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Abstract. Dynamic analysis is the analysis of the properties of a run- 
ning program. In this paper, we explore two new dynamic analyses based 
on program profiling: 

- Frequency Spectrum Analysis. We show how analyzing the frequen- 
cies of program entities in a single execution can help programmers 
to decompose a program, identify related computations, and find 
computations related to specific input and output characteristics of 
a program. 

- Coverage Concept Analysis. Concept analysis of test coverage data 
computes dynamic analogs to static control flow relationships such 
as domination, postdomination, and regions. Comparison of these 
dynamically computed relationships to their static counterparts can 
point to areas of code requiring more testing and can aid program- 
mers in understanding how a program and its test sets relate to one 
another. 

1 Introduction 

Dynamic analysis is the analysis of the properties of a running program. In 
contrast to static analysis, which examines a program’s text to derive properties 
that hold for all executions, dynamic analysis derives properties that hold for 
one or more executions by examination of the running program (usually through 
program instrumentation [14]). While dynamic analysis cannot prove that a 
program satisfies a particular property, it can detect violations of properties as 
well as provide useful information to programmers about the behavior of their 
programs, as this paper will show. 

The usefulness of dynamic analysis derives from two of its essential charac- 
teristics: 

- Precision of information: dynamic analysis typically involves instrumenting 
a program to examine or record certain aspects of its run-time state. This 
instrumentation can be tuned to collect precisely the information needed 
to address a particular problem. For example, to analyze the shape of data 
structures created by a program (lists, trees, dags, etc.), an instrumentation 
tool can be created to record the linkages among heap-allocated storage cells. 
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- Dependence on program inputs: the very thing makes dynamic analysis in- 
complete also provides a powerful mechanism for relating program inputs 
and outputs to program behavior[l5]. With dynamic analysis it is straight- 
forward to relate changes in program inputs to changes in internal program 
behavior and program outputs, since all are directly observable and linked 
by the program execution. Viewed in this light, dynamic and static anaiy- 
sis might be better termed “input-centric” and “program-centric” analysis, 
respectively. 

Dynamic and static analyses are complementary techniques in a number of 
dimensions: 

- Completeness. In general, dynamic analyses generate “dynamic program in- 
variants” , properties which are true for the observed set of executions. [ll] 
Static analysis may help determine or not these dynamic “invariants” truly 
are invariants over all program executions. In the cases where the dynamic 
and static analyses disagree, there are two possibilities: 1. the dynamic anal- 
ysis is in error because it did not cover a sufficient number of executions; 
2. the static analysis is in error because it analyzed infeasible paths (paths 
that can never execute). Since dynamic analysis examines actual program 
executions, it does not suffer from the problem of infeasible paths that can 
plague static analyses. On the other hand, dynamic analysis, by definition, 
considers fewer execution paths than static analysis. 

- Scope. Because dynamic analysis examines one very long program path, it 
has the potential to discover semantic dependencies between program enti- 
ties widely separated in the path (and in time). Static analysis typically is 
restricted in the scope of a program it can analyze effectively and efficiently, 
and may have trouble discovering such “dependencies at a distance”. 

- Precision. Dynamic analysis has the benefit of examining the concrete do- 
main of program execution. Static analysis must abstract over this domain in 
order to ensure termination of the analysis, thus losing information from the 
start. Abstraction can be a useful technique for reducing the run-time over- 
head of dynamic analysis and reducing the amount of information recorded, 
but is not required for termination. 

In this paper, we illustrate and discuss some of these concepts of dynamic 
analysis using program profiles [3]. A program profile counts the number of 
times program entities occur in a program execution. For example, a statement 
level profile counts how many times each statement executes. Profiles can be 
recorded at many different levels, from that of objects, methods and procedures, 
down to paths, branches and even individual machine instructions. Profiling tools 
are commonplace today, with most compilers and operating systems providing 
accompanying profiling toolsets. 

We propose two new dynamic analyses based on program profiling: 

- Frequency Spectrum Analysis (FSA). The idea behind FSA is that analyz- 
ing the frequencies of program entities in a single execution can help pro- 
grammers to decompose a program, identify related computations, and find 
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computations related to specific input and output characteristics of the pro- 
gram. We demonstrate FSA on a small obfuscated C program that prints the 
poem “The Twelve Days of Christmas”. For this case study, we used path 
profiling [I] technology to monitor the execution behavior of the program. 
Based on our analysis, we created an “unobfuscated” version of the program 
that retains the original program’s profile signature and clearly explains the 
operation of the original program. 

- Coverage Concept Analysis (CCA). We show how concept analysis applied to 
coverage profiles naturally computes dynamic analogs to static control flow 
relationships such as domination and regions, identifying “dynamic control 
flow invariants” across a set of executions. Comparison of the dynamically 
invariant control flow relationships to their static counterparts can point to 
areas of code requiring more testing and can aid programmers in understand- 
ing how their code and test sets relate to one another. 

This paper is organized as follows. Section 2 presents the basic ideas behind 
frequency spectrum analysis and our case study of the obfuscated C program. 
Section 3 reviews concept analysis and shows the different ways in which it can 
help us to understand the relationships between tests and coverage information. 
Section 4 discusses related work. Section 5 conciudes the paper. 

2 Frequency Spectrum Analysis 

This section presents the ideas behind frequency spectrum analysis (FSA) and 
then describes how this analysis was used to help understand the internal be- 
havior of an obfuscated C program. 

2.1 The Meaning of Frequencies 

The traditional use of program profiles in performance tuning is to separate the 
frequently executed parts of a program from the less frequently parts. By delving 
a bit deeper into the information in program profiles (that is, the frequencies of 
the program entities, as recorded in a profile), FSA can help a programmer in 
three basic tasks: 

- partitioning the program by levels of abstraction; 
- finding related computations; 
- find computations related to specific attributes of a program’s input or out- 

put. 

In the next section, we will present our analysis of an obfuscated C pro- 
gram based on several general observations made in this section. Table 1 shows 
the path profile of the obfuscated C programs’ execution (Figure 1). Twelve 
paths executed and each path’s static identifier (composed of the procedure 
name containing the path and the path’s integer identifier in that procedure) 
and execution frequency are shown. The paths are sorted in ascending order of 
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Path ID IF’requency \lPath ID IF’requency 

Table 1. A path profile of the (readable) obfuscated C program’s execution. 

frequency. We will use this path profile to motivate FSA, without reference to 
the program’s output or its code. In the next section, we will analyze how the 
paths and frequencies are related to the program’s output and structure. 

FSA is based on three simple observations about how frequencies relate to 
program behavior: 

- Low Versus High Frequencies. The relative execution frequencies of program 
entities can provide clues as to their place in the hierarchy of program ab- 
stractions. For example, the interface procedures to a sorting module gen- 
erally will be called many fewer times than the private procedures in the 
module that invoke one another to perform the sort operation. In object- 
oriented programs, methods implementing a high-level architectural pattern 
probably will have lower execution frequency than methods implementing 
the guts of an algorithm. 
In Figure 1, we immediately see that the paths main:4 and main:5 have much 
higher frequencies than the other ten paths. This indicates that these paths 
are involved in some highly repetitive computation. 

- Related Frequencies and Frequency CZusters. The fact that a procedure foo 
is called 1033 times may not be particularly noteworthy. However, the fact 
that procedures foo and bar each are called 1033 times usually is more 
than mere coincidence. This is the basic idea behind related frequencies or 
“frequency clusters”. 
The reason for such frequency clustering may be that procedure f oo always 
calls procedure bar, or that there is another procedure f oobar that calls both 
foo and bar. There can be many explanations for a frequency cluster. Re- 
gardless of the underlying mechanism that created the cluster, the cluster by 
itself is an interesting hint to the programmer about dynamic relationships 
between program entities that may not be apparent in the static program 
structure. Frequency clusters partition the program many ways, slicing across 
traditional abstraction boundaries, as entities widely separated in program 
text may be related to one another through common frequency. 
Two clusters are immediately apparent in the path profile of Figure 1: paths 
main:2 and main:3 with frequency 114 and paths main:1 and main:7 with 
frequency 2358. 
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#include <stdio.h> 
main(t,-, a> char*a; X 
return!0<t?t<3?main~-79,-13,a+main~-87,1-~,main(-86,O,a+i~+a~~: 
l,t<~?main(t+l,~,a~:3,main~-94.-27+t,a~~t==2?~<13? 
main(2,-+l,"%s %d %d\n"):9:16:t<O?t<-72?main(-,t, 
11~n~+,#J/*I)w+/w#cdnr/+,i)r/*de)+,/*C*+,/w~~~,/w#q#n+,/#~l+,/n~n+,/+#n+,/#\ 
;#q#n+,/+k#;*+,/'r :'d+'3,)<w+K w'K:'+)e#';dq#'l \ 
q#~+d'K#!/+k#;q#~r)eKK8)u~r)eKK~nl]'/#;#q#n'){)#)w')()(nl]'/+#n';d)rw' i;% \ 
)Cnll!/nCn#'; rC#u'r nc{nl]'/#{l,+'K (rw' iK{;[{nl]'/u#q#n'uk nw' \ 
iuk{KK(nl] !/WC%' l##~#' i; :Cnl]'/*(q#'ld;r'){nlwb!/*de)'c \ 
;;Inl'-C)ru]'/+.)##'r)#nc,' ,#nu]'/+kd'+e)+;#'rdq#w! nr'/ '> )+){rl#'{n' 'I# \ 
)'+)##(! !/"I 
:t<-~0?~==*a?putch~(31[a~>:main(-6S,,,a+l):main((*a=='/')+t,,,a+i) 
:O<t?main(2,2,“%s”):*a==‘/‘Ilmain(0,main(-6l,*a. 
“!ek;dc icPbK’ (q)-[wl*%n+r3tl,C~:\nuvloca-0;m .vpbks,fxntdCeghiry”) ,a+11 ;) 

Fig. 1. An obfuscated C program to print the poem “The Twelve Days of Christmas”. 
The partial output of the program is shown in Figure 5. 

- Specific Frequencies. Knowledge about the characteristics of program’s input 
or output can greatly aid in FSA. For example, if the output of a program 
is an enumeration of records, there is probably a program entity whose fre- 
quency is the size of this enumeration. Frequencies related to the input or 
output domain of a program can help a programmer identify those parts 
of a program responsible for input or output. This idea can be extended in 
several obvious directions. For example, one can look for frequencies that 
might indicate a O(N2) algorithm, as suggested by [19]. 

As suggested above, profiles contain a wealth of information that is rarely 
exploited by programmers. Jon Bentley, in his series of columns and books on 
writing efficient programs, discusses how execution counts “tell interesting tales” 
and can help programmers to debug misbehaving programs as well as to tune 
the performance of well behaved programs. [5,6] In the next section, we explore 
this idea in some detail through a case study. 

2.2 Case Study: Understanding an Obfuscated C Program 

Figure 1 presents an obfuscated C program that often makes the rounds during 
the holiday season (the author has received it at least twice). The program takes 
no inputland produces the poem “The Twelve Days of Christmas”, an excerpt 
of which is presented in Figure 5 in the Appendix. 

In this section, we wil1 show how we used FSA to help determine how the 
program accomplishes the printing of the poem and to create a new “unobfus- 

’ It should be noted that in this very special circumstance, a dynamic analysis is 
a static analysis. Nonetheless, the information compute by the dynamic analysis 
(profiles) is unavailable from conventional static analyses. 
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#include <stdio.h> 
main(t,-.a) char *a; 
-I 

if ((!O) < t) ( 
Cl1 if (t < 3) main(-79,-i3,a+main(-87,l-~,main(-86,O,a+i)+a)); 
c21 if (t < _ > main(t+i,-,a); 
c31 main(-94,-27+t,a); 
c41 if (t==2 && _ < 13 1 main(2.-+l,““); 

3 else if (t < 0) C 
c51 if (t < -72) main(- ,t ,LARCE-STRING) ; 

else if (t < -50 ) C 
CSI if (- == *a) putchar (31 [a] ) ; 
c71 else main(-65,-,a+i); 
E81 1 else main((*a==‘/‘)+t,-,a+i); 
191 1 else if (0 < t> main (2,2,“%s”); 
[lo] else if (*a!=‘/‘> main(O,main(-61,*a,SMALL_STRING) ,a+l); 
3 

Fig. 2. A (more) readable version of the obfuscated C program, after reformatting, 
performing local syntactic substitutions to turn expressions into statements and elim- 
inating dead code. There are 10 lines containing calls, each uniquely numbered in 
brackets. 

cated” program that explains how the original program works. In restructuring 
the program, we maintained as much of the original program’s computational 
signature as possible. Whenever possible, we rewrote the program in the spirit 
of the original program, rather than substituting a radically different piece of 
code in place of one we didn’t happen to like. 

Making the Program Readable To understand a program, it first is helpful 
to be able to read it. The given program is barely readable, even for those very 
familiar with the C language. Our first task was to reformat the code, using 
indentation and explicit parenthesization to make it more readable, as well as 
rewriting it without the use of conditional or list expressions. Figure 2 shows the 
result of these local syntactic transformations. 

The readable obfuscated program consists of one function main with three 
arguments (t, _ and a) and calls itself repeatedly. The second argument is an 
underscore, which is a legal variable name in C. The function main truly is a 
function, as it does not update any variables. It achieves its goal based solely 
on the values passed to it. The initial invocation of the program will cause the 
value of parameter t to be 1 (because in Unix, the first argument to main is 
the count of the number of arguments on the command line including the name 
of the program itself). The program contains two strings (shown in the original 
program in Figure 1, but elided here to LARGE-STRING and SMALL-STRING, which 
appear to encode the text of the poem. 
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Path ID Frequency Condition Call Lines 

main:0 1 t == 1 c91 
main:19 1 t==2 %% t >= _ c1,3,41 
main:22 1 t==2 %% t < - &% _ >= 13 C1,2,31 
main:23 10 t==2 8% t ( - %& - K 13 [1,2,3,41 
main:9 11 t >= 3 &% t >= _ c31 
main:13 55 t>=3%%t<- C2,33 
main:2 114 t == 0 g& *a == I/’ no call lines 
main:3 114 t < -72 c51 

main: 1 2358 t == 0 && *a != '/I Cl03 
main:7 2358t > -72 P& t < -50 %& _ == *a [Sl 

main:4 24931 t < 0 %% t >= -50 C83 
main:5 39652t > -72 %% t < -50 %% _ != *a 171 

Table 2. Summary of the twelve executed paths in the readable obfuscated C program 
of Figure 2. 

The Frequency Spectrum Analysis Before taking on a reverse engineering 
task, it is important to have some model in mind to help guide the process. 
The “Twelve Days of Christmas” is all about counting gifts, so we approach 
the poem and the program by identifying various quantities that arise from the 
poem’s natural structure: 

- 1.2 verses, on for each of the 12 days of Christmas. 
- 26 unique strings: there are many repeated strings in the poem. There are 

three strings for the common structure ((‘On the”, “day of Christmas...“, 
“and a partridge . ..” ), 12 strings for the ordinals, and 11 strings for the 
second through twelfth gifts, giving a total of 26 unique strings. 

- 66 occurrences of presents other than a “partridge in a pear tree” (which 
occurs in every verse). 

- 114 strings printed: 12 occurrences of the three common strings (36), 12 
ordinals, and 66 non-partridge gifts (36 + 12 + 66 = 114); 

- 2353 characters printed as output, as counted by the Unix word count utility 
WC. 

We have seen some of these frequencies before in Figure 1. Recall that the 
goal of FSA is to use the frequencies obtained from a program profile to aid in 
understanding the program. The idea is that these execution counts will help 
us identify which parts of the program are responsible for which parts of the 
poem. For example, a program element with an execution count of 11 or 12 
may indicate an entity involved in the control of the number of verses, while 
an element with an execution count of 2358 is most likely involved in printing 
characters. 
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We used the PP path profiling tool of Ammons, Ball and Larus [4, l] to 
capture intraprocedural path2execution counts of the readable program. The 
program takes no input, so there is only one path profile to consider. Table 2 
repeats the twelve executed paths in the path profile of the readable program 
from Table 1, with some additional information. For this program, each path is 
uniquely identified by the conditions on the parameters t, _ and a and by the 
lines in the path that contain procedure calls (referred to here as “call lines”). 
There are ten lines containing procedure calls in the code in Figure 2, labelled 
in brackets. The path condition and the procedure call lines in each path are 
summarized in Table 2. 

The first thing that is apparent from Table 2 is that there is a strong corre- 
lation between a path’s frequency and the call lines that it covers. Paths with 
frequencies less than 100 cover subsets of call lines in the set { 1,2,3,4,9 }, while 
each path with frequency greater than 100 covers a different call line not in this 
set. A closer examination of the code and the paths shows that the paths cluster 
into six main groups (separated by the double lines in the table), as detailed 
beIow: 

- Path main:0 (executed once) initializes the recursion, 
- Paths main:19, main:22, and main:23 control the printing of the 12 verses. In 

particular, path main:19 represents the first verse, path main:23 the middle 
10 verses, and path main:22 the last verse. The sum of these paths’ frequen- 
cies is 12, the number of verses in the poem. Each of the paths covers a 
different set of recursive calls to main (call lines l-4). These paths helped 
us identify that certain calls were responsible for the first line of each verse 
(call line l), starting the inner loop iteration to print the list of gifts (call 
line 2). printing a single gift (call line 3), as well as iterating the outer loop 
(call line 4). 

- Paths main:9 and main:13 control the printing of the non-partridge-gifts 
within a verse. Note that the frequencies of the two paths sum to 66, as 
expected from our analysis of the poem. These paths make up the “inner 
loop” of the program. 

- Paths main:2 and main:3 are responsible for printing out a string. Each path 
has frequency 114, the exact number of strings predicted by analyzing the 
poem’s structure. The path main:3 represents the initialization (passing the 
large string in as parameter a) and the path main:2 represents the termina- 
tion of the printing of the string (when the ‘/’ separator is found). 

- Paths main:1 and main:7 print out the characters in a string. Each path 
executes 2358 times. Why are there two paths with frequency 2358? We will 
soon see. 

- What about the anomalous paths main:4 and main:5 with the large fre- 
quencies of 24931 and 39652? Examination of the code reveals that path 
main:4 is responsible for skipping over t sub-strings in LARGESTRING to get 

2 Intraprocedural paths do not follow control flow from a call site to the entry of the 
called procedure. They stay in the same procedure (effectively treating the procedure 
call as if it had no effect on the control flow). 

_. 
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to the t + lth sub-string. Each sub-string is terminated with the ‘/’ charac- 
ter. Every time the t + lth sub-string is to be printed, a linear scan through 
the large string is done to get to that sub-string, which accounts for path 
main:$‘s high frequency. 
Path main:5 scans SMALLSTRING until it finds the character in it that matches 
the current character (the value of the argument -) to be printed, at which 
point path main:7 executes. The character 31 positions later in the small 
string (31 Cal, which in C is equivalent to a C311) is the translation of the 
character. This explains why there are two paths with frequency 2358. Path 
main:1 is the initiation of the search of the small string to find the character 
translation and path main:7 performs the translation and printing of the 
character. Path main:5’s high frequency is due to the fact that the small 
string is scanned each time for every character to be printed. 

The Restructured Program Using the knowledge gained from FSA and man- 
ual examination of the program, we restructured the program to produce the 
program shown in Figure 3. We strove to keep the recursive structure of the 
program intact, but used different functions to represent the different tasks of 
the original program, as captured by the clustering of the paths. We did not 
change the values of the two relevant text strings (the list of sub-strings of the 
poem, LARGESTRING, and the translation mapping, SMALLSTRING). The origi- 
nal program used the value 2 to represent the first day of Christmas. We shifted 
this down to 1 to match the poem. 

There are seven functions in the new program, corresponding closely to the 
clusters of paths identified in the old program: 

- main (path main:O); 
- outer-loop (paths main:19, main:22 and main:23); 
- inner-loop (paths main:9 and main:13); 
- print-string (paths main:2 and main:3); 
- output-chars (paths main:1 and main:7) and translate-and-put-char (path 

main:5); 
- skipn-strings (path main:4). 

The new program has the exact same output as the old, and all of the per- 
formance disadvantages as well. To show that we have (in some sense) captured 
the essence of the original program, we path profiled the new program. The path 
profile of the new program is shown in Table 3, with paths sorted in ascending 
order of frequency; it is very similar to the original profile (Table 2) with some 
minor differences due to the restructuring. 

Summary A well known folk theorem in computer science is that any program 
can be transformed into a semantically equivalent program consisting of a single 
recursive function. This is what makes the obfuscated “12 Days of Christmas” 
program most difficult to understand. The first parameter to the function main 
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#include <stdio.h> 
static char *strings = LARGE-STRING; /* the original set of strings t/ 
static char *translate = SMALL-STRING; /* the translation mapping */ 
#define FIRST-DAY I 
#define LAST-DAY 12 

/* the original "indices" of the various strings */ 
enum ( ON-THE = 0, FIRST = -1, TWELFTH = -12, DAY-OF-CHRISTMAS = -13, 

TWELVE-DRUMMERS-DRUMMING = -14, PARTRIDGE-IN-A-PEAR-TREE = -25 

char* skip-n-strings(int n,char *s) ( /* skip -n strings (separator is />, */ 

if (n == 0) return s; /* where n is a negative value */ 
if (*s==‘/‘) return skip-n-strings(n+l,s+l); 
else return skip-n-strings(n,s+l); 

/* find the character in the translation buffer 
matching c and output the translation */ 

void translate-and-put-char(char c, char *trans) < 
if (c == *trans) putchar(transC311); 
else translate-and-put-char(c,trans+l); 

I. 

void output-chars(char *s) ( 
if (*s == '/'I return: 
translate-and-put-char(*s,translate); 
output-chars(s+l); 

1 

/* skip to the "n-th" string and print it */ 
void print-string(int n) { output-chars(skip-n-strings(n,strings)); > 

/* print the list of gifts */ 
void inner-loop(int count-day, int current-day) I 

if (count-day < current-day) inner-loop(count-day+l,current-day); 
print_string(PARTRIDGE_IN_A_PEAR_TREE+(count-day-l)); 

1 

void outer-loop(int current-day) < 
print-string(ON-THE); /* "On the It */ 
print-string(-current-day); /* ordinal, ranges from -1 to -12 */ 
print-string(DAY-OF-CHRISTMAS); /* "day of Christmas . .." */ 
innerJoop(FIRST-DAY,current-day); /* print the list of gifts *I 
if (current-day < LAST-DAY) 

outer_loop(current,day+l1; 
1 

void main0 { outer-loop(FIRST-DAY); 1 

Fig.3. The restructured “The Twelve Days of Christmas" program. 
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Path ID (Frequency 11 Path ID IFrequency 

Table 3. The path profile of the restructured program. 

takes on the role of the program counter and parameters are overloaded to have 
different interpretations depending on the context they are used. 

We used FSA to help separate out the set of functions that this single function 
implements. Thus small case study illustrates the essential features of FSA: 

- The use of low versus high frequencies to partition the program by levels of 
abstraction (for example, the printing of verses as compared to scanning of 
strings); 

- The use of frequency clusters to identify related computations in the program 
(for example, the paths comprising the outer and inner loops); 

- The use of specific frequencies to find computations related to the program’s 
observed behavior (for example, the paths responsible for printing a sub- 
string or a character). 

Our analysis clearly leaves many questions unanswered. Although complex, 
the obfuscated C program was quite small. How will FSA scale to larger pro- 
grams with accompanying larger profiles. 7 There are a number of issues here. 
With the obfuscated C program, there was a rather direct relationship between 
attributes of the program’s output and the program’s behavior. With larger pro- 
grams containing complex intermediate computations, we cannot hope to find 
such direct relationships. The size of the profile is also an issue, as there will 
generally be a lot of “noisy” data surrounding the data that one is interested 
in. We feel that the three basic observations of FSA (low vs. high frequency, 
frequency clusters, and special frequencies) will continue to be useful for larger 
programs, but only experience will show how. 

Another shortcoming of our case study was that the obfuscated C program 
had no inputs. The appearance of the same frequency correlations across dif- 
ferent executions (even if absolute frequency values are different) would provide 
stronger evidence of semantic relationships between parts of a program. In the 
next section, we discuss an approach to help analyze multiple execution profiles 
and compare the relationships in program executions to their static counterparts 
in program source text. 
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3 Coverage Concept Analysis 

The previous section demonstrated how analysis of the frequency spectrum of a 
single program execution can help in understanding and decomposing a program. 
What can be done if there are many executions to be examined? This section 
considers this question for a restricted but very commonly used type of profile, 
the coverage profile, which records for each test run, the entities that executed 
(but not, their frequencies). 

The main result of this section is to show that concept analysis appIied to 
coverage profiles naturally computes dynamic analogs to static control flow re- 
lationships such as domination and regions, identifying “dynamic control flow 
invariants” across a set of executions. Additionally, the comparison of the dy- 
namically invariant, control flow relationships to their static counterparts can 
point to areas of code requiring more testing and can aid programmers in un- 
derstanding how their code and test sets relate to one another. 

3.1 Concept Analysis and Test Coverage 

Concept analysis is a technique for identifying groups of objects that have com- 
mon attributes [lo]. The input to concept analysis is a binary relation between 
objects and attributes. This relation can be represented as a boolean-valued ta- 
ble in which rows represent objects and columns represent attributes. An entry 
of the table is true if an object has an attribute and false otherwise. 

For our purposes, the objects (rows) are tests and the attributes (columns) 
are the program entities that a test may cover, such as the procedures, state- 
ments, branches or paths of the program. Figure 4(a) shows an example of a test 
coverage table that can be input to concept analysis. The table shows procedure- 
level coverage of five tests (tl through t5) of an implementation of a red-black 
tree data structure (a form of balanced binary tree). The procedure names have 
been shortened to make the table more compact. 

In the testing domain, the pair (T, E), where T is a set of tests and E a 
set of program entities, is a concept if every test in T covers all the entities in 
E, and no test outside of T covers all the entities in E. Equivalently, (T, E) 
is a concept if every entity in E is covered by every test in T and there is no 
entity outside of E covered by every test in T. Stated yet another way, concepts 
determine maximal sets of tests covering identical entities (and maximal sets of 
entities covered by identical tests). Concepts can be computed by a variety of 
algorithms [12,18]. In the worst-case, for a table of size n rows by n columns, 
there may be 2” concepts, so the worst-case running time of any batch algorithm 
that computes all concepts is exponential in n. In practice, concept lattices have 
O(n2) concepts and sometimes even O(n) concepts [18]. 

The table in Figure 4(a) gives rise to six concepts, shown in Figure 4(b). The 
concept c4 has the tests { t2,t3,t4,t5 }, which have the procedures { add, rem, 
1Rotate } in common. Furthermore, this set of procedures has exactly the tests 
{ t2,t3,t4,t5 } in common. The pair ({ tl, t2 3, ( add, rem, DelFix )) is not a 
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I Procedures 

Test IaddIlRotateIremIMinISuccIDelFix 

(4 

Concept Tests Procedures 

cl t4, t5 add, lRotate, rem, Min, Succ, DelFix 
c2 t3, t4, t5 add, lRotate, rem, Min, SUCC 
c3 t2, t4, t5 add, lRotate, rem, DelFix 
c4 t2,t3,t4,t5 add, lRotate, rem 
c5 t1, t2, t4, t5 add, rem, DelFix 
c6 tl, t2, t3, t4, t5 add, rem 

(b) 

c6 
tests = ( t1.t2.t3,t4.t5 ) 

procs = ( add. rem ) 

c6 
proc = ( add, rem ] 

procs = ( add. IRotate, rem ) 

c2 
tests = ( 13.14s ) 

cs 
tests = ( 11 J2J4.15 J 

procs = ( add, rem, DelFix ) 

tests = ( t2.14.t5 ) 

proc = ( DelFix ) 

mu = ( t4.15 ) cl 
procs = ( add. IRotate. rem. Min. Succ. DelFin ) tests = ( t4.t5 ) 

Fig. 4. (a) Partial procedure coverage from five tests of a red-black tree implemen- 
tation; (b) The six concepts this coverage information induces; (c) Concept lattice of 
with full labelling of tests and procedures; (d) Concept lattice with minimal labelling. 
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concept because the set { tl, t‘2 } is not the maximal set of tests with common 
entities { add, rem, DelFix } (as concept c5 illustrates). 

Concepts can be ordered by set inclusion on tests or entities. The set of all 
concepts forms a complete partial order (E), given by: 

This partial order is also referred to as the concept lattice. Figure 4(c) shows 
the concept lattice for the six concepts cl through c6, with one node for each 
concept. If c 5 d (and there is no concept c’ such that c E c’ & d) then there is 
an arrow c -+ d in the lattice. Each concept is labelled with its associated set of 
tests and set of entities. 

There are a number of important properties of the concept lattice: 

- If a test t is in a concept c then it is in any concept greater than c (higher 
in the lattice). Furthermore, if an entity e is in a concept c, then it is in 
any lesser concept (lower in the lattice). In the running example, test t3 is 
in concept c2 and so is also in concepts c4 and c6. Procedure 1Rotate is in 
concept c4, so it is also in concepts cl, c2, and c3. 

- For every test t, there is a unique least concept in which it appears, denoted 
by Icon(t). Similarly, for every entity e, there is a unique greatest concept in 
which it appears, denoted by gcon(e). Concept c2 is the least concept con- 
taining test t3. Similarly, c4 is the greatest concept containing the procedure 
l.Rotate. 

Figure 4(d) shows how the concept lattice can be labelled so that each test 
and entity appears exactly once. A concept c is labelled. with a test t if and 
only if c = Icon(t). Likewise, a concept c is labelled with an entity e if and only 
if c = gcon(e). From now on, the term concept lattice is used to refer to the 
concept lattice labelled in this fashion. All the information in the input table 
can be recovered from this concept lattice. 

3.2 Concepts and Control Flow Invariance 

This section shows how concept analysis of the test-vs-entities table provides 
dynamic analogs to static control flow relationships such as domination, post- 
domination and regions. Concept analysis of tests-vs-entities identifies “dynamic 
control flow invariants” between entities over a set of tests. These “invariant&’ 
are dynamic because they not guaranteed to hold for all executions, but do hold 
for the set of observed executions (tests). The comparison of the dynamic and 
static control flow invariants in a program can be used to help develop new tests. 

Domination, Postdomination, and Control Flow Implication Domina- 
tion and postdomination are binary relations over the control flow entities of a 
program that identify when the execution of one entity implies the execution 
of another. Consider control flow entities e and f. Entity e is said to dominate 



entity f if every path from program entry to f includes e. Entity f is said to 
postdominate entity e if every path from e to program exit includes entity f. 

If entity f dominates entity e then any test that covers e must also cover f. 
If f postdominates e then it is also the case that any test that covers e must also 
cover f. Thus, execution of entity e (statically) implies the execution of entity 
f if f dominates e or f postdominates e. 

The partial ordering of concepts in the concept lattice provides the execution- 
time equivalent of control flow implication. If entity f is in a concept greater than 
or equal to gcon(e) then the execution of e dynamically implies the execution 
of f. That is, whenever a test t covers e it also covers f. For example, consider 
the procedure Min, which labels concept c2 in Figure 4(d). Concept c4, which 
contains procedure lRotate, is greater than c2, so any test that covers Min also 
covers 1Rotate. However, as the lattice also shows, there is a test (t2) in which 
1Rotate executes but Min does not. 

Regions If the execution of entity e implies the execution off and the execution 
of entity f implies the execution of e then e and f are said to occupy the same 
control flow region. That is, there is no test that can separate the execution of 
e from f. The entities either execute together or not at all. Regions partition 
the set of control flow entities in a program using the static domination and 
postdomination relations defined above. More precisely, entities e and f are in 
the same region if e dominates f and f postdominates e.3 

As with control flow implication, the concept lattice also identifies entities 
that always execute together in a set of tests. If gcon(e) = g&f) then e and f 
always execute together in the set of given tests. That is, they are in the same 
dynamic region. For example, in the concept lattice in Figure 4(d), procedures 
Min and Succ have the same greatest concept (c2), and thus always execute 
together. Also, the procedures add and rem share the concept c6. No other two 
procedures occupy a dynamic region. 

Comparing Dynamic and Static Information This section shows how the 
comparison of the static and dynamic control flow relations defined in the pre- 
vious sections can be a useful aid in the development of new tests. 

Suppose a program has been run on a set of tests and there is a pair of 
elements e and f such that e dynamically implies the execution of f, yet e does 
not statically imply f’s execution. Or suppose that gcon(e) = gcon(f), yet e 
and f are in different static regions. There may be a test that covers entity e 
but does not cover entity f. On the other hand if the execution of e statically 
implies the execution of f or e and f occupy the same static region, there is no 
point in trying to find a test that covers e but does not cover f. In the example 
of Figure 4(d), the procedures Min and Succ always execute together. However, 
these procedures are in different static regions in the red-black tree program. In 
fact, there is a test that separates their execution. 

3 This is a particular type of region known as weak regions.[2] Strong regions identify 
code that will always be executed the same number of times. 
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This example shows how concept analysis provides an intermediate point 
between “entity-based” and “path-based” coverage criteria. Entity-based cover- 
age criteria such a statement or branch coverage consider coverage of entities 
in isolation. Path-based coverage criteria consider sequences of entities (and so 
subsumes entity-based criteria), but infeasible paths greatly complicate deter- 
mining what a sufficient level of coverage is. Concept analysis identifies entities 
that always execute together in a given set of tests (or whose execution implies 
the execution of other entities). By comparing this “set-based” coverage infor- 
mation to the static regions of a program, a programmer can determine those 
entities whose execution they might try to separate. 

4 Related Work 

Recent work on dynamic discovery of program invariants is closely related to 
our work [ll]. Ersnt et al.3 work instruments program to record the values that 
variables take on in one or more executions. This information is input into an 
“invariant detection engine” the checks for a number of invariants, such as that 
a variable has a constant value or takes on a small number of values; or that a 
variables value is bounded by some range, etc. Restated, they discover logical 
invariants over a set of program executions, where the types of logical invariants 
that can be identified is another input to the analysis engine. 

Frequency spectrum analysis identifies control flow invariants within an ex- 
ecution (such as that two entities execute the same number of times), while 
concept concept analysis of test coverage information identifies control flow in- 
variants in a set of program executions. Some control flow invariants may imply 
some of the invariants that Ernst et al’s machinery discovers, and vice versa. For 
example, if a control flow branch based on “x == 2” always evaluates true, then 
the control flow information implies that the variable x always has the value 2 
at that point in the program. Value invariance and control flow invariance and 
techniques used to discover them are thus quite complementary. 

Other work on using dynamic analysis for exploring program executions con- 
centrates on “dynamic differencing” [20,15]. The idea is very simple. Each ex- 
ecution of a program generates a different “profile spectrum”, a different set of 
entities that are covered. This set is, of course, dependent on the input that a 
program reads and its interactions with the environment. By carefully controlling 
the inputs to a program and/or the environment in which it executes, perturb- 
ing these slightly and observing the differences in the sets of covered entities, 
one can determine which parts of the code are affected by the perturbations. 
Wilde proposed this technique as a way to determine which code in a telephone 
call processing system is responsible for different call features (such as Caller ID, 
Call Waiting, etc). In this case, different call scenarios would be used to generate 
the different profile spectrums, but with slight modifications to the set of calling 
features that were enabled. Reps et al. showed how dynamic differencing could 
be used to find code that is dependent on dates by simply changing those parts 
of the input to a program related to dates (i.e., years). Both Wilde’s and Reps et 
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al.? techniques are based mainly on program coverage. Reps et al. also proposed 
using frequency information (counts rather than coverage) to refine the analysis. 

Concept analysis of test-vs-coverage information is dynamic differencing of 
test coverage taken to the extreme. Concept analysis provides a full factoring 
of the coverage information that exposes not only the differences between tests, 
but what they have in common as well. In addition, it computes a number of 
useful relations, such as control flow correlation and test subsumption, in a single 
framework. 

Much research has been done on applying concept analysis to aide in the 
understanding and restructuring of programs [18,16,17]. All such work that 
we are aware of applies the concept analysis machinery to static relationships 
in a program, such a “procedure P uses variable V”, “class D inherits from 
class C”, etc. Our work makes use of the same machinery, but applies it to the 
dynamic relationship of “test T covers entity E” in order to help understanding 
the execution behavior of programs across a set of tests. 

A general idea behind frequency spectrum analysis is to use the dynamic 
behavior of programs to help construct models of their behavior. This basic idea 
has been explored in many related settings. For example, in the area of formal 
methods, many techniques for finite state machine synthesis have been proposed 
for constructing finite state models from a set of traces of observed program 
behavior [7]. Cook and Wolfe used such techniques for reverse engineering soft- 
ware processes [8] and later used related techniques to develop models from the 
traces of multi-process programs [9]. In the arena of object-oriented programs, 
a number of efforts have explored how to bridge the gap between programmer 
models of 00 behavior and what happens in 00 program execution [13]. These 
efforts typically instrument an 00 program to record message sends and other 
information, and then use a GUI to help programmers understand the traces 
and build models from them. 

5 Conclusions 

We have shown how frequency spectrum analysis and concept analysis of pro- 
gram profiles can aid in the tasks of program comprehension, program restructur- 
ing, and new test development. Just as program databases about static program 
structure have aided programmers and testers in their jobs, databases of dy- 
namic program behavior gathered over the history of a program should provide 
valuable the software production cycle. The questions of what dynamic data can 
be collected and stored and what tasks this data and analysis of it can support 
are matters for future investigation. 
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Appendix 

On the first day of Christmas my true love gave to me 
a partridge in a pear tree. 

On the second day of Christmas my true love gave to me 
two turtle doves 
and a partridge in a pear tree. 

On the twelfth day of Christmas my true love gave to me 
twelve drummers drumming, eleven pipers piping, ten lords a-leaping, 
nine ladies dancing, eight maids a-milking, seven swans a-swimming, 
six geese a-laying, five gold rings; 
four calling birds, three french hens, two turtle doves 
and a partridge in a pear tree. 

Fig. 5. Partial output of the obfuscated C program. 


