
The Concept of Dynamic Analysis

Thomas Ball

Bell Laboratories
Lucent Technologies

tball@research.bell-labs.com

Abstract. Dynamic analysis is the analysis of the properties of a run-
ning program. In this paper, we explore two new dynamic analyses based
on program profiling:

- Frequency Spectrum Analysis. We show how analyzing the frequen-
cies of program entities in a single execution can help programmers
to decompose a program, identify related computations, and find
computations related to specific input and output characteristics of
a program.

- Coverage Concept Analysis. Concept analysis of test coverage data
computes dynamic analogs to static control flow relationships such
as domination, postdomination, and regions. Comparison of these
dynamically computed relationships to their static counterparts can
point to areas of code requiring more testing and can aid program-
mers in understanding how a program and its test sets relate to one
another.

1 Introduction

Dynamic analysis is the analysis of the properties of a running program. In
contrast to static analysis, which examines a program’s text to derive properties
that hold for all executions, dynamic analysis derives properties that hold for
one or more executions by examination of the running program (usually through
program instrumentation [14]). While dynamic analysis cannot prove that a
program satisfies a particular property, it can detect violations of properties as
well as provide useful information to programmers about the behavior of their
programs, as this paper will show.

The usefulness of dynamic analysis derives from two of its essential charac-
teristics:

- Precision of information: dynamic analysis typically involves instrumenting
a program to examine or record certain aspects of its run-time state. This
instrumentation can be tuned to collect precisely the information needed
to address a particular problem. For example, to analyze the shape of data
structures created by a program (lists, trees, dags, etc.), an instrumentation
tool can be created to record the linkages among heap-allocated storage cells.

217

- Dependence on program inputs: the very thing makes dynamic analysis in-
complete also provides a powerful mechanism for relating program inputs
and outputs to program behavior[l5]. With dynamic analysis it is straight-
forward to relate changes in program inputs to changes in internal program
behavior and program outputs, since all are directly observable and linked
by the program execution. Viewed in this light, dynamic and static anaiy-
sis might be better termed “input-centric” and “program-centric” analysis,
respectively.

Dynamic and static analyses are complementary techniques in a number of
dimensions:

- Completeness. In general, dynamic analyses generate “dynamic program in-
variants” , properties which are true for the observed set of executions. [ll]
Static analysis may help determine or not these dynamic “invariants” truly
are invariants over all program executions. In the cases where the dynamic
and static analyses disagree, there are two possibilities: 1. the dynamic anal-
ysis is in error because it did not cover a sufficient number of executions;
2. the static analysis is in error because it analyzed infeasible paths (paths
that can never execute). Since dynamic analysis examines actual program
executions, it does not suffer from the problem of infeasible paths that can
plague static analyses. On the other hand, dynamic analysis, by definition,
considers fewer execution paths than static analysis.

- Scope. Because dynamic analysis examines one very long program path, it
has the potential to discover semantic dependencies between program enti-
ties widely separated in the path (and in time). Static analysis typically is
restricted in the scope of a program it can analyze effectively and efficiently,
and may have trouble discovering such “dependencies at a distance”.

- Precision. Dynamic analysis has the benefit of examining the concrete do-
main of program execution. Static analysis must abstract over this domain in
order to ensure termination of the analysis, thus losing information from the
start. Abstraction can be a useful technique for reducing the run-time over-
head of dynamic analysis and reducing the amount of information recorded,
but is not required for termination.

In this paper, we illustrate and discuss some of these concepts of dynamic
analysis using program profiles [3]. A program profile counts the number of
times program entities occur in a program execution. For example, a statement
level profile counts how many times each statement executes. Profiles can be
recorded at many different levels, from that of objects, methods and procedures,
down to paths, branches and even individual machine instructions. Profiling tools
are commonplace today, with most compilers and operating systems providing
accompanying profiling toolsets.

We propose two new dynamic analyses based on program profiling:

- Frequency Spectrum Analysis (FSA). The idea behind FSA is that analyz-
ing the frequencies of program entities in a single execution can help pro-
grammers to decompose a program, identify related computations, and find

218

computations related to specific input and output characteristics of the pro-
gram. We demonstrate FSA on a small obfuscated C program that prints the
poem “The Twelve Days of Christmas”. For this case study, we used path
profiling [I] technology to monitor the execution behavior of the program.
Based on our analysis, we created an “unobfuscated” version of the program
that retains the original program’s profile signature and clearly explains the
operation of the original program.

- Coverage Concept Analysis (CCA). We show how concept analysis applied to
coverage profiles naturally computes dynamic analogs to static control flow
relationships such as domination and regions, identifying “dynamic control
flow invariants” across a set of executions. Comparison of the dynamically
invariant control flow relationships to their static counterparts can point to
areas of code requiring more testing and can aid programmers in understand-
ing how their code and test sets relate to one another.

This paper is organized as follows. Section 2 presents the basic ideas behind
frequency spectrum analysis and our case study of the obfuscated C program.
Section 3 reviews concept analysis and shows the different ways in which it can
help us to understand the relationships between tests and coverage information.
Section 4 discusses related work. Section 5 conciudes the paper.

2 Frequency Spectrum Analysis

This section presents the ideas behind frequency spectrum analysis (FSA) and
then describes how this analysis was used to help understand the internal be-
havior of an obfuscated C program.

2.1 The Meaning of Frequencies

The traditional use of program profiles in performance tuning is to separate the
frequently executed parts of a program from the less frequently parts. By delving
a bit deeper into the information in program profiles (that is, the frequencies of
the program entities, as recorded in a profile), FSA can help a programmer in
three basic tasks:

- partitioning the program by levels of abstraction;
- finding related computations;
- find computations related to specific attributes of a program’s input or out-

put.

In the next section, we will present our analysis of an obfuscated C pro-
gram based on several general observations made in this section. Table 1 shows
the path profile of the obfuscated C programs’ execution (Figure 1). Twelve
paths executed and each path’s static identifier (composed of the procedure
name containing the path and the path’s integer identifier in that procedure)
and execution frequency are shown. The paths are sorted in ascending order of

219

Path ID IF’requency \lPath ID IF’requency

Table 1. A path profile of the (readable) obfuscated C program’s execution.

frequency. We will use this path profile to motivate FSA, without reference to
the program’s output or its code. In the next section, we will analyze how the
paths and frequencies are related to the program’s output and structure.

FSA is based on three simple observations about how frequencies relate to
program behavior:

- Low Versus High Frequencies. The relative execution frequencies of program
entities can provide clues as to their place in the hierarchy of program ab-
stractions. For example, the interface procedures to a sorting module gen-
erally will be called many fewer times than the private procedures in the
module that invoke one another to perform the sort operation. In object-
oriented programs, methods implementing a high-level architectural pattern
probably will have lower execution frequency than methods implementing
the guts of an algorithm.
In Figure 1, we immediately see that the paths main:4 and main:5 have much
higher frequencies than the other ten paths. This indicates that these paths
are involved in some highly repetitive computation.

- Related Frequencies and Frequency CZusters. The fact that a procedure foo
is called 1033 times may not be particularly noteworthy. However, the fact
that procedures foo and bar each are called 1033 times usually is more
than mere coincidence. This is the basic idea behind related frequencies or
“frequency clusters”.
The reason for such frequency clustering may be that procedure f oo always
calls procedure bar, or that there is another procedure f oobar that calls both
foo and bar. There can be many explanations for a frequency cluster. Re-
gardless of the underlying mechanism that created the cluster, the cluster by
itself is an interesting hint to the programmer about dynamic relationships
between program entities that may not be apparent in the static program
structure. Frequency clusters partition the program many ways, slicing across
traditional abstraction boundaries, as entities widely separated in program
text may be related to one another through common frequency.
Two clusters are immediately apparent in the path profile of Figure 1: paths
main:2 and main:3 with frequency 114 and paths main:1 and main:7 with
frequency 2358.

220

#include <stdio.h>
main(t,-, a> char*a; X
return!0<t?t<3?main~-79,-13,a+main~-87,1-~,main(-86,O,a+i~+a~~:
l,t<~?main(t+l,~,a~:3,main~-94.-27+t,a~~t==2?~<13?
main(2,-+l,"%s %d %d\n"):9:16:t<O?t<-72?main(-,t,
11~n~+,#J/*I)w+/w#cdnr/+,i)r/*de)+,/*C*+,/w~~~,/w#q#n+,/#~l+,/n~n+,/+#n+,/#\
;#q#n+,/+k#;*+,/'r :'d+'3,)<w+K w'K:'+)e#';dq#'l \
q#~+d'K#!/+k#;q#~r)eKK8)u~r)eKK~nl]'/#;#q#n'){)#)w')()(nl]'/+#n';d)rw' i;% \
)Cnll!/nCn#'; rC#u'r nc{nl]'/#{l,+'K (rw' iK{;[{nl]'/u#q#n'uk nw' \
iuk{KK(nl] !/WC%' l##~#' i; :Cnl]'/*(q#'ld;r'){nlwb!/*de)'c \
;;Inl'-C)ru]'/+.)##'r)#nc,' ,#nu]'/+kd'+e)+;#'rdq#w! nr'/ '>)+){rl#'{n' 'I# \
)'+)##(! !/"I
:t<-~0?~==*a?putch~(31[a~>:main(-6S,,,a+l):main((*a=='/')+t,,,a+i)
:O<t?main(2,2,“%s”):*a==‘/‘Ilmain(0,main(-6l,*a.
“!ek;dc icPbK’ (q)-[wl*%n+r3tl,C~:\nuvloca-0;m .vpbks,fxntdCeghiry”) ,a+11 ;)

Fig. 1. An obfuscated C program to print the poem “The Twelve Days of Christmas”.
The partial output of the program is shown in Figure 5.

- Specific Frequencies. Knowledge about the characteristics of program’s input
or output can greatly aid in FSA. For example, if the output of a program
is an enumeration of records, there is probably a program entity whose fre-
quency is the size of this enumeration. Frequencies related to the input or
output domain of a program can help a programmer identify those parts
of a program responsible for input or output. This idea can be extended in
several obvious directions. For example, one can look for frequencies that
might indicate a O(N2) algorithm, as suggested by [19].

As suggested above, profiles contain a wealth of information that is rarely
exploited by programmers. Jon Bentley, in his series of columns and books on
writing efficient programs, discusses how execution counts “tell interesting tales”
and can help programmers to debug misbehaving programs as well as to tune
the performance of well behaved programs. [5,6] In the next section, we explore
this idea in some detail through a case study.

2.2 Case Study: Understanding an Obfuscated C Program

Figure 1 presents an obfuscated C program that often makes the rounds during
the holiday season (the author has received it at least twice). The program takes
no inputland produces the poem “The Twelve Days of Christmas”, an excerpt
of which is presented in Figure 5 in the Appendix.

In this section, we wil1 show how we used FSA to help determine how the
program accomplishes the printing of the poem and to create a new “unobfus-

’ It should be noted that in this very special circumstance, a dynamic analysis is
a static analysis. Nonetheless, the information compute by the dynamic analysis
(profiles) is unavailable from conventional static analyses.

221

#include <stdio.h>
main(t,-.a) char *a;
-I

if ((!O) < t) (
Cl1 if (t < 3) main(-79,-i3,a+main(-87,l-~,main(-86,O,a+i)+a));
c21 if (t < _ > main(t+i,-,a);
c31 main(-94,-27+t,a);
c41 if (t==2 && _ < 13 1 main(2.-+l,““);

3 else if (t < 0) C
c51 if (t < -72) main(- ,t ,LARCE-STRING) ;

else if (t < -50) C
CSI if (- == *a) putchar (31 [a]) ;
c71 else main(-65,-,a+i);
E81 1 else main((*a==‘/‘)+t,-,a+i);
191 1 else if (0 < t> main (2,2,“%s”);
[lo] else if (*a!=‘/‘> main(O,main(-61,*a,SMALL_STRING) ,a+l);
3

Fig. 2. A (more) readable version of the obfuscated C program, after reformatting,
performing local syntactic substitutions to turn expressions into statements and elim-
inating dead code. There are 10 lines containing calls, each uniquely numbered in
brackets.

cated” program that explains how the original program works. In restructuring
the program, we maintained as much of the original program’s computational
signature as possible. Whenever possible, we rewrote the program in the spirit
of the original program, rather than substituting a radically different piece of
code in place of one we didn’t happen to like.

Making the Program Readable To understand a program, it first is helpful
to be able to read it. The given program is barely readable, even for those very
familiar with the C language. Our first task was to reformat the code, using
indentation and explicit parenthesization to make it more readable, as well as
rewriting it without the use of conditional or list expressions. Figure 2 shows the
result of these local syntactic transformations.

The readable obfuscated program consists of one function main with three
arguments (t, _ and a) and calls itself repeatedly. The second argument is an
underscore, which is a legal variable name in C. The function main truly is a
function, as it does not update any variables. It achieves its goal based solely
on the values passed to it. The initial invocation of the program will cause the
value of parameter t to be 1 (because in Unix, the first argument to main is
the count of the number of arguments on the command line including the name
of the program itself). The program contains two strings (shown in the original
program in Figure 1, but elided here to LARGE-STRING and SMALL-STRING, which
appear to encode the text of the poem.

222

Path ID Frequency Condition Call Lines

main:0 1 t == 1 c91
main:19 1 t==2 %% t >= _ c1,3,41
main:22 1 t==2 %% t < - &% _ >= 13 C1,2,31
main:23 10 t==2 8% t (- %& - K 13 [1,2,3,41
main:9 11 t >= 3 &% t >= _ c31
main:13 55 t>=3%%t<- C2,33
main:2 114 t == 0 g& *a == I/’ no call lines
main:3 114 t < -72 c51

main: 1 2358 t == 0 && *a != '/I Cl03
main:7 2358t > -72 P& t < -50 %& _ == *a [Sl

main:4 24931 t < 0 %% t >= -50 C83
main:5 39652t > -72 %% t < -50 %% _ != *a 171

Table 2. Summary of the twelve executed paths in the readable obfuscated C program
of Figure 2.

The Frequency Spectrum Analysis Before taking on a reverse engineering
task, it is important to have some model in mind to help guide the process.
The “Twelve Days of Christmas” is all about counting gifts, so we approach
the poem and the program by identifying various quantities that arise from the
poem’s natural structure:

- 1.2 verses, on for each of the 12 days of Christmas.
- 26 unique strings: there are many repeated strings in the poem. There are

three strings for the common structure ((‘On the”, “day of Christmas...“,
“and a partridge . ..”), 12 strings for the ordinals, and 11 strings for the
second through twelfth gifts, giving a total of 26 unique strings.

- 66 occurrences of presents other than a “partridge in a pear tree” (which
occurs in every verse).

- 114 strings printed: 12 occurrences of the three common strings (36), 12
ordinals, and 66 non-partridge gifts (36 + 12 + 66 = 114);

- 2353 characters printed as output, as counted by the Unix word count utility
WC.

We have seen some of these frequencies before in Figure 1. Recall that the
goal of FSA is to use the frequencies obtained from a program profile to aid in
understanding the program. The idea is that these execution counts will help
us identify which parts of the program are responsible for which parts of the
poem. For example, a program element with an execution count of 11 or 12
may indicate an entity involved in the control of the number of verses, while
an element with an execution count of 2358 is most likely involved in printing
characters.

223

We used the PP path profiling tool of Ammons, Ball and Larus [4, l] to
capture intraprocedural path2execution counts of the readable program. The
program takes no input, so there is only one path profile to consider. Table 2
repeats the twelve executed paths in the path profile of the readable program
from Table 1, with some additional information. For this program, each path is
uniquely identified by the conditions on the parameters t, _ and a and by the
lines in the path that contain procedure calls (referred to here as “call lines”).
There are ten lines containing procedure calls in the code in Figure 2, labelled
in brackets. The path condition and the procedure call lines in each path are
summarized in Table 2.

The first thing that is apparent from Table 2 is that there is a strong corre-
lation between a path’s frequency and the call lines that it covers. Paths with
frequencies less than 100 cover subsets of call lines in the set { 1,2,3,4,9 }, while
each path with frequency greater than 100 covers a different call line not in this
set. A closer examination of the code and the paths shows that the paths cluster
into six main groups (separated by the double lines in the table), as detailed
beIow:

- Path main:0 (executed once) initializes the recursion,
- Paths main:19, main:22, and main:23 control the printing of the 12 verses. In

particular, path main:19 represents the first verse, path main:23 the middle
10 verses, and path main:22 the last verse. The sum of these paths’ frequen-
cies is 12, the number of verses in the poem. Each of the paths covers a
different set of recursive calls to main (call lines l-4). These paths helped
us identify that certain calls were responsible for the first line of each verse
(call line l), starting the inner loop iteration to print the list of gifts (call
line 2). printing a single gift (call line 3), as well as iterating the outer loop
(call line 4).

- Paths main:9 and main:13 control the printing of the non-partridge-gifts
within a verse. Note that the frequencies of the two paths sum to 66, as
expected from our analysis of the poem. These paths make up the “inner
loop” of the program.

- Paths main:2 and main:3 are responsible for printing out a string. Each path
has frequency 114, the exact number of strings predicted by analyzing the
poem’s structure. The path main:3 represents the initialization (passing the
large string in as parameter a) and the path main:2 represents the termina-
tion of the printing of the string (when the ‘/’ separator is found).

- Paths main:1 and main:7 print out the characters in a string. Each path
executes 2358 times. Why are there two paths with frequency 2358? We will
soon see.

- What about the anomalous paths main:4 and main:5 with the large fre-
quencies of 24931 and 39652? Examination of the code reveals that path
main:4 is responsible for skipping over t sub-strings in LARGESTRING to get

2 Intraprocedural paths do not follow control flow from a call site to the entry of the
called procedure. They stay in the same procedure (effectively treating the procedure
call as if it had no effect on the control flow).

_.

224

to the t + lth sub-string. Each sub-string is terminated with the ‘/’ charac-
ter. Every time the t + lth sub-string is to be printed, a linear scan through
the large string is done to get to that sub-string, which accounts for path
main:$‘s high frequency.
Path main:5 scans SMALLSTRING until it finds the character in it that matches
the current character (the value of the argument -) to be printed, at which
point path main:7 executes. The character 31 positions later in the small
string (31 Cal, which in C is equivalent to a C311) is the translation of the
character. This explains why there are two paths with frequency 2358. Path
main:1 is the initiation of the search of the small string to find the character
translation and path main:7 performs the translation and printing of the
character. Path main:5’s high frequency is due to the fact that the small
string is scanned each time for every character to be printed.

The Restructured Program Using the knowledge gained from FSA and man-
ual examination of the program, we restructured the program to produce the
program shown in Figure 3. We strove to keep the recursive structure of the
program intact, but used different functions to represent the different tasks of
the original program, as captured by the clustering of the paths. We did not
change the values of the two relevant text strings (the list of sub-strings of the
poem, LARGESTRING, and the translation mapping, SMALLSTRING). The origi-
nal program used the value 2 to represent the first day of Christmas. We shifted
this down to 1 to match the poem.

There are seven functions in the new program, corresponding closely to the
clusters of paths identified in the old program:

- main (path main:O);
- outer-loop (paths main:19, main:22 and main:23);
- inner-loop (paths main:9 and main:13);
- print-string (paths main:2 and main:3);
- output-chars (paths main:1 and main:7) and translate-and-put-char (path

main:5);
- skipn-strings (path main:4).

The new program has the exact same output as the old, and all of the per-
formance disadvantages as well. To show that we have (in some sense) captured
the essence of the original program, we path profiled the new program. The path
profile of the new program is shown in Table 3, with paths sorted in ascending
order of frequency; it is very similar to the original profile (Table 2) with some
minor differences due to the restructuring.

Summary A well known folk theorem in computer science is that any program
can be transformed into a semantically equivalent program consisting of a single
recursive function. This is what makes the obfuscated “12 Days of Christmas”
program most difficult to understand. The first parameter to the function main

225

#include <stdio.h>
static char *strings = LARGE-STRING; /* the original set of strings t/
static char *translate = SMALL-STRING; /* the translation mapping */
#define FIRST-DAY I
#define LAST-DAY 12

/* the original "indices" of the various strings */
enum (ON-THE = 0, FIRST = -1, TWELFTH = -12, DAY-OF-CHRISTMAS = -13,

TWELVE-DRUMMERS-DRUMMING = -14, PARTRIDGE-IN-A-PEAR-TREE = -25

char* skip-n-strings(int n,char *s) (/* skip -n strings (separator is />, */

if (n == 0) return s; /* where n is a negative value */
if (*s==‘/‘) return skip-n-strings(n+l,s+l);
else return skip-n-strings(n,s+l);

/* find the character in the translation buffer
matching c and output the translation */

void translate-and-put-char(char c, char *trans) <
if (c == *trans) putchar(transC311);
else translate-and-put-char(c,trans+l);

I.

void output-chars(char *s) (
if (*s == '/'I return:
translate-and-put-char(*s,translate);
output-chars(s+l);

1

/* skip to the "n-th" string and print it */
void print-string(int n) { output-chars(skip-n-strings(n,strings)); >

/* print the list of gifts */
void inner-loop(int count-day, int current-day) I

if (count-day < current-day) inner-loop(count-day+l,current-day);
print_string(PARTRIDGE_IN_A_PEAR_TREE+(count-day-l));

1

void outer-loop(int current-day) <
print-string(ON-THE); /* "On the It */
print-string(-current-day); /* ordinal, ranges from -1 to -12 */
print-string(DAY-OF-CHRISTMAS); /* "day of Christmas . .." */
innerJoop(FIRST-DAY,current-day); /* print the list of gifts *I
if (current-day < LAST-DAY)

outer_loop(current,day+l1;
1

void main0 { outer-loop(FIRST-DAY); 1

Fig.3. The restructured “The Twelve Days of Christmas" program.

226

Path ID (Frequency 11 Path ID IFrequency

Table 3. The path profile of the restructured program.

takes on the role of the program counter and parameters are overloaded to have
different interpretations depending on the context they are used.

We used FSA to help separate out the set of functions that this single function
implements. Thus small case study illustrates the essential features of FSA:

- The use of low versus high frequencies to partition the program by levels of
abstraction (for example, the printing of verses as compared to scanning of
strings);

- The use of frequency clusters to identify related computations in the program
(for example, the paths comprising the outer and inner loops);

- The use of specific frequencies to find computations related to the program’s
observed behavior (for example, the paths responsible for printing a sub-
string or a character).

Our analysis clearly leaves many questions unanswered. Although complex,
the obfuscated C program was quite small. How will FSA scale to larger pro-
grams with accompanying larger profiles. 7 There are a number of issues here.
With the obfuscated C program, there was a rather direct relationship between
attributes of the program’s output and the program’s behavior. With larger pro-
grams containing complex intermediate computations, we cannot hope to find
such direct relationships. The size of the profile is also an issue, as there will
generally be a lot of “noisy” data surrounding the data that one is interested
in. We feel that the three basic observations of FSA (low vs. high frequency,
frequency clusters, and special frequencies) will continue to be useful for larger
programs, but only experience will show how.

Another shortcoming of our case study was that the obfuscated C program
had no inputs. The appearance of the same frequency correlations across dif-
ferent executions (even if absolute frequency values are different) would provide
stronger evidence of semantic relationships between parts of a program. In the
next section, we discuss an approach to help analyze multiple execution profiles
and compare the relationships in program executions to their static counterparts
in program source text.

227

3 Coverage Concept Analysis

The previous section demonstrated how analysis of the frequency spectrum of a
single program execution can help in understanding and decomposing a program.
What can be done if there are many executions to be examined? This section
considers this question for a restricted but very commonly used type of profile,
the coverage profile, which records for each test run, the entities that executed
(but not, their frequencies).

The main result of this section is to show that concept analysis appIied to
coverage profiles naturally computes dynamic analogs to static control flow re-
lationships such as domination and regions, identifying “dynamic control flow
invariants” across a set of executions. Additionally, the comparison of the dy-
namically invariant, control flow relationships to their static counterparts can
point to areas of code requiring more testing and can aid programmers in un-
derstanding how their code and test sets relate to one another.

3.1 Concept Analysis and Test Coverage

Concept analysis is a technique for identifying groups of objects that have com-
mon attributes [lo]. The input to concept analysis is a binary relation between
objects and attributes. This relation can be represented as a boolean-valued ta-
ble in which rows represent objects and columns represent attributes. An entry
of the table is true if an object has an attribute and false otherwise.

For our purposes, the objects (rows) are tests and the attributes (columns)
are the program entities that a test may cover, such as the procedures, state-
ments, branches or paths of the program. Figure 4(a) shows an example of a test
coverage table that can be input to concept analysis. The table shows procedure-
level coverage of five tests (tl through t5) of an implementation of a red-black
tree data structure (a form of balanced binary tree). The procedure names have
been shortened to make the table more compact.

In the testing domain, the pair (T, E), where T is a set of tests and E a
set of program entities, is a concept if every test in T covers all the entities in
E, and no test outside of T covers all the entities in E. Equivalently, (T, E)
is a concept if every entity in E is covered by every test in T and there is no
entity outside of E covered by every test in T. Stated yet another way, concepts
determine maximal sets of tests covering identical entities (and maximal sets of
entities covered by identical tests). Concepts can be computed by a variety of
algorithms [12,18]. In the worst-case, for a table of size n rows by n columns,
there may be 2” concepts, so the worst-case running time of any batch algorithm
that computes all concepts is exponential in n. In practice, concept lattices have
O(n2) concepts and sometimes even O(n) concepts [18].

The table in Figure 4(a) gives rise to six concepts, shown in Figure 4(b). The
concept c4 has the tests { t2,t3,t4,t5 }, which have the procedures { add, rem,
1Rotate } in common. Furthermore, this set of procedures has exactly the tests
{ t2,t3,t4,t5 } in common. The pair ({ tl, t2 3, (add, rem, DelFix)) is not a

228

I Procedures

Test IaddIlRotateIremIMinISuccIDelFix

(4

Concept Tests Procedures

cl t4, t5 add, lRotate, rem, Min, Succ, DelFix
c2 t3, t4, t5 add, lRotate, rem, Min, SUCC
c3 t2, t4, t5 add, lRotate, rem, DelFix
c4 t2,t3,t4,t5 add, lRotate, rem
c5 t1, t2, t4, t5 add, rem, DelFix
c6 tl, t2, t3, t4, t5 add, rem

(b)

c6
tests = (t1.t2.t3,t4.t5)

procs = (add. rem)

c6
proc = (add, rem]

procs = (add. IRotate, rem)

c2
tests = (13.14s)

cs
tests = (11 J2J4.15 J

procs = (add, rem, DelFix)

tests = (t2.14.t5)

proc = (DelFix)

mu = (t4.15) cl
procs = (add. IRotate. rem. Min. Succ. DelFin) tests = (t4.t5)

Fig. 4. (a) Partial procedure coverage from five tests of a red-black tree implemen-
tation; (b) The six concepts this coverage information induces; (c) Concept lattice of
with full labelling of tests and procedures; (d) Concept lattice with minimal labelling.

229

concept because the set { tl, t‘2 } is not the maximal set of tests with common
entities { add, rem, DelFix } (as concept c5 illustrates).

Concepts can be ordered by set inclusion on tests or entities. The set of all
concepts forms a complete partial order (E), given by:

This partial order is also referred to as the concept lattice. Figure 4(c) shows
the concept lattice for the six concepts cl through c6, with one node for each
concept. If c 5 d (and there is no concept c’ such that c E c’ & d) then there is
an arrow c -+ d in the lattice. Each concept is labelled with its associated set of
tests and set of entities.

There are a number of important properties of the concept lattice:

- If a test t is in a concept c then it is in any concept greater than c (higher
in the lattice). Furthermore, if an entity e is in a concept c, then it is in
any lesser concept (lower in the lattice). In the running example, test t3 is
in concept c2 and so is also in concepts c4 and c6. Procedure 1Rotate is in
concept c4, so it is also in concepts cl, c2, and c3.

- For every test t, there is a unique least concept in which it appears, denoted
by Icon(t). Similarly, for every entity e, there is a unique greatest concept in
which it appears, denoted by gcon(e). Concept c2 is the least concept con-
taining test t3. Similarly, c4 is the greatest concept containing the procedure
l.Rotate.

Figure 4(d) shows how the concept lattice can be labelled so that each test
and entity appears exactly once. A concept c is labelled. with a test t if and
only if c = Icon(t). Likewise, a concept c is labelled with an entity e if and only
if c = gcon(e). From now on, the term concept lattice is used to refer to the
concept lattice labelled in this fashion. All the information in the input table
can be recovered from this concept lattice.

3.2 Concepts and Control Flow Invariance

This section shows how concept analysis of the test-vs-entities table provides
dynamic analogs to static control flow relationships such as domination, post-
domination and regions. Concept analysis of tests-vs-entities identifies “dynamic
control flow invariants” between entities over a set of tests. These “invariant&’
are dynamic because they not guaranteed to hold for all executions, but do hold
for the set of observed executions (tests). The comparison of the dynamic and
static control flow invariants in a program can be used to help develop new tests.

Domination, Postdomination, and Control Flow Implication Domina-
tion and postdomination are binary relations over the control flow entities of a
program that identify when the execution of one entity implies the execution
of another. Consider control flow entities e and f. Entity e is said to dominate

entity f if every path from program entry to f includes e. Entity f is said to
postdominate entity e if every path from e to program exit includes entity f.

If entity f dominates entity e then any test that covers e must also cover f.
If f postdominates e then it is also the case that any test that covers e must also
cover f. Thus, execution of entity e (statically) implies the execution of entity
f if f dominates e or f postdominates e.

The partial ordering of concepts in the concept lattice provides the execution-
time equivalent of control flow implication. If entity f is in a concept greater than
or equal to gcon(e) then the execution of e dynamically implies the execution
of f. That is, whenever a test t covers e it also covers f. For example, consider
the procedure Min, which labels concept c2 in Figure 4(d). Concept c4, which
contains procedure lRotate, is greater than c2, so any test that covers Min also
covers 1Rotate. However, as the lattice also shows, there is a test (t2) in which
1Rotate executes but Min does not.

Regions If the execution of entity e implies the execution off and the execution
of entity f implies the execution of e then e and f are said to occupy the same
control flow region. That is, there is no test that can separate the execution of
e from f. The entities either execute together or not at all. Regions partition
the set of control flow entities in a program using the static domination and
postdomination relations defined above. More precisely, entities e and f are in
the same region if e dominates f and f postdominates e.3

As with control flow implication, the concept lattice also identifies entities
that always execute together in a set of tests. If gcon(e) = g&f) then e and f
always execute together in the set of given tests. That is, they are in the same
dynamic region. For example, in the concept lattice in Figure 4(d), procedures
Min and Succ have the same greatest concept (c2), and thus always execute
together. Also, the procedures add and rem share the concept c6. No other two
procedures occupy a dynamic region.

Comparing Dynamic and Static Information This section shows how the
comparison of the static and dynamic control flow relations defined in the pre-
vious sections can be a useful aid in the development of new tests.

Suppose a program has been run on a set of tests and there is a pair of
elements e and f such that e dynamically implies the execution of f, yet e does
not statically imply f’s execution. Or suppose that gcon(e) = gcon(f), yet e
and f are in different static regions. There may be a test that covers entity e
but does not cover entity f. On the other hand if the execution of e statically
implies the execution of f or e and f occupy the same static region, there is no
point in trying to find a test that covers e but does not cover f. In the example
of Figure 4(d), the procedures Min and Succ always execute together. However,
these procedures are in different static regions in the red-black tree program. In
fact, there is a test that separates their execution.

3 This is a particular type of region known as weak regions.[2] Strong regions identify
code that will always be executed the same number of times.

231

This example shows how concept analysis provides an intermediate point
between “entity-based” and “path-based” coverage criteria. Entity-based cover-
age criteria such a statement or branch coverage consider coverage of entities
in isolation. Path-based coverage criteria consider sequences of entities (and so
subsumes entity-based criteria), but infeasible paths greatly complicate deter-
mining what a sufficient level of coverage is. Concept analysis identifies entities
that always execute together in a given set of tests (or whose execution implies
the execution of other entities). By comparing this “set-based” coverage infor-
mation to the static regions of a program, a programmer can determine those
entities whose execution they might try to separate.

4 Related Work

Recent work on dynamic discovery of program invariants is closely related to
our work [ll]. Ersnt et al.3 work instruments program to record the values that
variables take on in one or more executions. This information is input into an
“invariant detection engine” the checks for a number of invariants, such as that
a variable has a constant value or takes on a small number of values; or that a
variables value is bounded by some range, etc. Restated, they discover logical
invariants over a set of program executions, where the types of logical invariants
that can be identified is another input to the analysis engine.

Frequency spectrum analysis identifies control flow invariants within an ex-
ecution (such as that two entities execute the same number of times), while
concept concept analysis of test coverage information identifies control flow in-
variants in a set of program executions. Some control flow invariants may imply
some of the invariants that Ernst et al’s machinery discovers, and vice versa. For
example, if a control flow branch based on “x == 2” always evaluates true, then
the control flow information implies that the variable x always has the value 2
at that point in the program. Value invariance and control flow invariance and
techniques used to discover them are thus quite complementary.

Other work on using dynamic analysis for exploring program executions con-
centrates on “dynamic differencing” [20,15]. The idea is very simple. Each ex-
ecution of a program generates a different “profile spectrum”, a different set of
entities that are covered. This set is, of course, dependent on the input that a
program reads and its interactions with the environment. By carefully controlling
the inputs to a program and/or the environment in which it executes, perturb-
ing these slightly and observing the differences in the sets of covered entities,
one can determine which parts of the code are affected by the perturbations.
Wilde proposed this technique as a way to determine which code in a telephone
call processing system is responsible for different call features (such as Caller ID,
Call Waiting, etc). In this case, different call scenarios would be used to generate
the different profile spectrums, but with slight modifications to the set of calling
features that were enabled. Reps et al. showed how dynamic differencing could
be used to find code that is dependent on dates by simply changing those parts
of the input to a program related to dates (i.e., years). Both Wilde’s and Reps et

232

al.? techniques are based mainly on program coverage. Reps et al. also proposed
using frequency information (counts rather than coverage) to refine the analysis.

Concept analysis of test-vs-coverage information is dynamic differencing of
test coverage taken to the extreme. Concept analysis provides a full factoring
of the coverage information that exposes not only the differences between tests,
but what they have in common as well. In addition, it computes a number of
useful relations, such as control flow correlation and test subsumption, in a single
framework.

Much research has been done on applying concept analysis to aide in the
understanding and restructuring of programs [18,16,17]. All such work that
we are aware of applies the concept analysis machinery to static relationships
in a program, such a “procedure P uses variable V”, “class D inherits from
class C”, etc. Our work makes use of the same machinery, but applies it to the
dynamic relationship of “test T covers entity E” in order to help understanding
the execution behavior of programs across a set of tests.

A general idea behind frequency spectrum analysis is to use the dynamic
behavior of programs to help construct models of their behavior. This basic idea
has been explored in many related settings. For example, in the area of formal
methods, many techniques for finite state machine synthesis have been proposed
for constructing finite state models from a set of traces of observed program
behavior [7]. Cook and Wolfe used such techniques for reverse engineering soft-
ware processes [8] and later used related techniques to develop models from the
traces of multi-process programs [9]. In the arena of object-oriented programs,
a number of efforts have explored how to bridge the gap between programmer
models of 00 behavior and what happens in 00 program execution [13]. These
efforts typically instrument an 00 program to record message sends and other
information, and then use a GUI to help programmers understand the traces
and build models from them.

5 Conclusions

We have shown how frequency spectrum analysis and concept analysis of pro-
gram profiles can aid in the tasks of program comprehension, program restructur-
ing, and new test development. Just as program databases about static program
structure have aided programmers and testers in their jobs, databases of dy-
namic program behavior gathered over the history of a program should provide
valuable the software production cycle. The questions of what dynamic data can
be collected and stored and what tasks this data and analysis of it can support
are matters for future investigation.

Acknowledgements

Thanks to Jim Larus for his comments on earlier drafts of this paper.

233

References

1. G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. ACM SIGPLAN Notices, 32(5):85-96,
June 1997. Proceedings of the SIGPLAN ‘97 Conference on Programming Lan-
guage Design and Implementation.

2. T. Ball. What’s in a region? or computing control dependences in near-linear time
for reducible control flow. ACM Letters on Programming Languages and Systems,
2(1-4):1-16, December 1993.

3. T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM Trans-
actions on PP-ogramming Languages and Systems, 16(4):1319-1360, July 1994.

4. T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of MICRO 96,
pages 46-57, December 1996.

5. J. Bentley. Writing Eficient Programs. Prentice-Hall, Englewood Cliffs, N. J.,
1982.

6. J. Bentley. Programming Pearls. Addison-Wesley, Reading, MA, 1986.
7. A. W. Biermann and J. A. Feldman. On the synthesis of finite state machines from

samples of their behavior. IEEE Transactions on Computers, 21(6):592-597, June
1972.

8. J. E. Cook and A. L. Wolf. Discovering models of software processes from event-
based data. ACM nansactions on Software Engineering and Methodology, July
1998.

9. J. E. Cook and A. L. Wolf. Event-based detection of concurrency. In Sixth ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 35-45,
November 1998.

10. B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge
University Press, 1990.

11. M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. In &lst International
Conference on Software Engineering, pages 213,224, Los Angeles, CA, May 1999.

12. R. Godin and R. Missaoui H. Alaoui. Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence, 11(2):246-267,
1995.

13. Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing interactions in pro-
gram executions. In Proceedings of the 19th International Conference on Software

Engineering, pages 360-370, May 1997.
14. J. R. Larus and T. Ball. Rewriting executable files to measure program behavior.

Software-Practice and Experience, 24(2):197-218, February 1994.
15. T. Reps, T. Ball, M. Das, and J.R. Larus. The use of program profiling for soft-

ware maintenance with applications to the year 2000 problem. In Proceedings of
ESEC/FSE ‘97: Sixth European Software Engineering Conference and Fifth ACM
SIGSOFT Symposium on the Foundations of Software Engineering (Lecture Notes
in Computer Science), Zurich, Switzerland, September 1997. Springer-Verlag.

16. Michael Siff and Thomas Reps. Identifying modules via concept analysis. In
International Conference on Software Maintenance, pages 170-179, Bari, Italy,
October 1997.

17. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis.
In Sixth ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 99-110, November 1998.

234

18. Gregor Snelting. Reengineering of configurations based on mathematical concept
analysis. ACM 7kansactions on Software Engineering and Methodology, 5(2):146-
189, April 1996.

19. 0. Waddell and J. M. Ashley. Visualizing the performance of higher-order pro-
grams. Proceedings of the 1st Workshop on Program Analysis for Software Tools
and Engineering (ACM SIGPLAN Notices), 33(7):75-82, July 1998.

20. Norman Wilde. Faster reuse and maintenance using software reconnaissance. Tech-
nical Report SERC-TR-75F, Software Engineering Research Center, CSE-301, Uni-
versity of Florida, CIS Department, Gainesville, FL, July 1994.

Appendix

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the twelfth day of Christmas my true love gave to me
twelve drummers drumming, eleven pipers piping, ten lords a-leaping,
nine ladies dancing, eight maids a-milking, seven swans a-swimming,
six geese a-laying, five gold rings;
four calling birds, three french hens, two turtle doves
and a partridge in a pear tree.

Fig. 5. Partial output of the obfuscated C program.

