this facility may be simulated with tail-recursive queriés prac-
tice, useful queries with loops need to refer to differerjeots or
chains of objects, and in both cases, a simple Kleene stasui-
cient to capture the precise semantics.

The partial-order operator specifies that the executiopasir
must be able to match each of several clauses, which is equiv-
alent to specifying the intersection of the languages $ipelcby
each clause. PQL’s class of languages is thus that of tharelas
context-free languages combined with intersection; tlas<is a
superset of context-free languages.

PQL query. In some cases such as SQL injections, studying the The default semantics of the sequencing operator in PQLadwvoul

API of relevant methods is sufficient. Sometimes it is uséful

also seem to require patterns to be unduly permissive, sirege

permit arbitrary blocks of statements to occur between tsveh
interest. However, due to the object-centric focus of tingleage,
this usually is precisely the behavior desired. For the sioces

when this is not what is desired, one can use exclusion events

forbid all intervening events. This permits the languagexpress
arbitrary patterns on the execution trace, while keepirggniost
generally useful patterns the simplest to express.

3. DYNAMIC MATCHER

- finish
¢ / a=x ¢
€N

Q call (t= <init>)

N,

? ifreturn (t = InputStream.<init>)] 2

™

<iniy”

return (t= Subquery(derivey

Figure 6: State machine for th@éerivedStream query.

A direct, naive approach to finding matches to PQL queries dy secutive matched statements. We represent this notionavekip

namically consists of the following three steps:

transition, which connects a state back to itself on any event that

1. Translate each subquery into a non-deterministic state m doesn’t match the set of excluded events. Note that the aiccep
chine which takes an input event sequence, finds subse-state does not have a skip transition, so matches are rdpmrtg
quences that match the query and reports the values boundonce. We label skip transitions with a “?” to indicate thatimay

to all the returned query variables for each match. If there i

match any event, or with “I[event]” to indicate that the tsition

only amain query, this can be a simple finite state machine. will match any event but the one listed.
More complicated queries require additional machinery, de Null transitions. A null (¢) transition does not correspond to any

scribed in Section 3.1.
2. Instrument the target application to produce the fultrzias
execution trace.
3. Use aquery recognizer to interpret all the state macloivers
the execution trace to find all matches.
The procedure as described is quite inefficient. To reduseun
mentation overhead, we perform the following optimizasioRirst,
instrumentation code is inserted only at those programtpadirat
might generate an event of interest for the specific querymple
type analysis excludes operations on types not related jectsb
in the query. We use the results of our static analysis, destr
in Section 4, to further reduce the instrumentation by edicig
statements that cannot refer to objects involved in any Imaftthe
query. Also, instead of collecting full traces, our systeatks all
the partial matches as the program executes and takes ewntioe:
diately upon recognizing a match.

3.1 Translation From Queries To State
Machines

A state machine representing a query is composed of: a set of

states, which includes a start state, a fail state, and apastate;
a set of state transitions; and a set of variable parameéigyartial
match is given by a current state and a sebioidings—a map-

event; it is taken immediately when encountered. Any state w
outgoinge transitions must have all outgoing transitionsb&hey
may optionally carry a predicate; the transition may onlytdden

if the predicate is true. If it is not, the matcher transitiatirectly
into the fail state.

Subquery invocation transitions These behave mostly like ordi-
nary transitions, but correspond to the matches of entassiply
recursive, queries.

We preprocess the queries to ease translation. No subqusty m
directly or indirectly, invoke itself without any intervary events.
So, first we eliminate such situations, a process analogotiset
elimination of left-recursion from a context-free gramrfigr Sec-
ond, excluded events are propagated forward through supque
calls and returns so that each set of excluded events is @ithe
the end ofmain or immediately before a primitive statement.

We now present a syntax-directed approach to construdtieg t
state machine for a query. Associated with each statemémt
the query are two states, denot&ef (s) and aft(s), to refer to
the states just before and afteis matched. For a query with state-
ments, the start and accept states of the query are staf¢s) and
aft(s), respectively. As an example, thierivedStream query
from Figure 5 is translated to the state machine shown inrEigu

ping from variables in a PQL query to objects in the heap at run Array and field operations. These are the primitive statements

time. A state transition specifies the event for which undeictv
a current state and current bindings transition to the rtex¢ and

that correspond to single events in the trace. For a primitate-
ments of typet, the transition frombef (s) to aft(s) is predicated

a new set of bindings. Because the same event may be intipret Dy getting an input event also of typeand that the attributes in

in different ways by different transitions, a state machiray non-
deterministically transition to different states givere game input.

To represent partial-order statements, states can be rodue t
join points in these cases, the state machine must determine that

every incoming transition has a compatible partial matctacte

outgoing match from such a state is a combination of one incom

ing match from each transition; every possible consistentlina-
tion is formed. A combination is consistent if and only if rnect
matches define the same variable to different values. Indinerae
case where no incoming transition binds any variable boyrahly
other transition, the outgoing matches are the cartesiagugt of
all incoming matches.

State transitions generally represent a single primitiggesnent
corresponding to a single event in the execution trace. elhe
three special kinds of transitions:

Skip transitions. A query specifies aubsequencef events to
match. Unless noted otherwise with an exclusion statensent,
arbitrary number of events of any kind are allowed in betwean

must beunifiable with those in statement and the current bind-
ings. An attribute ire with valuezx is unifiable withs and current
bindings if

1. either the corresponding attributedias a literal value:

2. oritrefers to a parameter variahl¢hat is either unbound or

bound to valuec.

If the attribute refers to an unbound variaklgthe pair (v, z) is
added to the set of known bindings.
Exclusion. For an excluded primitive statement of the forms’,
bef(s) = aft(s). The default skip transition is modified to be
predicated upon not matching.
Sequencing If s = s1;s2, thenbef(s) = bef(s1), aft(s) =
aft(s2), andaft(s1) = bef (s2).
Alternation. If s = s1|s2, thenbef(s) providese transitions to
bef (s1) andbef (s2); similarly, aft(s1) andaft(s2) each have an
transition toaft(s).
Partial order. Partial orders resemble alternation statements: if
s = s1,82, then bef(s) providese transitions tobef(s1) and

bef (s2); similarly, aft(s1) and aft(s2) each have am transition

to aft(s). The primary difference is that theft(s) state is a join
point.

Method invocation. If s is a method invocation statement, we
must match the call and return events for that method, asasell
all events between them. To do this, we create a fresh statd a
new event variable. We create a transition frorbef (s) to ¢ that
matches theall event, and bind to the ID of the event. We cre-
ate another transition fromto aft(s) that matches aeturn event
with ID v. The skip transition from back to itself is modified to
exclude the match of the return event. Call and return evargs
unified in a manner analogous to array and field operations.
Creation points. Object creation is handled in Java by invoking
the method < init >", and is translated like any other method
invocation.

Context. Thewithin clause is represented by nesting the automaton
representing the body between a pair of matching call andmret
event pairs. The skip transitions are modified to not matefréh
turn, forcing the failure of any match that does not completain
the call.

Unification statements A unification statement is represented by
a predicated transition that requires that the two variables on the
left and right have the same value. If one is unbound, it veidjudre
the value of the other.

Subquery invocation Subquery invocations are treated as if it
the subquery match were a primitive event in its own righte Th
recognizer handles subquery calls and returns on its ownre Mo
details are discussed in Section 3.3.

3.2 Instrumenting the Application

The system instruments all instructions in the target apfibn
that match any primitive event or any exclusion event in therg
At an instrumentation point, the pending event and all @iewb-
jects are marshalled and sent to the query recognizer. Tog+e
nizer will update the state of all pending matches and thamme
control to the application.

The recognizer does not interfere with the behavior of the ap
plication except via completed matches; therefore, aryumen-
tation point that can be statically proven to not contribiteny
match need not be instrumented. In particular, we can opéimi
away instrumentation where the referenced objects hatieata
declared types that conflict with the query. More sophistidap-
timization techniques are discussed in Section 4.

3.3 The Query Recognizer

The recognizer begins with a single partial match at therbegi
ning of the main query, with no values for any variables. ¢eiges
events from the instrumented application and updates aiéotly
active partial matches. For each partial match, each trangiom
its current state that can unify with the event produces a peEsv
sible partial match where that transition is taken. A singlent
may be unifiable with multiple transitions from a state, sdtiple
new partial matches are possible. If a skip transition isgmeéand
its predicates pass, the match will persist unchanged. elskip
transition is present but a predicate fails the match ttiamsi to the
fail state. If the skip transition is present but a predisatalue is
unknown because the variables it refers to as are of yet umbou
then the variable is bound to a value representing “any olijet
does not violate the predicate.” Predicates accumulateaifsuich
objects are unified; unification with any object that satsséitt such
predicates replaces the predicates with that object.

If the new state hastransitions, they are processed immediately.

If a transition representing a subquery call is availabbenfthe
new state, a new partial match based on the subquery’s state m
chine is generated. This partial match begins in the sulytpustart
state and has initial bindings corresponding to the argusime
subquery was invoked with. A unique subquery ID is generfied
the subquery call and associated with the subquery caparsal
match, with the subquery callee’s partial match, and with @ar-
tial match that results from taking transitions within théaguery
callee.

Join points are handled by finding the latest state that dateén
the join point and treating it as theplit point Each incoming tran-
sition to the join point has a submachine representing #iigg@om
the split point to that transition. When a split point is rfeeg, each
of these submachines is matched independently in a mamiausi
to subqueries. The join point then collects and combinegimest
as they complete, and propagates combined matches onck all o
them have completed.

Once a partial match transitions into an accept state, inbeg
to wait for events named ineplaces clauses. When a targeted
event is encountered, the instruction is skipped and thstisuted
method is run instead. Aexecutes clause runs immediately once
the accept state is reached.

When a subquery invocation completes, the subquery ID i@ use
to locate the transition that triggered the subquery intiona The
variables assigned by the query invocation are then unifidtdtie
return values, and the subquery invocation transition ispieted.
The original calling partial match remains active to accaapt ad-
ditional subquery matches that may occur later.

In order for this matcher to scale over long input tracessit i
critical to be able to quickly acquire all relevant partiahtcthes
to an event. We use a hash map to quickly access partial nsatche
affected by each kind of event. This map is keyed not only en th
specific transition, but also on all variables known to haalees at
that point in the query. For queries whose partial matchesisb
of at most one variable-value pair of binding, our implenagion
is very efficient as it needs to perform only one single haskup.

4. STATIC CHECKER & OPTIMIZER

PQL makes it easy for developers to take advantage of centext
sensitive points-to analysis results. We have developed|gm+
rithm to automatically translate PQL queries into queri@sao
pointer analysis result, shielding the user from the neddirtztly
operate on the program representation or the contexttsense-
sults. This translation approach is very flexible: even gfou
our checkers are currently flow-insensitive, flow sengitician be
added in the future to improve precision without needing talify
the queries themselves.

Accurate interprocedural pointer alias analysis is altto the
precision of PQL static checkers, because events relevaatgar-
ticular query may be widely separated in the program. The an-
alysis for PQL must be sound, because false negatives mean th
results are unusable for optimization. This is in contrastigny
recently developed practical static checkers [10, 18, 6#twuse
unsound analyses and thus produce both false-negativeabsed f
positive warnings.

Our checkers use pointer information from a sound cloning-
based context-sensitive inclusion-based pointer aliatysis due
to Whaley and Lam [59]. This analysis computes the points-to
relations for each distinct call path for programs withoetur-
sion. Call paths in recursive programs are reduced by trgati
each strongly connected component as a single node. Th&spoin
to information is stored in a deductive database catigdbddb.

The data are compactly represented with binary decisicgraias

(BDDs), and can be accessed efficiently with queries writighe
logic programming language Datalog.

4.1 Thebddbddb Program Database
All inputs and results for the static analyzer are storedetes r

4.2 Translation from PQL to Datalog

We perform static analysis by translating PQL queries inad-D
alog and usindgddbddb to resolve the queries. Datalog is a highly
expressive language, including the ability to recursivebecify
properties, meaning that PQL queries may be translated ta-Da

tions in thebddbddb database. The domains in the database in- log approximation using a simple syntax-directed approach

clude bytecode®, variablesV/, methods\/, contextsC', heap ob-
jects named by their allocation sité, and integersZ. The context
domain represents the various call chains that can occteipro-
gram, and is used to qualify pointer information. Two poirre

lations that are true in the same calling context are aswsatigith

the same value i@'. For a further treatment of this, see [59].

In the beginning of the translation process, neemalizethe in-
put PQL queries so that thetches part of each query is an alter-
nation of sequence statements; in other words, the top reesk |
statement of theatches clause is altStmteach of which clauses
is aseqStmandaltStms mentioned in Figure 3 are usedly at the
top level. Any event affected by geplaces clause is treated by

The source program is represented as a number of input rela-this process as being a possible final event in the query. i$his

tions: actual, ret, fldld, fldst, arrayld, arrayst represent param-
eter passing, method returns, field loads, field storesy éoeals,
and array stores, respectively. There is a one-to-one e
dence between attributes of primitive statements in theyglaa-
guage and those in the relations.

In the following, we say that predicaté(z1, ..., z») is true if
tuple (z1,...,z,) isinrelationA. Below we show the definitions
of three of the relations; the remaining ones are definedailyi

fldld: BxV x M x V. fldld(b,v1, m, v2), means that bytecode
b executes 1 = va.m”.

actual: B X Z x V. actual(b, z,v) means that variable is zth
argument of the method call at bytecdde

ret: B x V. ret(b,v), means that variableis the return result of
the method call at bytecode

The context-sensitive points-to analysis produces a ntintpe
of the calling contexts, the invocation graph of the contsdsitive
call graph, and finally the points-to results:

IE: C x B x C x M isthe context-sensitive invocation relation.

IE(c1,1,c2,m) means that invocation sitein contextcy
may invoke methodn in contextc,.

vP: C x V x H is the variable points-to relationwP(c, v, h)
means that variable in contextc may point to heap object
h.

equivalent to appending an alternation of all such statésrterthe
end of thematches clause before normalization.

Each PQL query becomes a Datalog relation defined over byte-
codes, field/method names, and heap variables; one bytéande
every program point in the longest possible sequence oftgven
through the query, one field or method name for each membier var
able in the PQL query, and one heap variable for each objeit va
able in the PQL query. Literals and wildcards are trans|#teih
PQL into Datalog without change. We summarize the handling o
individual PQL constructs below:

Primitive statements Each primitive statement in the query is
translated into one or more Datalog predicates. A synteeetid
translation of PQL queries into Datalog is shown in Figurdfie

left side of the table lists a PQL primitive statement andright
hand side shows its Datalog translation. All of these tititshs
have the same basic form. The PQL statement refers to sorpe hea
objecth;. Thebddbddb system, however, represents instructions in
terms of actual program variables. We must therefore firsaek

the program variables into some fresh Datalog variapjeand then
query thevP relation to determine the possible values figr If a

field or method name refers to a PQL member variable, it may be
referenced directly in the statement.

Alternation. Since the input queries are normalized so that alter-
nation statements are used only at the top level, each clause
alternative is represented by a separate Datalog rule hatlsame
head goal.

A Datalog query consists of a set of rules, written in a Prolog Sequencing Because the static analysis is flow-insensitive, we do

style notation, where a predicate is defined as a conjunofiother
predicates. For example, the Datalog rule

D(w7 Z) T A(ww),B(m,y),C(y,z).

says that D(w, z) is true if A(w, z), B(z,y), andC(y, z) are all
true.”

Example 4. Statically detecting basic SQL injections.

We can express a flow-insensitive approximation of the bagQt
injection query in Figure 1 as follows:

stmpleSQLInjection (b1, ba, h) 1 —
IE(c1,b1,_, “getParameter”),
ret(bi,v1), vP(c1,v1,h),
IE(c2,ba,_, “execute”),
actual (b2, 1,v2), vP(c2,v2, h).

The Datalog rule says that an objécts a cause of an injection
if b1 is a call togetParameter, b is a call ofexecute, and the
return result ogetParameter v; in SOMe context; points to the
same heap objeétasv, the first parameter of the call txecute
in some context,. O

not track sequencing directly, and instead merely demaatath
events in the sequence occur at some point. This can be done by
simply replacing the sequence operatgrwith the Datalog con-
junction operator ,”. Since there is no guarantee that the same
program variables are used in each event in the sequence,,the
andc Datalog variables must be fresh for each event. Thand

m variables correspond to PQL constructs and so keep the same
name. Each event includes a reference to a bytecode where the
event occurs, and this bytecode is bound to one of the bygecod
attributes of the subquery relation. If bytecode paransedee left
unbound (for example, in the base case for de@ivedStream

query in Figure 5, the unused bytecode parameters are 88tig,
representing no program location.

Partial order. Similarly, because the static analysis is flow-
insensitive, the translation of a partial-order statenvamt simply

treat all its clauses as part of a sequence.

Exclusion. With flow-insensitivity, no guarantees about ordering
can be made. This means that we cannot deduce that an excluded
event (denoted with &) occurs between two points in a sequence;
as a result, all excluded events are ignored. This is a safrce
imprecision in our current analysis, but it is a consereatpprox-
imation that maintains soundness.

Primitive Statement Datalog translation

primStmt — hi.m=hs fdst(_,v1,m,v2),
vP(c,v1,h1),
vP(c,v2, h2)

primStmt — ki = ha.m fAdld(_, vi,m,v2),
vP(c,v2,h1),
vP(c,v1, h2)

primStmt — hi[]= ho arrayst(_,vi,v2),
UP(valyhl)v
vP(c,v2, h2)

primStmt — Ay = ho[] arrayld(_,v1,v2),
vP(c,v2,h1),
UP(Cv v1, h2)

primStmt — ho=m(h1,...,hn) ret(i, ho), IE(c,i,_,m),
actual (i, 1,v1),vP(c,v1, h1),

actual (i, n,vn), vP(c, vn, hn)

primStmt — hg =new typeNam€ h1, ..., hn) ret(i, ho), IE(c,i,_, typeName.< init >),
actual (i, 1,v1),vP(c,v1, h1),

actual (i, n,vn), vP(c, vn, hn)

Figure 7: Translation of primitive statemengs-imStmt from PQL (left) into Datalog (right) for static analysis aagtimization.

Within. The within m construct is handled by requiring that is a two-step process. In the first step, we determine whibh su
matching bytecodes be found in methods transitively célieoh query invocations contribute to the final result; in the setove
m. This involves querying a call graph; such a call graph islava project the relevant subqueries onto the bytecode domain.

able as part of the pointer analysis. Finding relevant subquery matches.Relevant subqueries are de-

Unification. Unification of objects is translated into equality of termined inductively: All members of theain relation is relevant,

heap allocation sites. , and any member of any query relation that appears as a claase i
Subqueries Invocations of PQL subqueries are represented by rgjevant relation as the result of translating a subquerydation is

referring to the equivalent Datalog relation. The prograomfs relevant. This translates to one rule for each invocatiatestent
and any variables that are not parameters in the PQL subawery 4nq an additional rule to express that all resultaafn are rele-
matched to wildcards and projected away. vant. In Figure 8, the single rule fonainRelevant declares any

Figure 8 shows a full translation of the query from Figure®in go|ution tomain to be relevant. There are two invocations of the
Datalog. The firstrule is a translation of thein query, whichhas ;0,.;,.c451ream subquery, and each gets its own rule. The first han-

only one path. It also involves three events, one membealvtax; dles the recursive subquery insiderivedStream, and the second
and four object variables. Each of the four PQL statemeritarmns- deals with the call frommain.

lated in turn, and combined they form the core of the mainyjuer
ThederivedStream query is somewhat more interesting, as it has
two possible sequences, each with a different length. The tase
is given first, which simply asserts the equality of its argmts
(the unification statement) and then returns immediatek/there
is no event in this path, the bytecode argumentiferivedStream
is set toNuLL. The second rule handles the recursive case and is
similar tomain’s translation.

The mainRelevant and derivedRelevant relations express
which bytecodes are actually part of the final solution, anll w
be explained in detail at the end of the next section.

Extracting relevant program locations. Gathering the relevant
program locations is straightforward once the previoup steer-
formed; any program location that occurs in a relevant gmiut
to any query is relevant. For the special case of the mainyquer
we need not check for relevance because all solutions to #ie m
query are relevant. Figure 8 uses thiéevant relation to express
this; the first rule says that a bytecode is relevant if it ig phda
derivedStream relation that has been proven relevant, and the final
three project any bytecode involvedsuin into the set of relevant
bytecodes.

4.3 Extracting the Relevant Bytecodes 5. EXPERIENCES WITH PQL

Thebddbddb system resolves each query more or less indepen- Many of the error patterns found in the literature can be ex-
dently; as a result, each subquery finds program points aag he pressed easily in PQL. We have selected four important gnd re

variables for any set of arguments, regardless of whetheothe resentative error patterns to illustrate the use of PQL.
subquery can be invoked with those arguments. Itis thusssacg
when extracting the list of relevant bytecodes, to extraty those 1. Serialization errors: a data corruption bug in web servers

bytecodes that actually participate in a match of the fullrguThis that can be exploited to mount denial-of-service attacks.

main(bo, b1, ba, M, s, oy hiay Toy) + These examples considered together show the complemeratary
T 7IE (’Z(; b“‘o’ ”’“g“;’ﬂzlp'uts trean”) ture of static and dynamic analysis. Static analysis cavessim-
actuaé(b(; —0’ veo), ret(bo, vs) ’ ple problems like the serialization error query precisalijereas

VP (Co, Vo, hia), VP (Co, Us0, h) dynamic analysis becomes more useful for more complex egieri

like matched method pairs and lapsed listeners.
derivedStream(_, ha, hy,_),

IE(c1,b1,, “readObject”), 5.1 Experimental Setup

actual(by, 0, vy1), ret(by, vo1), For our experiments, we use several large open-source Java

vP(c1,v01, ho), 0P (1,01, hy), applications whose characteristics are summarized inr&igu

IE(c2,b2, _, mm), actual(bz, 0, vy2), webgoat is a test application designed to demonstrate potential se-

vP(c2,vv2, hy). curity flaws in Javaroad2hibernate is a test program that exer-
derivedStream (b, ha, ha,):— cises the rather largeibernate object persistence library, which

e = ha,b = NULL. is now a major component of the JBoss suiteipsnap, roller,

and personalblog are widely deployed weblog and wiki appli-

derivedStream (b, ha, ha, ht) 1~ cations. Eclipse is the current premier open-source Jafza 4

IE(c,b, _, “InputStream. < init >7), Eclipse experiments in this paper were run on version 3.0.0.

actual (b, 1,vs), ret(b, ve), All of our static analyses were done on an AMD Opteron 150

vP(c, Vo, ha), vP(c,vt, he), machine with 4GB of memory running Linux. Dynamic tests were

derivedStream (_, ht, ha,_). performed on a 2 GHz AMD Athlon XP with 256MB of memory

running Linux. First, we apply the context-sensitive peinan-

mainRelevant (M, hs, ho, ho, hy) -~ alysis on our benchmarks. As shown in Figure 10, it takes up to

main(_, _;_, Mm, hs, b, b, hy). 34 minutes to represent the program as BDD relations and com-
derivedRelevant (hy, ha, hs) : — pute the points-to results. Fortunately, this preproossiep only

derivedRelevant(_, ha, ht), needs to be performed once for all queries. Note that evamgtho

derivedStream (_, ht, ha, h3). road2hibernate consists of only 137 lines of code, the prepro-

cessing time is dominated by the analysis of large libratieses.

derivedRelevant (ha, hy, hs): ~ In Figure 13 we show characteristics of the checkers forttest

ma?nRele”a”t(—v—v—v ha s hy), queries in our experiment. For static analysis, we showithe t
derivedStream (_, ha, by, ha). taken just to resolve the Datalog query and the total timertak
relevant (b) : — derivedStream (b, ha, ha, ht), which is often considerably higher, as it includes loading aav-
derivedRelevant (ha, ha, ht). ing of large relations. Dynamic analysis is run only if wags
from the static analysis are not immediately obvious aseribhe
relevant (b) : — main(_, _,b, _, _, _,_,_). times for the Web applications reflect the average amouritred t

required to serve a single page, as measured by the stanaard p
filing tool JMeter. road2hibernate is a command-line program
relevant (b) : — main(b, _, _, _,_,_,_,_). and its time is a simple start-to-finish timing.

Our performance numbers indicate that our approach onpeal a
plications is quite efficient. Unoptimized dynamic overthiéagen-
erally noticeable, but not crippling; after optimizatidroften be-
comes no longer measurable, though may still be as high as 37%
in heavily instrumented code. Likewise, our static analysnes
These errors are instances of the simple pattern “do nat stor gare in line with expectations for a context-sensitive pairtnalysis
object of typeX in Y [45]. run over tens of thousands of classes.

2. SQL injections: a major threat to the security of database . .
servers, as discussed in Section 1. This is an instance of5-2 Serialization Errors
“taint” analysis where the use of data obtained in some man- In a three-year study of production software, Reimer etaintl
ner is restricted. that a large class of high-impact coding errors violateglesiles

of the form “only store objects of type&X in objects of type

Y™ [45]. Such rules can be easily expressed in PQL. The serial-

ization error we study is an instance of such a pattern. 8paity,

HttpSession, a runtime representation of a Web session, is sup-

posed to be a persistent object to allow the Web server toaae

restore sessions when the load is too high. As a consequamige,
objects implementing the interfaderializable can be stored
within anHttpSession, via thesetAttribute method. The PQL

query corresponding to this design rule is shown in Figure 11
Violations of this rule will cause the persistence operatfail,

4. Lapsed listeners a common memory leakage pattern in either with exceptions or via data corruption. The formeyrba
Java that may lead to resource exhaustion and crashes inexploited by a malicious user to mount a denial-of-servitack;
long-running applications. Listeners follow a more comple the latter may cause intermittent problems that are harestobte-
pattern where eventl invoked on an object is required to cause session objects are written out only under high loate O
be followed by eventB invoked on a related, but different such problem in enterprise Java code reportedly took a téam-o
object. gineers close to two weeks to detect [45].

Figure 8: Datalog translation of Figure 5.

3. Mismatched method pairs some APIs require that meth-
ods be invoked in a certain order. Matching pairs of methods
that follow the pattern “a call to methad mustalwaysbe
followed by a call to method3” such asinstall always
followed byuninstall are common in large systems. Fail-
ing to properly match method calls leads to resource leaks
and data structure inconsistencies. Patterns of this kiad a
simple to specify, but are often difficult to check statigaifi
large applications.

Source Source Library Total
Benchmark Description LOC classes classes | classes
webgoat Sample Web application with known security flaws 19,440 35 986 1,021
personalblog Blogging application based on J2EE 5,591 59 5,177 5,236
road2hibernate Test application for Hibernate, an object persistencetipr 138 2 7,060 7,062
snipsnap Blogging application based on J2EE 57,350 804 10,047 10,851
roller Blogging application based on J2EE 52,089 247 16,112 16,359
Eclipse Open-source Java IDE (GUI application) 2,834,133 | 19,439 — 19,439
Figure 9: Summary of information about benchmark Java programs.
Program relation | Pointer | Total Total | Static Stat. Dynam.
Benchmark generation analysis| time Benchmark calls | warnings | confirmed | confirmed
errors errors
webgoat 65 13 78 ——baoat = T T —
personalblog 213 218| 431 pergonalblog 2 0 0 _
road2hibernate 767 512(1,279 snipsnap 29 10 6 1
snipsnap 170 151 321 roller 25 1 1 —
roller 978 1,011|2,029 [Total [61] 12] 8] 1 |

Figure 10: Static preprocessing time, in seconds.

As shown in Figure 12, a total of 61 calls to method
HttpSession.setAttribute are found in four benchmarks. Af-
ter the optimizer was run, only 12 remain as potential macthe
our query. This shows how pointer analysis is useful in seging
false warnings: the static checker is able to deduce thaitherete
types of the instances stored implemé@etializable in some
cases, even though their declared type is not. 8 of the rémgain
calls tosetAttribute are obvious errors that can immediately be
seen to not be correct on any run. When our dynamic checkpr is a
plied tosnipsnap, which contains the 4 unconfirmed warnings, a
runtime match is found for one of these suspicious sitedjrooimg
that it is indeed an error.

5.3 Finding Security Flaws: SECURIFLY

Shown in Figure 14 is a more realistic example of the SQL in-
jection vulnerability first mentioned in Section 1.1. Hayicontrol
over theusername andpwd variables, the user can cause arbitrary
SQL code to be run or bypass access restrictions. SQL iojeii
an instance of “taint” analysis which requires tracking flogv of
data from a set afourcedo a set ofsinks

For applications written in the J2EE framework, we
have examined the J2EE APIs to identify the sources and
sinks for the case of SQL injections. Sources, listed in
query UserSource in Figure 15, include return results of
HttpServletRequest's methods such asgetParameter.
Sinks, enumerated in theeplaces clause, include argu-
ments of methodjava.sql.Statement.execute(String sql),
java.sql.Connection.prepareStatement(String sql), and
so forth.

Because a user-controlled string may be incorporated ithero
strings, the main query asks if a user-controlled strindgpqsiery

query main()
returns

object !java.io.Serializable obj;

obj ect javax.servlet.http. H tpSessi on session;
mat ches {

session.setAttribute(_, obj);
}

Figure 11: Query for finding serialization errors.

Figure 12: Results for the serialization error query. Calls refer
to invocations oHttpSession.setAttibute. “—" indicates that
dynamic checking is unnecessary.

UserSource), can be propagated one or more times (subquery
StringPropStar) to create a string used in an SQL query (the ac-
tions in thereplaces clauses of the main query). Unsafe database
accesses are replaced with routines that first quote evemchee-
acter in every instance of the user string in the SQL committng,
transforming possible attacks into legitimate commands.

Note that the string propagation queBtringPropStar is
not specific to SQL injection, and can be used for a variety of
taint queries that involve propagation ®frings. It invokes the
StringProp query, which handles all the ways in which one string
can be derived from another.

Using PQL we have developed a runtime security protectisn sy
tem for Web applications calledeEBURIFLYY. The system pre-
sented here can address the problem of SQL injection as well a
other vulnerabilities such as cross-site scripting ant patversal
attacks described in [33]. However, we have only performdd-a
tailed experimental study of runtime overhead for SQL itifets.

Commonly used dynamic techniques such as application fire-
walls [37] that rely on pattern-matching and monitor traffaw-
ing in and out of the application are a poor solution for SQL in
jection [35]. In contrast, SCURIFLY can detect attacks because it
observes how data flows through the application. Moreovet, s
RIFLY can gracefully recover from vulnerabilities before they ca
do any harm by sanitizing tainted input whenever neces3dugre
are some inherent advantages the dynamic approach hashever t
static one.

e SECURIFLY can be integrated with the server so that when-
ever a new Web application is added, it is instrumented auto-
matically. This removes the apprehension related to deploy
ing “unfamiliar” potentially insecure Web applicationshi$
obviates the issue present with static tools of the codegbein
changed without the tool being rerun. This is particularly
important because analyzing Web applications staticalty ¢
prove to be difficult because of issues such as handling re-
flection.

1The name 8CURIFLY comes from the idea of “providing sectyri
on the fly”

Static analysis time || Instrumentation points Runtime Overhead

Query Total Unopti- Opti- Uninstru- | Unopti- Opti- Unopti- | Optimi-

Benchmark resolution time mized mized mented mized mized mized mized
BAD STORES
webgoat 5 12 1 0 — — — — —
personalblog 23 34 1 0 — — — — —
snipsnap 48 67 18 3 .073 .074 .073 1% <1%
roller 61 84 12 0 — — — — —
SQLINJECTIONS

webgoat 1 46 604 69 .024 .054 .033 125% 37%
personalblog 2 74 3,209 36 .040 .069 .049 2% 22%
road2hibernate 4 113 4,146 779 2.224 2.443 2.362 9% 3%
snipsnap 3 79 3,305 542 .073 .096 .080 31% 9%
roller 4 147 2,960 96 .008 .012 .008 50% <1%

Figure 13: Summary of static analysis times, runtimes, dynamic owthand the number of instrumentation points with and withou
optimizations. “—" is used to indicate that no dynamic rurswacessary because a static solution was sufficient. Adkstiane in seconds.

e SECURIFLY does not require changes to the original pro-

Note that the query does no direct checking of the value that

gram and does not need access to anything other than thehas been provided by the user, so if harmless data is passeglal

final bytecode. This can be especially advantageous whe
dealing with applications that rely on libraries whose seur
is unavailable.

The dynamic checker for the SQL injection query will match
whenever a user controlled string flows in some way to a stsgec
sink, regardless of whether a user input is harmful in a palar
execution. It will then react to replace the potentially garous
string with a safe one.

The errors located with our tool involved the applicationfdy
ing SQL strings out of data either sent in from the command lin
or generated as parameters of an HTTP request. The forméecan
exploited if the program can be executed by the malicious T$&
latter are vulnerable to the more common crafted-HTTP-estat-
tacks.

5.3.1 Importance of Static Optimization

Without static optimization, many program locations neztye
instrumented. This is because routines that causeseneng to
be derived from another are very common. Heavily processed u
inputs that do not ever reach the database will also be direfu
tracked at runtime, introducing significant overhead tcethalysis.

Fortunately, the static optimizer effectively removeginsien-
tation on calls to string processing routines that are noa ath
from user input to database access. Exploiting pointerinédion
dramatically reduces both the number of instrumentationtp@and
the overhead of the system, as shown in Figure 13. The reducti
in the number of instrumentation points due to static optation
can be as high as 97% irv1ler and 99% inpersonalblog. AS
shown in Figure 13, reduction in the number of instrumeatati
points results in a smaller overhead. For instanceetsgoat, the
overhead is cut almost in half in the optimized version.

public void authenticate(HttpServl et Request request){
String usernane = request.getParaneter("user");
java.sql.Statement stnt = con.createStatenment();

String query =
"select * fromusers where username = "
usernanme + "’ and password = '" + pwd + "’

stmt. execute(query);
. Il process the result of SELECT

Figure 14: A classic example of SQL injection.

n feasible injection vector, it will still trigger a match the query. As
a result of this, drastic responses such as aborting thécafiph
are not suitable outside of a debugging context.

5.3.2 Applying Input Sanitization

As seenin Figure 15, each operation that can unsafely ugedai
data receives aeplaces clauses in the queryain. When a pos-
sibly relevant sink is reached, any matches that have caetpénd
which are consistent with the instruction are gathered,ifisdch
matches are present, the replacing method is executeddhste

The SafePrepare andSafeExecute methods themselves find
all substrings in theink variable that match any of the possible
values forsource. They then produce a new SQL Query string
identical to the old, but it quotes all the SQL metacharacserch
as “". This forces them to be treated as literal characters aaste
of, for instance, a string terminator. This new, safe querthen
passed t@repareStatement Or executeQuery, respectively.

Using this technique we were able to defend against the two SQ
injections for which we had derived effective attacks: twe in
webgoat androad2hibernate.

5.4 Matching Method Pairs in Eclipse

Many APIs have methods that must be invoked in pairs in order
for to remain internally consistent or to prevent resoueeds$. This
implies a set of rules that take the form “a call fomustalways
be followed by a call toB.” Developers are required to ensure
that calls toA are followed by calls t& on all execution paths—a
highly error-prone task, especially in the presence of gtass.
The problem is complicated further when callsA@nd B occur in
different classes, or when a subclass overrides the mellapdaills
B but not the one that calld. As a result, not only is the process
error-prone, it is difficult to debug with traditional teahnes.

Eclipse, a large open-source Java IDE, uses a windowingitool
called SWT [41], which has many examples of such method pairs
Programming guides and bug reports directed us to eight gheam
of paired initialize/uninitialize methods that were ofteiolated.

For example, calls tereateWidget must always be followed to
a call todestroyWidget on the same object. We instrumented
Eclipse to search for instances of the first with no corredjpan
call to the second. This is done with a query body of the form

{o.A(); ~ 0.B(); }

As these are liveness queries that rely critically on exolgidhe
second event, and our static analysis is flow-insensitigecannot

query main()
returns
obj ect Obj ect source,
uses
obj ect java. sql. Connection con;
obj ect java.sql.Statenment stnt;

si nk;

mat ches {
source := UserSource();
si nk ;= StringPropStar(source);

} repl aces con. prepareSt at ement (si nk)
wi th SQL. Saf ePrepare(con, source,
repl aces stnt.executeQuery(sink)
wi th SQL. Saf eExecut e(stnt, source,

si nk) ;

si nk);

query StringProp(object Object x)
returns
obj ect Object y;
nat ches
append(x)
new String(x)
new StringBuffer(x)
x.toString()

y.
|y
|y
|y
|

query StringPropStar(object Object x)
returns

obj ect Object vy;
uses

obj ect Object tenp;

nat ches
y i=x |
{ _
tenp := StringProp(x);

y := StringPropStar(tenp);

query User Source()
returns

obj ect Object tainted;
uses

obj ect Servl et Request req;

mat ches
tainted = req. get Paraneter() |
| tainted = req.getHeader() |

Figure 15: Full SQL injection query.

optimize the dynamic matcher. However, even without optamni
tion, there are still relatively few instrumentation pairiiecause
the interesting events are confined to the creation andudistn
of GUI elements. Our approach is powerful because this ioree-I
query can pick the handful of points out of nearly 64 MB of slas
files that actually need to be instrumented for the queryctire

The results of running the instrumented IDE for each method
pair are summarized in Figure 16, together with the numbén-of
strumentation points and dynamic violations of each pastefhe
number of dynamically discovered errors reported in théetéb
the number of concrete types of objecthat violated the pattern.
A total of 56 types in Eclipse had pattern violations, mosivbfch
were due to missing calls tdestroyWidget. In extended runs,
these bugs will lead to resource leaks.

5.5 Memory Leaks: Lapsed Listeners

Paired method queries, while useful, do not require many of
PQL's features to perform. To demonstrate the ability of RQL
correlate objects in widely spaced events, we formed a qteery
discover memory leaks in Eclipse. Despite being garbadeatet,
Java programs can still have memory leaks [51]. A Java pnogra
can maintain a link to an object that is never used againjmgtise

garbage collector to never reclaim that object. Findinghskinds
of memory leaks is difficult, but it is important to find thendagise
they can gradually cause resource exhaustion in long-ngnap-
plications such as Web servers, leading to instability andtes.
Event listeners in Java GUI programs are a common source of
memory leaks. Event listeners are a common way to specifyract
that should occur when a user interface event such as a mictise ¢
occurs on a given GUI component. This is achieveddgysteringa
listener with a GUI component; when the component is destipy
the listener should benregistered If a listener is not unregistered,
it will preserve a link to the GUI component. In Swing and SWT,
the listener is reachable from a global listener table, tha&ing
the GUI component also reachable and therefore considemd |
by the garbage collector. This is referred to in the literatas the
lapsed listener problerfb1].

5.5.1 Listenersin Eclipse

Eclipse’s GUI library is vulnerable to the lapsed listeneotp
lem. Some lapsed listener errors have been featured onsEdlip
bug tracking system. The usual technique for finding thesmer
is to spend a lot of time inspecting code and using heap debsigg

The APl in Eclipse works as follows. Componenis §wParts)
are created and destroyed with tkeeatePartControl and
dispose methods. Listeners must be registered within
createPartControl, and unregistered withigispose. A query
for this is given in Figure 17. (The actual query has many ibdss
ties for the registration and deregistration of listenfyssimplicity
our example uses one representative method for each.)

Like paired methods, this query relies heavily on the use of
excluded events, which the static analysis currently igaorAs
a result, the static analysis will simply report the presené
createPartControl calls that register listeners, and are then
disposed, which is not useful. We thus again apply only unop-
timized dynamic analysis to Eclipse. Overhead was not pétde
during runs of the instrumented application.

The results of this are shown in the last line of Fig-
ure 18. Matches were collected by type. After perform-
ing work in the Java, Resource, and CVS perspectives, 136
ViewPart/Component/Listener type triples were found that
were not disposed of according to the model.

This experiment demonstrated that PQL queries can be used ef
fectively even on extremely large programs, and to find prtoge
that resist most forms of analysis.

5.6 Summary

In this section we have described four applications reptasg
a spectrum as far as being amenable to static and dynamicsanal
Serialization errors can be addressed statically with b biggree
of precision using high-quality pointer information. SQijéction,
while benefitting from static analysis to reduce the amodnb-o
strumentation, cannot generally be fully and preciselyresised
using our static technique, but is a good match for dynamin-mo
itoring optimized with the help of static results. Finalligeness
properties such as paired methods and lapsed listenerepnsbl
found inEclipse lend themselves most naturally to dynamic an-
alysis. Furthermore, instrumented executables produgedQlL
provide protection against query violations at run time. Nege
discovered a total of 9 serialization errors, 5 SQL injetsioand
nearly 200 errors in Eclipse, all of which were previous|kuoown.

Query {o0.A; ~ 0.B} Instrumentation Dynamically

Method A Method B points discovered errors
createWidget destroyWidget 28 35
register deregister 93 7
acquireXMLParsing | releaseXMLParsing 2 0
acquireDocument releaseDocument 12 0
install uninstall 184 10
installBundle uninstallBundle 11 0
start stop 120 4
startup shutdown 41 0

| Total I 491 | 56 |

Figure 16: Result summary for running matching pair queries on Eclipse

query creation(object ViewPart vp)
returns
obj ect Obj ect obj;
obj ect Object listener;
within vp.createPartControl () matches {
obj .registerListener(listener);

query destroy(object ViewPart vp, object Object obj,
obj ect Object listener)
wi thin vp. di spose() matches {
~o0bj . unregi sterlListener(listener);
}

query main()
returns
obj ect Vi ewPart
obj ect Obj ect
obj ect Obj ect
mat ches {
(obj, listener) := creation(vp);
~o0bj . unregi sterlListener(listener);
() := destroy(vp, obj, listener);

vp;
obj ;
l'i stener;

Figure 17: Lapsed listener query.

6. APPLICATIONS OF PQL

The topics covered in Section 5 focused narrowly on specific
types of errors. In this section, we move to a higher vantaget p
and discuss more general uses of PQL.

6.1 Debugging and Testing

We primarily envision PQL being used under development er de
bugging conditions. When a developer finds a bug in their code
they will often suspect that similar bugs lurk elsewhereligitt
code base. Over time, the collection of such rules that esgdd-
velopers’ knowledge of system-specific rules grows. Theress
of many bug patterns, from simple mistakes that manifestion s
gle lines (like the serialization errors in Section 5.2, as@ing
that private data members cannot be modified because reésren
to them escape [22]) to ordering constraints across theofitbe
entire program (as demonstrated in Sections 5.4 and 5.9 is
ten directly expressible as a simple PQL query. Howeveraiigd
projects with multiple authors, finding all similar instascof the
error is not a trivial task, and one with which our system ceiph
considerably.

Instrumentation Points
13,661

Dynamically discovered errors
136

Figure 18: Result summary for lapsed listeners in Eclipse.

In general,automaticallydiscovering system-specific rules is a
challenging problem well-represented in the literatu® B7, 32].
Below we outline some queries gleaned from the literatucecam
own programming experience.

6.1.1 Taint Queries

The SQL injection problem, discussed in Section 5.3 is an in-
stance of a general classtafnted data problemsvhere data orig-
inates at a source, is propagated via various techniquesthen
used as a sink. Many other practical security problems rfédl i
this class. In the Web application domain, cross-site 8ng50]
and HTTP splitting [26] attacks are two more techniques tisat
unsanitized data in order to mount the attack. Below we discu
several other applications of taint queries for security.

Unsafe manipulation of password strings. It is not uncommon
to have methods in Java APlIs that taltear| | arrays representing
passwords as a parameter. Several such functions fromcpubli
available APIs are listed in Table 19. Character arrays ezem-
mended ovegtrings as a way to reduce the window of vulnerabil-
ity; character arrays are zeroed-out after the functiomrnst This
way, the duration of time when the password is in memory ismin
imized, reducing the window of opportunity for a hacker camgb
through memory looking for clear-text passwords [34].

However, in practice many developers using these APls are un
aware of this security hazard and construct password stiiyg
calling String.getChars(). The character array representing in-
ternals of thestring remains in memory after the return result of
getChars() has been zeroed-out, thus defeating the point of pass-
ing in achar[] in the first place. This security issue is another
instance of the tainted data problem: the set of sourcesifotaint
problem is the return results 8tring.getChars(); a sample set
of sinks is the password parameters of functions in Table 19.

Leaking sensitive data. Data such as user login and password or
financial information like credit card numbers need to bequoted
from unauthorized access. If this data is saved in cookiepplhi-
cation logs without being properly encrypted, eavesdroppeay

be able to gain access to this potentially sensitive datarefare,
output sanitizatiorthat removes sensitive data is required before
saving.

Another common error pattern that involves reporting deesi
data back to the user by showing extra information in an ei@ep
trace [56]. It is therefore crucial to find how data obtainezhf
databases propagates to output functions pertaining torfilecket
output streams or API-specific functions such as J2EE resiior
manipulating cookie data. This example too is expressedaista
problem similar to the queries used in Section 5.3.

javax.crypto.spec.PBEKeySpec(char| | password)

gnu.crypto.keyring.PasswordAuthenticatedEntry.authenticate(char[| password)

edu.uidaho.hummer.util.DefaultKeyStore.loadData(char| | password)

com.mindbright.security.keystore.PKCS12KeyStore.deriveKey(char[| password, ...)

Figure 19: Public API functions takinghar| | password parameters.

6.1.2 Fault Injection

So far, all the event replacement situations we have disdtiss
volve replacing unsafe arguments with safe ones to ensoveige
One could also deliberately attempt to insemsafevalues to test
the robustness of a system. Fault injection is a testingntqake
that “injects” unexpected data into the application in otdecause
logical or security errors and crashes [14, 15, 53, 61]. B@i&nt
replacement functionality allows the user to easily déscfault
injection rules and create fully functional testing franoels.

For example, Java applications may be compromised by massin
potentially unexpected parameteratitive Java calls. There are
hundreds ohative calls in public Java APIs that takibject or
array parameters. All these methods are typically implasteim C
or C++ on the platform to which the APIs are ported, thus éngat
a potential for buffer overrun attacks in the native codethipast,
fault injection attacks that pass very large arrayswirl objects to

6.2.3 Finding Instantiated Types

Java libraries frequently export only abstract types toaiyeli-
cation layer so that varying library implementations maycbe-
nected to the same class. Itis, by design, unclear preciggigh
classes are actually being used in such an application. cbims
plicates many interprocedural static analyses, becaesectmnot
readily find a useful call graph.

This problem is particularly pernicious in the presenceedifc-
tion, because call graph information is often containedanfig-
uration files instead of the code itself. It can be convenient
extract from runs of the program precisely which classesbare
ing loaded reflectively, and use this to construct the aigysall
graph. In Java, the meth@lass.forName(String className)
is used to get an object of typglass that represents the type
named inclassName, and then thewewInstance() method ac-
tually constructs the object. The result of this is typigdtien cast

native methods have been used to successfully compromise JDKto the an abstract class or interface that the applicatien tlses

implementations from multiple vendors [48]. These attanften
result in the Java Virtual Machine crashing, and can alsoltras
obtaining root privileges if a hacker manages to craft an@mate
array parameter.

6.2 Program Exploration
Developers beginning work on a large existing project ugual

have a daunting task ahead of them. Determining how pieces of 7,

a large system fit together through code inspection is diffamd
time-consuming. PQL can be used to extract information abou

how objects are actually used as the program runs. We have our

selves used this approach when developing and testing PQ@le; t
termine if perceived program invariants actually heldaigly.

6.2.1 Finding Application Entry Points

Modern middleware systems are designed to support multi-
ple user-provided components; these inclydiggins in Eclipse,
servletsin J2EE, andnodulesin Apache. In many cases, the un-
derlying structure is complex and it is often unclear in wialy
the user-provided code gets called by the system. Analyziich
modules statically, however, generally requires infoiorabn ap-
plication entry points to prime the analysis.

There are two strategies one can follow to find this infororati
dynamically in PQL. One is to instrument the framework araklo
for calls where thehis pointer is of a type defined by the target
module, and log such information. The other is to trap caithin
the application and then examine the stack trace for whargao
transfers from the framework to the application.

6.2.2 Discovering Data Validation Strategies

Most Web-based applications use some sort of a validation
scheme to prevent user-provided data from being used inrthe p
gram in unsafe ways as described in Section 5.3. Typicadigr-u
provided data is checked using regular expressions or edcost
ing URL-encoding or similar schemes. Furthermore, somegim
data is stored or passed around in an encrypted format. PQL ca
help us discover what perturbations occur to data afterdtdra
tered the application. Our preliminary experiments revkat in
many cases URL-encoding and regular expression patterchmat
ing is applied on user-provided data as a means of cleartsing i

thereafter.

If one wishes to focus on instances of a specific supertyge, th
query may be focused easily. For example, in the processpirex
ing the SQL injection issue in Section 5.3, it was necessafint
which subclasses gfava.sql.Statement were instantiated for a
given program.

RELATED WORK
7.1 Model Extraction

Some work has been done on automatically inferring state mod
els on components of software systems. The Strauss sysiem [4
uses machine learning techniques to infer a state machpre-re
senting the proper sequence of function calls in an interfdRe-
dux [38] studies a program as it runs and builds up a tree ofeval
dependencies that capture the “essence” of the computatiba-
ley et al. [60] hardcode a restricted model paradigm so trakigs
ble models of object-oriented interfaces can be easilymaatically
extracted. Alur et al. [3] generalize this to automaticaipduce
small, expressive finite state machines with respect taicepred-
icates over an object. Lam et al. use a type system-basedaappr
to statically extract interfaces [28]. Their work is morencerned
with high-level system structure rather than low-leveeddycle
constraints [47]. Daikon is able to validate correlatiomtween
values at runtime and is therefore able to validate pattgtéls
Weimer et al. use exceptional control-flow paths to guidedise
covery of temporal error patterns with considerable sl¢gg|;
they also provide a comparison with other existing spedifica
mining work. DynaMine uses CVS history mining combined with
dynamic analysis to discover good patterns and to detetgrpat
violations [32].

In contrast to these, the PQL system places the burden oflmode
generation on the user. However, partial models may be wsed t
develop queries that provide information that suggests tooex-
tend the model. With suitable actions attached to the gsiede
PQL query can be used to implement a specialized model ¢atrac
directly.

7.2 Aspect-Oriented Programming

PQL attaches user-specified actions to subquery matchiss; th
capability puts PQL in the class apect-orientegprogramming
languages [25, 43]. Maya [7] and AspectJ [25] attach actiazed
on syntactic properties of individual statements in thes@gode.
The DJ system [43] defines aspects as traversals over a grpph r
resenting the program structure. Our system may be coesider
an aspect-oriented system that defines its aspects witkategp
the dynamic history of sets of objects. An extension of Aspec
to include “dataflow pointcuts” [36] has been proposed tagep
sent a statement that receives a value from a specific sdR€ge;
can represent these with a two-statement query, and pemuith
more complex concepts of data flow. Walker and Veggers [55] in
troduce the concept afeclarative event patterng which regular
expressions of traditional pointcuts are used to specifgrwéd-
vice should run. Allan et al. [2] extend this further by petting
PQL-like free variables in the patterns.

The primary focus in the AspectJ extensions is in permitéing
developer to specify application development concerng fieely.

As a result, they devote a great deal of work to ensuring prope
ties such as guarantees that memory allocated by the mgtetan
chinery will eventually be available for collection. PQLitlvits
genesis focusing on detecting application errors, pays agen-
tion to this. (For example, one of the patterns they warnresgai
involves paired methods across objects, because suchnsatie
intrinsically leaky. This class, however, includes oursieg listener
example.)

PQL differs from these systems in that its matching mackiner
can recognize nonregular languages, and in exploiting reeh
pointer analysis to prove points irrelevant to eventualames.

7.3 Program Defect Detection

A vast amount of work has been done in bug detection. C and
C++ code in particular is prone to buffer overrun and memoaym
agement errors; tools such as PREfix [10] and Clouseau [20] ar
representative examples of systems designed to find speeifges
of bugs (pointer errors and object ownership violationgees
tively). Dynamic systems include Purify [19], which trapsdp er-
rors, and Eraser [46], which detects race conditions. Bbthase
analyses have been implemented as standard uses of thanalgr
system [39]. Many of these bug classes are outside the purvie
of the PQL language at present, focusing as they do on thefuse o
individual pointer variables or on synchronization priwes. PQL
also targets Java, which means

Web applications carry their own set of security risks [44r-
ious systems have been developed to help secure web ajgpixat
SABER [45] is a static tool that detects a large number of comm
design errors based on instantiations of a nhumber of errberpa
templates. WebSSARI [23] and Nguyen-Tuong et al. [40] are dy
namic systems that detects failures to validate input ampiubun
PHP applications. While PQL does not handle PHP, in priecipl
these analyses perform sequencing, type, or tainting sisadyd
as such are easily amenable to representation as PQL qderies
rectly. The latter project is suitable for tracking tainteds at a
much finer granularity. configurable to express alternateepes.

7.4 Event-based Analysis

The queries in our system are defined with respect to a con-
ceptual abstract execution trace consisting of a streanveofts.
The implications of this paradigm for debugging are covezrd
tensively in the EBBA system [9]; later tools have expandedhe
basic concept to provide additional power. Dalek [42] is budp
ger that defines compound events out of simpler ones, andtperm

breakpoints to occur only when a compound event has executed
PQL follows Dalek in building its queries out of patterns whple
events, and builds upon it by permitting the events to bersaaly
(and, indeed, even mutually recursively) defined.

7.5 Other Program Query Languages

Systems like ASTLOG [13] and JQuery [24] permit patterns to
be matched against source code; Liu et al. [31] extend this co
cept to include parametric pattern matching [6]. Theseesyst
however, generally check only for source-level patterrs@mnot
match against widely-spaced events. A key contribution@E s
a pattern matcher that combines object-based paramettahimg
across widely-spaced events.

Lencevicius et al. developed an interactive debugger based
queries over the heap structure [29]. This analysis apprcsaor-
thogonal both to the previous systems named in this sectiorell
as to PQL; however, like PQL, its query language is expliait-
signed to resemble code in the language being debugged.

7.5.1 Partigle

The Partigle system [17] uses a SQL-like syntax to extradit in
vidual elements of an execution stream. It does not direxim-
bine complex events out of smaller ones, instead placindgebao
constraints between primitive events to select them aggetstly.
Variables of primitive types are handled easily by this paym,
and nearly arbitrary constraints can be placed on themyeasit
strict ordering constraints require many clauses to expres

This reliance on individual predicates makes their languzapy
to extend with unusual primitives; in particular, the Rglgisys-
tem is capable of trapping events characterized by the anafun
absolute time that has passed, a capability not presengiattter
systems discussed. However, like most other systems, istiléan
only quantify over a finite number of variables. PQL's rebwes
subguery mechanism makes it possible to specify arbiréuilg
chains of data relations.

For comparison purposes, we reproduced t8eitingConcats
experiment in PQL, which is the only query they performed tha
operates solely on objects. The PQL query itself is a sirtgiéght-
line sequence of calls, chained together five times; we agjlie
query to a number of the SPECJVM98 benchmarks, including all
of the four that do extensive string processing. The ovether
pressed as a ratio between instrumented and uninstrumanted
time, is given in Figure 20.

The worst-case scenario for the PQL matcher is one in which
many instances of the beginning of a pattern appear, thuipro
ing a large number of partial matches to track. This queryrseg
matching any time &tringBuffer is created, which is a very
common operation. In the highest-overhead case here-itie
benchmark—a complete match occurs for every executioneof th
inner loop of the code reading the input file. This loop readma
gle character each iteration, producing thousands of reatolier
the course of the run.

In cases where string use is clear, amenable to static pointe
analysis, and does not contribute to matches—sucjeas and
compress—static optimization is able to lessen overhead dramati-
cally, often to the point that overhead is lost in the instemtation
noise.

In programs where string processing is simply rare, suatbas
no measurable cost is ever imposed.

7.6 Analysis Generators

PQL follows in a tradition of powerful tools that take small
specifications and use them to automatically generate samly

[Benchmark [[mtrt | jess | compress [db [jack | javac |

11
1.0

2.3
1.2

Unoptimized
Optimized

11
1.0

1.0
1.0

19
19

2.7
2.7

Figure 20: Overhead ratios for the string concatenation query on SNECJ

Metal [18] and SLIC [8] both define state machines with respec
to variables. These machines are used to configure a stalig- an
sis that searches the program for situations where ernasitians
can occur. Metal restricts itself to finite state machineg, Has
more flexible event definitions and can handle pointers filban
unsound manner).

The Rhodium language [30] uses definitions of dataflow facts
combined with temporal logic operators to permit the dabniof
analyses whose correctness may be readily automaticaifjede
As such, its focus is significantly different from the othgstems,
as its intent is to make it easier to directly implement ccrcom-
piler passes than to determine properties of or find bugsigtieg
applications. Likewise, though it is primarily intended asehi-
cle for predefined analyses, Valgrind [39] also presentsregd
technique for dynamic analyses on binaries.

7.7 Model Checkers

Model checking systems such as SPIN [21] are powerful and
widespread tools for capturing complicated program priger
Model checkers generally operate upon abstract languagbsas
Promela; the Bandera project [11] abstracts Java code ifaoma

8. CONCLUSIONS

We have presented a new language called PQL, with which users
can pose application-specific questions about eventgpstierun-
time. The language is intuitive to use by application depets and
provides a bridge to powerful analysis techniques.

We systematically convert PQL queries into efficient online
checkers by using a combination of static and dynamic tegctas.

In so doing, we demonstrate an application for pointer asigliy
bug-finding in which the soundness of the analysis is clitica

Using PQL, we have found numerous previously unknown se-
curity vulnerabilities and resource leaks in large openrs® Java
applications. Our experience suggests that the synergigtnbi-
nation of static and dynamic checking is a powerful one. iStat
analysis can find all potential errors in some of the casesthn
ers, it can prove that the pattern will never match. In moffécdit
cases, dynamic monitoring can guarantee that applicatiamsrap
any instance of a certain class of errors. Static analyais@suseful
here for reducing dynamic analysis overhead. With statiitropa-
tions, we have found dynamic checking to often have a low ghou
overhead to be incorporated in production code.

amenable to SPIN and other model checkers. These systems rep

resent queries over the models as LTL formulas on predieates
Bandera ties these predicates to expressions defined irotlee ¢
itself [12].

This paradigm does not lend itself well to direct comparigdth
PQL, as the predicates implied by a PQL query relate to object
identity across statements and to the histories of thosectsbpr
sets of objects. It is possible to consider any individuaLR@ery
as a temporal logic equation describing the events theesebx-
istentially quantified over objects on the heap. Arbitrafy_lequa-
tions on such a set of predicates would not be directly tedakle
into PQL. Also, LTL-based model checkers quantify univéysa
over paths (ensure the specified formula holds on all pat¥tsje
PQL quantifies existentially over paths and over the heapl @in
set of objects such that the pattern is matched over somé@. path
PQL's subquery mechanism permits already-determined hmatc
to be treated as atomic propositions for higher-level (@nexe-
cursive) queries, which makes expressing many propertigshm
easier.

Further research by the Bandera group into the utility of LTL
for program analysis has resulted in a cataloguspcification
patterns[49]—idioms in LTL that are particularly prevalent in use-
ful queries—and these idioms correspond to presence, efsen
sequencing of individual events. These patterns are direspire-
sentable in PQL via the use of nothing more than the sequgncin
operator and match exclusion.

Thus, PQL's language can be viewed as complementary to LTL-
based systems: both are capable of expressing the “napureati-
cal queries for application programs, but the underlyingcepts
are different (LTL's concept of predicates changing trutues
over time compared to PQL'’s concept of objects evolvingubho
various states with time) and each system thus generafizesdlif-
ferent sets of applications.

9. REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. UllmarCompilers:

Principles, Techniques, and Toolsddison-Wesley, 1988.

C. Allan, P. Augustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. Adding Trace Matching with

Free Variables to AspectJ. DOPSLA '05: Proceedings of

the 20th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applicatipdg5.

R. Alur, P. éerny, P. Madhusudan, and W. Nam. Synthesis of

Interface Specifications for Java ClassesP@PL '05:

Proceedings of the 32nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languageges

98-109, 2005.

G. Ammons, R. Bodik, and J. Larus. Mining Specifications.

In Proceedings of the 29th ACM Symposium on Principles of

Programming Languagepages 4-16, 2002.

C. Anley. Advanced SQL Injection in SQL Server

Applications, 2002.

B. S. Baker. Parameterized Pattern Matching by

Boyer-Moore Type Algorithms. IiProceedings of the Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms

pages 541-550, 1995.

[7] J. Baker and W. C. Hsieh. Runtime Aspect Weaving Through
Metaprogramming. IfProceedings of the First International
Conference on Aspect-Oriented Software Development
2002.

[8] T.Ball and S. Rajamani. SLIC: A Specification Language fo

Interface Checking (of C). Technical Report

MSR-TR-2001-21, Microsoft Research, January 2002.

P. Bates. Debugging Heterogeneous Distributed Systems

Using Event-Based Models of Behavior.Pnoceedings of

the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel

and Distributed Debuggingpages 11-22, 1988.

(2]

(3]

(4]

(5]
(6]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A Static Anzaly
for Finding Dynamic Programming ErrorSoftware -
Practice and Experience (SPE0:775-802, 2000.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
Finite-State Models from Java Source CodelGSE '00:
Proceedings of the 22nd International Conference on
Software Engineeringpages 439-448, 2000.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A
Language Framework for Expressing Checkable Properties
of Dynamic Software. I'§PIN '00: Proceedings of the 7th
SPIN Workshoppages 205-223, 2000.

R. F. Crew. ASTLOG: A Language for Examining Abstract
Syntax Trees. IfProceedings of the USENIX Conference on
Domain-Specific Languagesages 229—-242, 1997.

W. Du and A. P. Mathur. Vulnerability Testing of Softvear
System Using Fault Injection. Technical report, COAST,
Purdue University, West Lafayette, IN, US, April 1998.

W. Du and A. P. Mathur. Testing for Software Vulneratyili
Using Environment Perturbation. Proceedings of the
International Conference on Dependable Systems and
Networks (DSN 2000), Workshop On Dependability Versus
Malicious Faults pages 603-612, New York City, NY, June
2000.

M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly Detecting Relevant Program InvariantsIGSE

2000, Proceedings of the 22nd International Conference on
Software Engineeringpages 449-458, Limerick, Ireland,
June 7-9, 2000.

S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
Queries Over Program Traces.Pmoceedings of the ACM
SIGPLAN 2005 Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA) 2005.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and
Language for Building System-Specific, Static Analyses. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PL.DI)
pages 69-82, 2002.

R. Hastings and B. Joyce. Purify: Fast Detection of Mgmo
Leaks and Access Errors. Rroceedings of the Winter
USENIX Conferengepages 125-136, December 1992.

D. Heine and M. S. Lam. A Practical Flow-Sensitive and
Context-Sensitive C and C++ Memory Leak Detector. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PL.DI)
pages 168-181, 2003.

G. J. Holzmann. The Model Checker SPBbftware
Engineering 23(5):279-295, 1997.

D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In
Proceedings of the Onward! Track of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLAR004.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo. Securing Web Application Code by Static
Analysis and Runtime Protection. Rroceedings of the 13th
Conference on the World Wide Wedages 40-52, 2004.

D. Janzen and K. de \older. Navigating and Querying Code
Without Getting Lost. IrProceedings of the 2nd Annual
Conference on Aspect-Oriented Software Development
(AOSD) pages 178-187, 2003.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.riRal
and W. G. Griswold. An Overview of Aspectlecture Notes
in Computer Scien¢072:327-355, 2001.

A. Klein. Divide and Conquer: HTTP Response Splitting,
Web Cache Poisoning Attacks, and Related Toits.p:

/I www. packet st ormsecurity. org/ papers/
gener al / whi t epaper _htt presponse. pdf , 2004.

S. Kost. An Introduction to SQL Injection Attacks for &nle
Developers, 2004.

P. Lam and M. Rinard. A Type System and Analysis for the
Automatic Extraction and Enforcement of Design
Information. InProceedings of the 17th European
Conference on Object-Oriented Programmjipgges
275-302, Darmstadt, Germany, July 2003.

R. Lencevicius, U. Holzle, and A. K. Singh. Query-Bdse
Debugging of Object-Oriented Programs ®PSLA '97:
Proceedings of the 12th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications pages 304-317, New York, NY, USA, 1997.
ACM Press.

S. Lerner, T. Millstein, E. Rice, and C. Chambers.
Automated Soundness Proofs for Dataflow Analyses and
Transformations Via Local Rules. POPL '05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languageges
364-377, 2005.

Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu.
Parametric Regular Path QueriesProceedings of the ACM
SIGPLAN 2004 Conference on Programming Language
Design and Implementation (PLDPages 219-230, 2004.
B. Livshits and T. Zimmermann. DynaMine: A Framework
for Finding Common Bugs by Mining Software Revision
Histories. InProceedings of the ACM SIGSOFT 2005
Symposium on the Foundations of Software Engineering
(FSE) Sept. 2005.

V. B. Livshits and M. S. Lam. Finding Security Errors in
Java Programs with Static Analysis.Pnoceedings of the
14th Usenix Security SymposiuAug. 2005.

Q. H. Mahmoud. Password Masking in the Java
Programming Language.

http://java. sun. coni devel oper/

t echni cal Articl es/ Security/ pwordmask/ ,July
2004.

F.-M. S. mailing list. Vulnerability Scanner for SQL
injection.

http://ww. derkeil er.conf Mai |l i ng-Lists/
securityfocus/focus-ns/2003-09/0110. htm ,
2003.

H. Masuhara and K. Kawauchi. Dataflow Pointcut in
Aspect-Oriented Programming. APLAS'03 - the First
Asian Symposium on Programming Languages and Systems
pages 105-121, 2003.

Netcontinuum, Inc. Web Application Firewall: How
NetContinuum Stops the 21 Classes of Web Application
Threatsht t p: / / ww. net cont i nuum conf

product s/ whi t ePaper s/ get PDF. cf nn=

NC_Whi t ePaper WebFi rewal | . pdf , 2004.

N. Nethercote and A. Mycroft. Redux: A Dynamic Dataflow
Tracer. In O. Sokolsky and M. Viswanathan, editors,
Electronic Notes in Theoretical Computer Science
volume 89. Elsevier, 2003.

[39] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. In O. Sokolsky and
M. Viswanathan, editor€lectronic Notes in Theoretical
Computer Sciencevolume 89. Elsevier, 2003.

[40] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley] a
D. Evans. Automatically Hardening Web Applications Using
Precise Tainting. IfProceedings of the 20th IFIP
International Information Security Conferen@005.

[41] S. Northover and M. WilsorSWT : The Standard Widget
Toolkit, Volume 1Addison-Wesley Professional, 2004.

[42] R. A. Olsson, R. H. Cawford, and W. W. Ho. A Dataflow
Approach to Event-Based Debuggir@pftware - Practice
and Experience21(2):209—-230, 1991.

[43] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. IReflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns
Kyoto, Japan, September 2001. Springer Verlag. 8 pages.

[44] OWASP. Ten Most Critical Web Application Security

Vulnerabilities, 2004.

D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan,

B. Alpern, R. D. Johnson, A. Kershenbaum, and L. Koved.

SABER: Smart Analysis Based Error Reduction. In

Proceedings of International Symposium on Software Tgstin

and Analysis2004.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T. Anderson. Eraser: A Dynamic Data Race Detector for

Multithreaded Program#CM Trans. Comput. Syst.

15(4):391-411, 1997.

S. R. SchachObject-Oriented and Classical Software

Engineering McGraw-Hill Science/Engineering/Math, 2004.

M. Schonefeld. Hunting Flaws in JDK. Blackhat Europe

2003.

http://patterns. projects.cis.ksu. edu/.

K. Spett. Cross-Site Scripting: Are Your Web Applicats

Vulnerable.

http://ww. spi dynani cs. coni support/

whi t epaper s/ SPI cr oss- si tescri pting. pdf,

2002.

[51] B. A. Tate.Bitter Java Manning Publications Co., 2002.

[45]

[46]

[47]
[48]

[49]
[50]

[52] M. Vernon. Top Five Threats. ComputerWeekly.com

(http://www.computerweekly.com/Article129980.htm)pil

2004.

J. Voas and G. McGravBoftware Fault Injection:

Innoculating Programs Against Errordohn Wiley and

Sons, 1997.

D. Wagner, J. Foster, E. Brewer, and A. Aiken. A FirstiSte

Towards Automated Detection of Buffer Overrun

Vulnerabilities. InProceedings of Network and Distributed

Systems Security Symposjyages 3—-17, 2000.

R. J. Walker and K. Viggers. Implementing Protocols Via

Declarative Event Patterns. 8iGSOFT '04/FSE-12:

Proceedings of the 12th ACM SIGSOFT International

Symposium on Foundations of Software Engineeiiages

159-169, New York, NY, USA, 2004. ACM Press.

Web Application Security Consortium. Threat Classifion.

htt p:

/ I www. webappsec. org/tc/ WASC- TC- v1.0. pdf,

2004.

W. Weimer and G. Necula. Mining Temporal Specifications

for Error Detection. IrProceedings of the 11th International

Conference on Tools and Algorithms For The Construction

And Analysis Of Systensages 461-476, Apr. 2005.

W. Weimer and G. C. Necula. Finding and Preventing

Run-Time Error Handling Mistakes. tOth Annual ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA '0@xt. 2004.

J. Whaley and M. S. Lam. Cloning-Based Context-Seresiti

Pointer Alias Analysis Using Binary Decision Diagrams. In

Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation (PL.DI)

2004.

J. Whaley, M. Martin, and M. S. Lam. Automatic Extractio

of Object-Oriented Component Interfaces Aroceedings of

the International Symposium of Software Testing and

Analysis pages 218-228, 2002.

[61] J. A. Whittaker and H. H. Thompsohlow to Break Software
Security Addison Wesley, 2003.

[62] Y. Xie and A. Aiken. Scalable Error Detection Using
Boolean Satisfiability. IfProceedings of the 32nd ACM
Symposium on Principles of Programming Langua@égs.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

