Debugging Temporal Specifications with Concept Analysis

Glenn Ammons *
ammons@us.ibm.com

David Mandelin *
Rastislav Bodik '

James R. Larus
larus@microsoft.com

{mandelin,bodik}@cs.berkeley.edu

ABSTRACT

Program verification tools (such as model checkers and static ana-
lyzers) can find many errors in programs. These tools need formal
specifications of correct program behavior, but writing a correct
specification is difficult, just as writing a correct program is diffi-
cult. Thus, just as we need methods for debugging programs, we
need methods for debugging specifications.

This paper describes anovel method for debugging formal, tem-
poral specifications. Our method exploits the short program execu-
tion traces that program verification tools generate from specifica-
tion violations and that specification miners extract from programs.
Manually examining these traces is a straightforward way to de-
bug a specification, but this method is tedious and error-prone be-
cause there may be hundreds or thousands of traces to inspect. Our
method uses concept analysis to automatically group the traces into
highly similar clusters. By examining clusters instead of individual
traces, a person can debug a specification with less work.

To test our method, we implemented a tool, Cable, for debug-
ging specifications. We have used Cable to debug specifications
produced by Strauss, our specification miner. We found that us-
ing Cable to debug these specifications requires, on average, less
than one third as many user decisions as debugging by examining
all traces requires. In one case, using Cable required only 28 deci-
sions, while debugging by examining all traces required 224.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—De-
bugging aidsD.2.4 [Software Engineering]: Software/Program
Verification; D.3.4 [Programming Languages|: Processors—
Debuggers 1.5.3 [Pattern Recognition]: Clustering—Similar-
ity Measures

*Department of Computer Sciences, University of Wisconsin,
Madison, Wisconsin, USA.

TDepartment of Electrical Engineering and Computer Sciences,
University of California, Berkeley, California, USA.

¥IBM T.J. Watson Research Center, Hawthorne, New York, USA.
$Microsoft Research, Redmond, Washington, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PLDI'03, June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

182

General Terms
Verification, Human Factors, Experimentation

Keywords

temporal specifications, specification debuggers, concept analy-
sis, hierarchical clustering

1. INTRODUCTION

Program verification tools [3—7, 12, 15, 16, 20, 23] can find
many errors in programs. These tools need formal specifications
of correct program behavior, but writing a correct specificationis
difficult, just aswriting a correct program is difficult. One partial
solution is specification mining [2], but specification miners can
produce buggy specifications. If program verification tools are
to be more effective and widely used, we need methods for de-
bugging specifications, because without these methods, too few
specifications will be developed.

Very small specifications can be debugged by inspection. A
natural way to debug a more complicated formal specification is
by testing it. Conceptually, to test a specification, the specifica
tion’s author uses a program verification tool to check the speci-
fication against several programs. The tool finds inconsistencies
between the program and the specification and reports them to
the author. The author is supposed to look at each inconsistency
and decide if the inconsistency is caused by a specification error.
If the cause is a specification error, it should be fixed.

In particular, atemporal specificationan be expressed as afi-
nite automaton (FA) that accepts some program execution traces
and rejects others. A tool that verifies temporal specifications
generates short program execution traces that appear to occur in
the program but are not accepted by the FA. To debug a tempo-
ral specification by testing, the specification author looks at each
trace and decides whether the trace demonstrates an error or not.
If the trace is not erroneous, it should be added to the language
of the FA.

A similar method works for debugging temporal specifications
found by a specification miner. Given data collected during a
few runs of one or more programs, the miner generates a large
number of short scenario tracesand infers a specification FA
from them; if some of the runs contain errors (as often happens),
some of the scenario traces are also erroneous, and the miner
learns an FA that accepts erroneous traces. Worse, this FA is
usually more complicated than an FA that accepts only correct
traces, so it is hard to debug by inspection. To debug such a
specification, a specification expert looks at each scenario trace
and decides whether it is erroneous or not. If the scenario trace

is erroneous, then the expert tells the miner to ignore it when
inferring a correct specification.

These debugging methods are tedious and error-prone because
a person must inspect many traces—some program verification
tools and miners generate hundreds or thousands of traces [2,4,
15]. This paper describes a novel method for debugging formal,
temporal specifications that allows a person to take all of the
traces into consideration without individually inspecting every
trace.

In our method, an automatic tool finds similarities within a
set of program execution traces and uses concept analysi§24]
to cluster similar traces together. The user inspects clusters of
traces—summarized in various ways—instead of individual traces.
Ideally, instead of looking at thousands of individual traces, a
specification author can use our method to look at afew clusters
of similar traces. For each cluster, the author views a summary
of the cluster—such as a finite automaton that recognizes the
cluster’s traces—and decides en masse whether to classify the
cluster’s traces as erroneous or not.

Concept analysis clusters objects hierarchically, producing a
concept latticeof small clusters and big clusters, with small clus-
ters contained within big clusters. Moreover (and this is a key
property), the traces in small clusters are more alike than the
tracesin big clusters.

Hierarchical clustering is essential. The ideal clustering tool
would divide the traces into two clusters: a cluster of traces that
the author would classify as erroneous and a cluster of traces that
the author would classify as correct. Unfortunately, thisideal can
not be attained. Any real tool can produce mixed clusterswhich
contain both erroneous traces and correct traces. Hierarchical
clustering solves this problem: a specification author who is pre-
sented with a mixed cluster can choose to look at the smaller
clusters within it. These clusters are less likely to be mixed be-
cause they are smaller and because the traces within them are
more similar.

Hierarchical clustering has benefits beyond splitting mixed clus-
ters:

e Small clusters are easier to understand and judge as correct or
incorrect than large clusters, but it takes more small clusters
than large clusters to cover the entire set of traces. Hierar-
chical clustering allows the user to choose to examine small
clusters, large clusters, or amixture of both.

e Clusters overlap, so the user can check his classification deci-
sions by viewing summaries of the intersections and unions of
clusters. For example, a specification author who believes he
has found a number of erroneous traces can view a summary
of al erroneous traces in a particular cluster: the summary
should be consistent with his belief.

Our method defines the similarity of a set of traces in terms of
the transitions of an FA that recognizes traces. We regard traces
that execute many transitions in common as more similar than
traces that execute fewer transitionsin common. This definition
is flexible because the FA can be varied; it is aso intuitive, be-
cause the user is debugging a specification that isitself expressed
in terms of an FA. The definition al so enables our use of concept
analysis, which clusters objects with discrete attributes. In our
case, objects represent traces and attributes represent FA transi-
tions.

To test our method, we implemented atool, Cable, for debug-
ging specifications. We have used Cable to debug specifications

183

produced by Strauss, our specification-miner [2]. The corrected
specifications found 199 bugs in widely distributed X11 pro-
grams, including serious race conditions and performance bugs.
We found that using Cable to debug these specifications requires
less than one-third as many user decisions as debugging by ex-
amining all traces requires. In one case, using Cable required
only 28 decisions, while debugging by examining all traces re-
quired 224. We also found that concept analysisis affordable: it
never took longer than about 22 seconds to compute the concept
lattice.

1.1 Contributions
This paper describes the following contributions:

e A novel method for debugging temporal specifications based
on hierarchical clustering. The method applies not only to
mined specifications—where it fills a large hole left unex-
plored by our previous work [2]—but also to temporal speci-
fications from any source.

A flexible, intuitive definition of similarity for traces that al-
lows hierarchical clustering via concept analysis.

A tool, Cable, that helps debug specifications by presenting
users with a simple interface for classifying traces by explor-
ing a cluster hierarchy.

1.2 Organization of the paper

Therest of the paper isorganized asfollows. Section 2 presents
two examples, which demonstrate how to debug specifications
by examining clusters of traces. Section 3 presents concept anal-
ysis and shows how to apply it to clustering traces. The Cable
tool is described in Section 4, as are strategies for using it ef-
fectively. Section 5 evaluates the usefulness of Cable for debug-
ging specifications mined by Strauss. Section 6 discusses related
work. Section 7 concludes the paper.

2. TWO EXAMPLES

This section presents two examples, which demonstrate how
to debug temporal specifications with concept analysis. The first
example demonstrates debugging with the aid of a verification
tool by testing a specification against a program, while the sec-
ond example demonstrates debugging a mined specification by
inspecting the traces from which the miner inferred the specifi-
cations.

We will refer to several FAs in this section and in the rest of
this paper. Note that, in this paper, the start state of an FA is
always state 0, and double linesindicate an accepting state.

2.1 Debugging by testing

Figure 1 shows a buggy temporal specification. In general, a
temporal specification captures the control and data flow of pro-
gram operations in an FA. This example attempts to formalize a
rule about the C stdio library. In that library, a cal to f open
opens afile and returns afile pointerfor reading and writing the
file. The file pointer should eventually be closed with a call to
fcl ose. By contrast, a cal to popen opens a pipe for com-
muni cation with another process. Likef open, popen returnsa
file pointer. Unlike f open, the file pointer returned by popen
should be closed with a call to pcl ose. The specification in
Figure 1 getsthiswrong: it allowsacall tof cl ose on any file
pointer, regardless of its source.

For all calls X = fopen() or X = popen():

X = popen() X = fopen()
fread(X)C furite(X
fcl ose(X)

Figurel: Anincorrect temporal specification.

X = popen(); fread(X); fwite(X); pclose(X)
X = popen(); fread(X); fread(X); pclose(X)
X = popen(); pclose(X)

X = fopen(); fwite(X)

X = popen(); fread(X)

X = fopen()

X = fopen(); fread(X); fread(X); pclose(X)
X = fopen(); fwite(X); fwite(X); pclose(X)
X = fopen(); pclose(X)

Figure 2: Several violation traces that could be reported by
verification of the specification in Figure 1.

Suppose that a specification author is debugging this specifi-
cation by testing it against a program. The author starts by using
a program verification tool to find inconsistencies between the
specification and the program. The tool analyzes the program
and reports violation traces which are program execution traces
that demonstrate an apparent violation of the specification. Tra-
ditionally, the author looks at each violation trace, decides why it
was reported, and takes an appropriate action. For the specifica-
tionin Figure 1, the violation traces (see Figure 2 for examples)
might include

e Traces that begin with a call to popen and end with a call
to pcl ose. These traces are correct, so the author should
change the specification to accept these traces.

e Tracesthat beginwithacall tof open orwithacall topopen
and end without acall tof cl ose oracall topcl ose. These
traces are erroneous, so the author should not change the spec-
ification.

e Traces that begin with a call to f open and end with a call

to pcl ose. Again, these traces are erroneous, so the author
should not change the specification.

Unfortunately, the verification tool does not summarize the vi-
olation traces as neatly aswejust did. Instead, thetool lists each
trace with al of the calls it makes (not just the relevant calls we
picked out inthe abovelist), and in no particular order. For asim-
pleexampleliketheonein Figure 1, it may be easy for the author
to inspect the violation traces and understand them well enough
to decide how to fix the specification. However, if the violation
traces are more complicated, inspecting each trace is both te-
dious and error-prone. If the tool reports hundreds or thousands

184

X = popen() X = fopen()
fread(X)Cwarite(X)
pcl ose(X)

Figure 3: A small FA that recognizes violation tracesfrom ver-
ification of the specification in Figure 1.

X = popen(X = fopen()
fread(X) fwrite(X
pcl ose(X)

Figure4: A very small FA that recognizesviolation tracesfrom
verification of the specification in Figure 1.

of complicated violations (as some do [4, 15]), the problem is
daunting.

Now let us see how the author would debug this specifica-
tion with our method. Our method has three steps. Step 1 auto-
matically builds a concept lattice that summarizes the violation
traces, before the specification author sees them. This step has
three substeps:

Step 1la Thisstep finds asmall reference FA that recognizes the
violation traces and will be used to define trace similarity. Al-
gorithmsto learn asmall FA that recognizes (at least) a set of
strings have been studied extensively—see Murphy [18] for
a good survey. However, an FA learning algorithm that per-
forms well on traditional measures, such as training set accu-
racy, is not needed for concept analysis. We only require that
dissimilar traces execute different transitions in the automa-
ton (see Step 1b). For example, we have had success with
FAs that recognize all possible traces over the API.

Figure 3 shows a small FA that recognizes violation traces
from verification of the specification in Figure 1. Figure 4
shows an automaton that recognizes all traces over the API.

Step 1b This step uses areference FA M to define a measure of
similarity for violation traces. M recognizesatrace o iff there
is an accepting sequence af -transitions foro, which is a
sequence (ao, . - . ,an) Such that each transition a; islabeled
by the ith event in o, the head of a(isthe start state of M, and
thetail of a,, isan accepting state of M. If an M-transition a
ison an accepting sequence of M -transitionsfor o, we say that
o executes:. Given a set O of violation traces, the common
M-transitions ofO are the M -transitionsthat are executed by
every violation tracein O. The similarity of O with respect to
M isthe number of common M-transitions of O.

Note that we want areference FA that is useful for classifica
tion. In particular, erroneous traces and correct traces should
execute different transitions, so that they are not considered
highly similar. It is also helpful, but not necessary, if cor-
rect (erroneous) traces execute many of the same transitions

For all calls X =fopen() or X = popen():

X = popen(X = fopen()

Traces executing Traces executing Traces executing fread(Of read(X)
fread(X) X = popen() X = fopen() e
‘ i fwite(X fwrite(X)

. pcl ose(
Traces executing

X = popen()

@ cl ose(X)

Figure 6: Theresult of debugging the specification in Figure 1.

pcl ose(X)

The author is free to inspect concepts in any order, although
a mostly top-down approach seems to work best in practice.
Section 4 suggest several strategies, which are evaluated in
Section 5.

Figure5: Part of a concept lattice that might beinduced by vi-
olation traces from verification of the specification in Figure 1,
with respect to the FA in Figure 3.

as other correct (erroneous) traces, so that they are considered
highly similar.

Defining similarity with respect to an FA has two benefits.
First, by varying parameters of the FA-learning algorithm, the
author can choose to use alarge FA that makes very fine dis-
tinctions among traces or a smaller FA that makes coarser
distinctions. For example, the FA in Figure 3 distinguishes
between traces that call popen before calling pcl ose and
traces that call pcl ose before calling popen, since the lat-
ter execute no transitionsin the FA. |f the order did not matter,
avery small FA, such as the one given in Figure 4, could be
used to induce a ssimpler concept lattice. On the other hand,
if the order of callstofread and fwrite aso mattered,
then alarger FA could be used to induce a concept lattice that
distinguished different orders.

The second benefit is that, since the specification itself is ex-
pressed asan FA, summarizing violation traceswith FAs makes
it easier for the author to see how to fix the specification.

Step 1c This step uses concept analysis to build a concept lat-

tice; the nodes of the lattice are called concepts A concept
pairs a set of violation traces with a set of FA transitions that
are executed by every trace in the set. Concepts at the top of
the concept lattice contain more traces but fewer transitions
than concepts at the bottom of the lattice. That is, according
to our definition of similarity, the sets of tracesin concepts get
smaller but more similar as one moves down in the lattice.

Figure 5 shows part of a concept lattice that might be induced
by violation traces from verification of the specification in
Figure 1, with respect to the FA in Figure 3.

Suppose that the author first |ooks at the concept that contains
traces that execute X = popen(). The author asks Cable
to display an FA that is inferred from the traces in that con-
cept. Because this automaton contains both erroneous traces
and correct traces, the author decides to look at the concepts
immediately below this concept. Each of these child concepts
contains a proper subset of the traces in the parent concept.
Suppose that the first child concept he looks at contains just
traces that execute both X = popen() and pcl ose(X).
These traces are correct, so the author labels them as “good”.
Finally, suppose that the author revisits the concept that con-
tains traces that execute X = popen() . He asks Cable to
display an FA that is inferred from the unlabeled traces in
that concept. These traces execute X = popen() but not
pcl ose(X), so they are erroneous. The author labels these
traces as “bad”. At this point, the author has come to a deci-
sion about al of the traces that execute X = popen() . The
tracesthat execute X = f open() remain, and the author la-
bels these in a similar fashion.

Step 2b In this step, the author checks his labeling. Once all

traces have been labeled, the author views an FA that isin-
ferred fromall “good” traces. These traces should be accepted
by the correct specification. If the author made a mistake in
his labeling, it will be revealed as the presence or absence of
certain traces in the FA's language. Note that if the FA for
all “good” traces istoo complicated, the author can choose to
view an FA inferred from the “good” traces within concepts
below the top of the lattice.

If there is a mistake, the author searches through the lattice
for concepts that contain only traces that are incorrectly la-
beled “good”, just as earlier he searched through the lattice

The concept lattice is a neat summary of the violation traces. for traces that should be labeled “good”.
In Step 2 of our method, the specification author uses Cable to
display the lattice and to track his decisions about the traces in

concepts. Step 2 has two substeps:

Oncethe author is satisfied that hislabeling is correct, he fixes
his specification so that it accepts all “good” traces and continues
torgect al “bad” traces:

Step 2a Inthisstep, the author records hisdecisions about traces
by labeling traces. His goal isto partition the traces into cor-
rect traces, which should be accepted by the correct specifica-
tion, and erroneous traces, which should not be accepted. The
former he labels “good”, while the latter he labels “bad”.

Step 3 In this step, the author fixes his specification. Note that
although the author has not inspected every violation trace,
he has taken every violation trace into consideration. Con-
sequently, he can be more confident that he has the right fix

185

Traces from test runs

Front end
Scenario traces

apply STM
extract scenarios

Back end

Specification «——| 18N NFA

Figure7: Architectureof Strauss.

for his specification. Figure 6 shows the result of fixing the
specification in Figure 1.

To summarize, our method has the following benefits:

e The concept |attice neatly summarizes complicated traces that
the verification tool listsin no particular order.

e Defining similarity with respect to an FA is flexible because
the FA can be varied and intuitive because the specification
itself is expressed in terms of an FA.

e The concept lattice allows the author to take every trace into
consideration without inspecting every trace.

e The author can use the lattice to check that he has made the
right decision about every trace.

2.2 Debugging a mined specification

A specification miner isatool for learning specifications. Fig-
ure 7 shows the architecture of our miner, Strauss. Strauss has a
front end and a back end. The front end extracts scenario traces
from atraining set of program execution traces. The details of
how this occurs are discussed in a previous paper [2]. The sce-
nario traces may have bugs, because the training set may have
bugs. The back end uses machine learning techniques to learn a
temporal specification that accepts the scenario traces.

Supposethat Strauss learns the buggy specificationin Figure 1
from a set of scenario traces that include

e Traces that begin with acall to popen and end with acall to
f cl ose. These traces are erroneous, so they should not be
included in the correct specification.

e Traces that begin with acall to f open and end with acall to
f cl ose. These traces are correct, and should be included in
the correct specification.

An expert can produce a correct specification by rerunning the
back end of Strauss only on the latter of the two kinds of traces
above. Unfortunately, the traces are not summarized so neatly as
they are above. In generdl, it is tedious and error-prone for the
expert to inspect every scenario trace.

Our solution isto summarize the scenario traces neatly, before
the expert sees them. The method is very similar to the method
we discussed in Section 2.1. The differences are in Steps 1a and
3.

In Step 1a, the expert does not need to find an FA that rec-
ognizes the traces. He aready has one: namely, the FA from
the miner’s buggy specification. On the other hand, if the miner
infers an FA that makes unnecessarily fine distinctions among

186

X = popen(); fread(X); fwite(X); pclose(X)
X = popen(); fread(X); fread(X); pclose(X)
X = popen(); pclose(X)
X = fopen(); fread(X); fwite(X); fclose(X)
X = fopen(); fread(X); fread(X); fclose(X)
X = fopen(); fclose(X)

Figure 8: Several scenario traces.

traces, the expert may choose to use a different FA. In our expe-
rience, however, the inferred FA is usually a good starting point.

Steps 1b and 1c are just as in Section 2.1: the expert supplies
areference FA, which defines a measure of similarity for traces
and a concept lattice. Step 2 is the same, too: the expert uses
Cable to label as “good” the scenario traces that belong in the
correct specification and to label as“bad” the scenario traces that
don’t belong.

The expert fixes the specification in Step 3. In Section 2.1,
the specification author did this manually. In mining, the expert
just runs the back end of the miner on the traces that have been
labeled “good”.

There isafurther problem, however. A useful miner also gen-
eralizes the specification accepts some traces that were not in
its training set, but are similar to traces in the training set. For
example, a miner given the “good” scenario traces in Figure 8
would ideally produce an FA that accepts any number of callsto
freadandfw it e between callstopopen and pcl ose and
between callsto f open and f cl ose. Unfortunately, in gener-
alizing, the miner can make mistakes: in this case, a miner might
produce an FA that allows a call to popen to be followed by a
cal tof cl ose.

To address this problem, the expert can vary parameters on
the miner, but a more frequently fruitful solution is to further
subdivide the training set and apply the miner separately to each
division. In our example, if the expert observes that the miner
overgeneralizes, he would redo Step 2 and assign several differ-
ent kinds of “good” labels. Here, the expert would assign alabel
“good_fopen” and another label “ good_popen”. Next, the expert
would run the miner’s back end twice, once on the “good_fopen”
traces and once on the “good_popen” traces. Because the miner
sees each class of traces separately, it can not confuse them.
The final specification would be the union of the specification
for “good_fopen” traces with the specification for “good_popen”
traces.

3. APPLYING CONCEPT ANALYSIS

Concept analysis [24] is a hierarchical clustering technique
for objects with discrete attributes. This section reviews concept
analysis and explains how to use it to cluster program execution
traces with respect to a temporal specification. In the process,
we define a natural measure of the similarity of a set of traces
and show that concept analysis builds a hierarchy of clusters of
traces where small clusters are more similar than the large clus-
ters that contain them. This property alows a user of Cable to
choose between labeling many small and highly similar clusters
and labeling afew larger but less similar clusters.

3.1 Concept analysis
The input to concept analysis is a set O of objects aset A

4-legged | hairy | smart | marine | thumbed
cats yes yes
dogs yes yes
dolphins yes yes
gibbons yes | yes yes
humans yes yes
whales yes yes

Figure 9: A context where the objects are animals and the at-
tributes are adjectivesthat describe animals.

of attributes and a contextR C O x A that relates objects to
attributes. Figure 9 shows an example where the objects are ani-
mals and the attributes are adjectives that describe animals.

Given O, A, and R, concept analysis finds concepts A con-
cept pairs aset of objects X with arelated set of attributesY: YV
is exactly the set of attributes enjoyed by all objectsin X, and
X is exactly the set of objects that enjoy all of the attributes in
Y. To define concepts formally, the standard formulation defines
two mappings o : 2¢ — 24 and 75 : 24 — 29, For any
XCOandY C A,

or(X)={a€ AVz € X.(z,a) € R}
Tr(Y)={0o€ O|Vy € Y.(0,y) € R}

The formal definition of a concept is as follows: (X,Y) isa
concept iff or(X) =Y and 7r(Y) = X. X iscalled the extent
of the concept and Y is called the intentof the concept.

c0 = ({cats, dogs, dolphins, gibbons, humans, whales}, {})
c1 = ({cats, dogs, gibbons}, {hairy})

c2 = ({dolphins, gibbons, humans, whales}, {smart})
¢3 = ({gibbons, humans}, {smart, thumbed})

c4 = ({cats, dogs}, {4-legged, hairy})

¢5 = ({gibbons}, {hairy, smart, thumbedy})

¢6 = ({dolphins, whales}, {smart, marine})

c7 = ({}, {4-legged, hairy, smart, marine, thumbed})

/ CO\
cl /02
c3
c4 15/ c6
c7

Figure 10: Concept lattice for Figure 9. Thetop concept is c0,
and the bottom concept isc7.

The choice 000, A, andR uniquely defines a set of concepts.
Concepts are partially ordered under the ordering, defined
as follows: (Xo, Yy) <gr (X1,Y7) iff Xg C X;. This partial
order induces a complete lattice on concepts, calleddneept

By definition, the concept lattice is a subset lattice on objects.
In fact, the concept lattice is also a superset lattice on attributes.
That is,(Xo, Yo) <g (X1, Y1) iff Yy O Y;. This fact allows the
definition of a measure of similarity that increases as one moves
down in the concept lattice.

Define thesimilarity of X C O by sim(X) = |og(X)|. That
is, the similarity ofX is simply the number of attributes shared
by all objects inX. Because the concept lattice is a superset
lattice on attributes, it Xo, Yy) and (X7, Y1) are concepts with
Xo C X1, thensim(XO) > Sim(Xl).

3.1.1 Efficiency of concept analysis

There are several algorithms for building concept lattices. The
algorithm we use is due to Godin and others [13] (we use their
Algorithm 1). Letk be an upper bound ofr r({o})|, where
o € O. That s,k is an upper bound on the number of attributes
enjoyed by any object in. Then, their algorithm runs in time

o(2*|0))

In our applicationsk is typically less than ten, whilg)| ranged

up to the hundreds. Our measurements (see Section 5) show that
the algorithm is practical, terminating in less than 22 seconds on
our largest data set, which contained 496 traces.

3.2 Clustering traces

To cluster traces with concept analysis, we need to define
A, andR:

O The objects are the traces themselves.

A We either have in hand or can infer an BA that recognizes
the traces. The attributes are the transitiona/of

R Let AS(o) be the set of all accepting sequenced®iransitions
for the tracen. We defineR by

R ={(0,a) € O x A|I3s € AS(0).s = (... ,a,...)}
That is, (0,a) € R iff o executes:. R can be computed by
simulating each trace on the finite automaton.

This is a natural choice of, which matches the intuition
that traces with many common transitions are more alike than
traces with few common transitions. AlsB provides a direct
connection between traces and the specification that the user
is debugging. This connection is useful for answering ques-
tions such as “Which parts of the specification matter for these
traces?” and “Which traces would be affected by a change to
this part of the specification?”.

Our definition of similarity with respect to an FA ignores the
order in which transitions are executed. There are two good rea-
sons to ignore the order of transitions. First, the number of pos-
sible orders grows exponentially with the amount of history that
is tracked.

Second, by changing the FA, our definition of similarity can

lattice. Figure 10 shows the concept lattice for the example in Simulate definitions that track the order of transitions. The FA

Figure 9. In general, thiop concepbf a concept lattice is the
concept with all objects and tHepttom concepis the concept

already constrains the order in which transitions may execute.
Thus, by distinguishing traces that execute different sets of tran-

with all attributes. In the example, the top concept is c0, and the sitions, the FA also makes some distinctions among traces that

bottom concept is c7.

We took this example from Michael Siff's thesis [22].

187

execute transitions in different orders. If more ordering informa-
tion is desired, the FA can be modified to make finer distinctions
(see the discussion in Section 2.1, Step 1b).

4. CABLE

The section describes Cable, our tool for debugging specifica-
tions. Cable displays the concept lattices defined in Section 3.2
and enables a specification author or other expert to view sum-
maries of concepts and to decide en masse whether the traces in
a concept are erroneous or not. The rest of this section explains
Cable’s interface, discusses strategies for using Cable effectively,
and explains on which lattices Cable works best.

41 TheCableinterface

Cable, which is based on the Dotty [11] and Grappa [17] graph
visualization tools, displays the concept lattice and allows the

Label traces If some traces already have labels, then Cable asks

the user which traces to label: the user may choose to label all
of the traces, only the unlabeled traces, or only the traces with
a given label. Then, Cable prompts the user for a label and
gives that label to the selected traces. Because no trace may
have more than one label, the new label replaces any existing
labels.

If no traces have labels, then Cable prompts the user for a
label and gives that label to all of the concept’s traces.

A Cable user bases his labeling decisionsconcept views

Cable supports the following views of a concept:

user to view summaries of concepts and to decide en masse whetRar Cable uses an FA learner (Raman and Patrick’s sk-strings

the traces in a concept are erroneous or not.

The user records his decision about a set of tracdali®ling
the traces in the set. His goal is to partition the traces into a set
of erroneous traces, labeled “bad”, and a set of correct traces,
labeled “good”.

For example, if a specification author decides that certain vio-
lation traces do not demonstrate a program error, he gives those
traces the label “good”. On the other hand, the author gives vio-
lation traces that do demonstrate program errors the label “bad”.
The author’s goal is to label every trace; when he is done, he uses
Cable to view the traces labeled “good” and fixes his specifica-
tion accordingly.

An expert uses Cable to debug a miner’s specification in a sim-
ilar fashion. If the expert decides that certain scenario traces are
not erroneous, he labels them “good”. Scenario traces that are
erroneous are labeled “bad”. After the expert has labeled ev-
ery trace, he uses Cable to view the traces labeled “good” and
reruns the miner on those traces. Labels are a flexible mecha-
nism: as Section 2.2 discussed, the expert can avoid problems
with overgeneralization by assigning several different kinds of
“good” labels and running the miner several times.

A user of Cable can label all of a concept’s traces at once. Be-
cause concepts belong to a lattice, labeling the traces in one con-
cept affects the labels on traces in other concepts. Laballiad
the traces in a descendant concept also |ladmiseof the traces
in an ancestor concept, labeliag of the traces in an ancestor
concept also labelsll of the traces in a descendant concept, and
labeling all of the traces in a cousin or sibling concept might
labelsomeof the traces in another cousin or sibling concept.

Consequently, Cable keeps track of which traces have been
labeled, ensures that each trace receives no more than one labe
and gives the user visual feedback that makes it obvious which
concepts still have unlabeled traces. At any time, each concept
in the lattice is in one of three states:

Unlabeled The concept has unlabeled traces, and no traces that
are labeled. Cable displays Unlabeled concepts in green.

PartlyLabeled The concept has some unlabeled traces and some
labeled traces. Cable displays PartlyLabeled concepts in yel-
low.

FullyLabeled The concept has no unlabeled traces. Cable dis-
plays FullyLabeled concepts in red.

Note that the empty concept (the concept with no traces) is
always FullyLabeled.

Cable’s “Label traces” command allows the user to assign la-
bels to selected traces in a concept:

188

learner [21]) to construct a summary FA that accepts concept
traces and then displays this FA. In our experience with Cable,
this was the most frequently used concept view. Cable uses
Raman and Patrick’s sk-strings learner to construct FAs.

If the concept is PartlyLabeled or FullyLabeled, then the user
can choose which concept traces to include in the view: the
user can choose to include all traces, only unlabeled traces, or
only traces with a given label. Cable constructs the summary
FA only from included traces (we say that these tracesrare
the view. This feature is particularly useful once all concepts
are FullyLabeled: the user can obtain an FA for all traces with
a particular label by viewing the FA ofi-labeled traces in the

top concept.

The FA view also provideselection by transitionsvhich en-
ables the user to find traces that execute or do not execute
selected transitions in the summary FA. By clicking on transi-
tions in the FA view, the user selects a set of included transi-
tions and a set of excluded transitions. These selections corre-
spond to a selection of traces: a trace is selected iff it is in the
view and it executes all included transitions and no excluded
transitions.

Selection by transitions enableavigation by transitionsAf-

ter transitions (and hence traces) are selected, Cable will nav-
igate the user to the smallest concept that contains a superset
of the selected traces. This concept is smaller and more simi-
lar than the current concept (unless the lattice forces Cable to
select the current concept). Transition selection thus equips
the user with control over which of the smaller, more similar
concepts he would like to examine next.

Jl'ransitions This view displays the transitions in the reference

FA that belong to the concept. In our experience, this has

been the second most frequently used view because we often
know that the label for a trace depends on whether the trace
executes a certain set of transitions in the reference FA or not.

As with the FA view, if the concept is PartlyLabeled or Fully-
Labeled, the user can choose which concept traces to include
in the view.

Traces This view displays the traces in the concept. We do not

use this view very often because it usually generates more
output than we can understand.

As with the FA view, if the concept is PartlyLabeled or Fully-
Labeled, the user can choose which concept traces to include
in the view.

Finally, the user can choose a new FA and use it to cluster

concept traces:

Focus Cable starts a sub-session, which focuses on a single con-automatically, given a reference labeling for the traces, and Sec-
cept’s traces. Cable prompts the user for a reference FA to usetion 5 measures the relative performance of these strategies on
for the session, and clusters the traces in the focused sessioseveral labelings.

with that FA. The user can end a focused session at any time, We measure the cost of a strategy by counting the number of
at which time any labels that he assigned are automatically Cable operations—inspecting concepts and labeling traces—that
merged into the original session. the strategy performs. We include the cost of inspecting con-

In our experiments, we always started Cable with a cluster de- CEPtS, because otherwise an optimal strategy could inspect every
termined by our miner’s inferred FA. If this cluster appeared concept and use that perfect information to minimize the number
complicated, we sometimes started a focused session. ThePf labeling operations. Including the cost of labeling is not as es-

reference FAs that we used for focusing followed one of the S€ntial, but we include it because otherwise an optimal strategy
following three templates: could include redundant labeling operations. Note that we do not

allow a strategy to label a concept without inspecting it first.
Unordered FAs that follow this template distinguish among The strategies are
traces based on which events appear in traces, while com-
pletely ignoring the order in which events appear: Top-down This strategy visits Unlabeled and PartiallyLabeled
(eventO | eventl | ... | eventN)* concepts in a rant_j(_)m order, subje(_:t to the constraints that no
concept may be visited unless one its parents has already been

whereevent 0 throughevent Nare the events that oc- visited and that no concept may be visited if carries an “in-
cur on transitions in the inferred FA. FAs that follow the

spected” mark. At each visit, the strategy marks the concept
unordered template work well when correct traces and 55 “inspected” and inspects the concept’s unlabeled traces. If

erroneous traces often contain different events. all unlabeled traces should receive the same label, then the
Name projection FAs that follow this template distinguish strategy labels them. Labeling a concept can make it possi-
traces based on a single name, say X, that occurs in the ble to label the concept’s ancestors, because labeling the con-
inferred FA: cept changes the sets of unlabeled traces in the ancestors. For
(eventO(... X ...) this reason, when a concept is labeled, the strategy clears the
| eventl(... X ...) marks on the concept’s ancestors..
| ... The advantage of this strategy is that, because it is biased to-
| eventN(... X ...) ward visiting concepts near the top of the lattice, it is likely
| wildcard) * to exploit opportunities to label many traces at once. The dis-
whereevent 0 throughevent N are events that occur advantage of this strategy is that it may visit many concepts
on transitions in the inferred FA, andldcard matches that cannot be labeled because they include traces that should
any event. Name projections work well when the in- 'eceive different [abels.

fﬁrred FA mehnt|okns several nam_elf, because they allow Bottom-up This strategy loops over the concept lattice until all
the user to check correctness with respect to one name concepts are FullyLabeled, visiting concepts in a bottom-up
atatime. order. On each iteration, the strategy visits a concept that is

The template above pays no attgnti_on to the order of not FullyLabeled but whose children are all FullyLabeled.
events; more generally, name projections can be any FA . . . -
The advantage of this strategy is that it never visits concepts

that accepts the traces) whose transitions are all labeled ;
(P) that cannot be labeled because they are too general. The dis-

by wildcard or by an event that refers to X. . o .
) o advantage is that it misses most opportunities to label many
Seed order FAs that follow this template distinguish among traces at once.

traces based on which events appear before a distinguished
“seed” event and which events appear after the seed evenRandom This strategy visits concepts in random order, never

(eventO | eventl | ... | eventN*; visiting FullyLabeled concepts and stopping when all con-
event [seed]; ' cepts are FullyLabeled.
(eventO | eventl | ... | eventN*

Optimal This strategy visits concepts in an optimal order. An
whereevent 0 throughevent Nare the events that oc- optimal order is an order that minimizes the cost.

cur on transitions in the inferred FA. Because FAs that

follow the seed order template pay attention to ordering, Real users do not follow any of these strategies exactly. One
they can distinguish traces that cannot be distinguished reason is that a real user is limited: for example, even when all of
by an unordered FA. However, the ordering is very lim- a concept's traces should receive the same label, the user might

ited, so the concept lattice stays small. need to inspect the concept’s subconcepts to convince himself
. . of that fact. Another reason is that a real user makes heuristic
4.2 Strategiesfor using Cable decisions: for example, he may realize that a certain concept

Cable allows the user to inspect and label concepts in any or- should be visited first because it has an interesting transition in

der. Some orders are better than others, however. To use Strausis attribute set.
effectively, a user should have some strategy for selecting con- .
cepts to inspect and label. 4.3 Well-formed lattices

An important question is “how much does the user’s choice of Because Cable only allows the user to label the traces in con-
strategy matter?”. To answer that question, this section definescepts en masse (with the “Label traces” command), a bad con-
several common-sense strategies whose cost can be measuraxpt lattice can make it impossible for the user to give traces a

189

desired labeling. We say that such lattices areweit-formed These are important specifications. Using a dynamic checker
for the desired labeling. (described in earlier work [2] and more completely in a disser-
A well-formed lattice for a labeling is a lattice where every tation by one of the authors [1]), we searched for violations of
conceptis well-formed for that labeling. We define a well-formed these specifications in program execution traces and found a to-
concept recursively; a concepts well-formed for a labeling iff tal of 199 bugs, including resource leaks, potential races, and

one of the following cases holds: performance bugs.
))) All of these specifications are fairly simple, and none of them
1. The labeling gives the same label to every trace in contain loops. Consequently, the longest trace through each FA

is very short, usually less than ten events long. Debugging spec-
ifications that accept such short traces is actually a worst case
for our method because when Strauss’s front end generates short
scenario traces, it does not generate very many unique scenario
Intuitively, a concept is well-formed for a labeling if there is ~ traces. So, it is relatively easy to debug these specifications
a sequence of “Label traces” commands that piisthe Fully- simply by looking at a representative from each set of identi-
Labeled state with the desired labeling. The first case says that cal traces. Nonetheless, the results in Section 5.3 show that our
can be putin the FullyLabeled state simply by labeling its traces. method was better than this brute-force method.
The second case says tlatan be put in the FullyLabeled state 52 Cost of concept analysis

by putting all of its children in the FullyLabeled state and then
labeling the unlabeled traces af The statistics in Table 2 demonstrate that concept analysis is

If the concept lattice is not well-formed, it is impossible to ~ affordable. The times in the table do not include reading and
label all of the traces with Cable, without changing the FA. In parsing the traces, nor do they include writing the final lattice
particular, none of the above strategies would succeed. to disk. The reported time is the shortest time from three runs;

It is easy to see how lattices that are not well-formed could the time for each run did not vary significantly. Since Strauss
arise. For example, suppose that it is correct to call a routine extracted many identical scenario traces, we built the lattice from
f oo an even number of times and incorrect to ¢adlo an odd representatives for classes of identical traces, rather than from all
number of times. Consider a buggy specification whose FA has of the traces. _ _ _
one accepting state and one transition to and from that state on Although concept lattices are potentially exponentially large

2. All of the children ofc are well-formed for the labeling, and
the labeling gives the same label to every tracetimat is not
in a child ofc.

f 0o. This specification accepts all sequences @b calls. The in the number of objects or attributes (whichever is lower), the
concept lattice induced by this specification and any set of tracessize of the lattices generated for our specifications varied roughly
would put all sequences of calls f@o in the same concept, linearly with the number of FA transitions. The times seem to

since they all exercise the sole FA transition. That concept, and vary slightly worse than linearly, but it is hard to tell for sure,
hence the whole lattice, would not be well-formed for the label- since many of the times were so short. These observations agree
ing that labels correct traces as “good” and incorrect traces aswith the more thorough empirical evaluation that Godin and oth-
“bad”. ers did of their algorithm (which we use) in their paper [13].

The user does have some options when presented with a Iattice5 3 T | strateqi
that is not well-formed. One option is to change the FA and con- *~* raversal strategies
struct a better concept lattice, using Cable’s “Focus” command. Table 3 compares the cost of labeling by a variety of meth-
Another option is to label concepts that are not well-formed as ods, where cost is defined as in Section 4.2. One of the au-
“mixed”; the user can label the traces in those concepts by hand,thors (an expert user and developer of the tool) used Cable to
or use our method again, with a different FA and with the set of debug each specification and create an accurate labeling. Then,

traces restricted to the “mixed” traces. we measured the cost of obtaining the same labeling with each
method. Because the Top-down, Bottom-up, and Random strate-
5 EXPERIMENTAL RESULTS gies have non-deterministic costs, Table 3 reports the lowest cost

.] __for Bottom-up and the arithmetic mean and standard deviation of

This section evaluates the usefulness of Cable for debuggingine cost of 1024 trials for Top-down and Random. We were un-
specifications mined by Strauss [2]. able to measure the cost of the Optimal strategy for RegionsBig

We analyzed traces from full runs of 72 programs that use the 54 xSaveContext, because the program we wrote to evaluate
Xlib and X Toolkit Intrinsics libraries for the X11 windowing e strategies on these specifications took too long to run. For
system; in all, we collected 90 traces. The programs came ffom g6 specifications, we report a lower bound on the cost of Op-
the X11 distribution, the X11 contrib directory, and from the pro- imar.
grams installed for general use at the University of Wisconsin. 1, aqdition to the strategies listed in Section 4.2, Table 3 lists
Each trace records events for all X library calls and for all call- 5 other methods:
backs from the X library to client code.

Measurements of running time were taken on an Ultra Enter- Expert This method measured the actual cost of labeling for the
prise 6000 Server; the machine uses 248 Mhz SPARCV9 proces- expert user. The expert used a mostly top-down approach, but

sors (we used one processor only) and runs Solaris 5.8. sometimes directed his search based on transitions he found
‘g . interesting. On 5 specifications (RegionsBig, XSaveContext,
5.1 SpeCIfI cations XGContextFromGC, XtFree, and XtRealizeProc), the expert

We used Cable to debug seventeen Strauss specifications. For also used Cable’s “Focus” command, using reference FAs that
each specification, Table 1 lists the number of states and tran- matched the templates described in Section 4.1. This was an
sitions in the specification’s FA (after debugging) and translates advantage for the expert, since the automatic strategies did not
the specification into English. use this feature of Cable.

190

Name FA Bugs English description
Q| |T| | True False

PrsAccelTbl 13 22 0 1| Accelerator tables must be parsed withPar seAccel er at or Tabl e before
they are used.

PrsTransTbl 4 5 0 0 | Translation tables must be parsed withPar seTr ansl at i onTabl e before
they are used.

Quarks 10 13 0 0 | The nane andt he_cl ass arguments ofXr nQGet Resour ce must come
from calls toXr mPer n5t ri ngToQuar k.

RegionsAlloc 30 35 16 0| EveryRegi on that is created by the program must eventually be destroyed by
the program; everyRegi on that is destroyed by the program must have been
created by the program.

RegionsBig 352 623 12 0| EveryRegi on that is created by the program must eventually be destroyed by
the program; calls that accepegi ons must be passeBegi ons that were
either created by the program or supplied by the library.

RmvTimeOut 5 6 0 0 | Xt RenpveTi meQut can only remove time-outs added wKhAddTi meQut .

XFreeGC 10 13 44 0| Every GC that is created by the program must eventually be destroyed by the
program; evenyGC that is destroyed by the program must have been created by
the program.

XGContextFromGC| 38 48 44 1| XGCont ext Fr om3Cmust be passed a valieC; everyGCthat is created by the
program must eventually be destroyed by the program; és@ithat is destroyed
by the program must have been created by the program.

XGetSelOwner 5 5 9 0 | After calling XSet Sel ecti onOnner , selection ownership must be verified
by calling XCGet Sel ect i onOaner .

XlinternAtom 7 15 42 0| For good performancel nt er nAt omshould not be called in the event loop|

XPutimage 7 9 2 2 | The image and graphics context passedPat | mage must have been created
on the same display.

XSaveContext 66 86 33 0| An association installed witkSaveCont ext must eventually be deleted with
XDel et eCont ext ; also, the association must be used by a caKfd nd-

Cont ext at some point.

XSetFont 30 40 44 1| XSet Font must be passed a val&C; everyGC that is created by the program
must eventually be destroyed by the program; ev@&ythat is destroyed by the
program must have been created by the program.

XSetSelOwner 5 9 7 0 | The timestamp passed XSet Sel ect i onOaner must come from an event
received from the X server.

XtFree 29 35 45 0| Memory allocated withXt Cal | oc or Xt Mal | oc must be deallocated with
Xt Fr ee; memory deallocated witbxt Fr ee must have been allocated with
Xt Cal | oc or Xt Mal | oc; memory must not be deallocated twice.

XtOwnSel 5 10 1 0 | The timestamp passedXv OmSel ect i on must come from an event received
from the X server.

XtRealizeProc 57 64 0 0| If a Xt Real i zePr oc callback callsXt Cr eat eW ndow, the call must pass

the callback’smi dget andatt ri but es arguments toXt Cr eat eW ndow.
Also, Xt Cr eat eW ndow must not be called except by Real i zePr oc
callback.

Table 1: Seventeen Strauss specifications, which we debugged with Cable. FA reportsthe number of states and transitionsin each
specification’s debugged FA and Bugsreportsthe number of true bugs and false positives that each specification found.

101

Spec. Traces FA Lattice Time (ms)
Q IT||c| |E|
PrsAccelThl 9 3 10| 12 19 3.2
PrsTransThl 3 3 4 6 7 1.6
Quarks 8| 10 13| 21 37 55
RegionsAlloc 10| 14 15| 18 24 4.2
RegionsBig 270 | 375 611| 680 1377| 2.67 x 10°
RmvTimeOut 2 3 3 4 4 1.3
XFreeGC 10| 10 13| 23 38 5.7
XGContextFromGC 25| 22 36| 73 151 32.0
XGetSelOwner 2 5 5 4 4 1.2
XinternAtom 10 3 11| 13 21 4.1
XPutlmage 6 3 71 10 14 2.6
XSaveContext 92 | 150 224| 302 639 477
XSetFont 28| 30 40| 66 129 25.0
XSetSelOwner 6 3 7 9 13 2.3
XtFree 112 | 95 171|380 869| 1.51 x 10°
XtOwnSel 7 3 8| 10 15 2.7
XtRealizeProc 38| 57 64| 104 207 37.4

Table 2: Running time of concept analysis with respect to 17 mined specifications. Traces reports the number of scenario tracesin
the lattice (none of which areidentical), FA reportsthe number of states and transitionsin the reference FA that defined similarity,
Lattice reports the number of concepts and edges in the concept lattice, and Time (ms) reports the running time of the analysis, in

milliseconds.

Basdline As mentioned above, many of the traces were identi-
cal. Instead of using Cable, this method simply divides the

traces into classes of identical traces and then counts the cost
of inspecting and labeling each class separately. That is, the ®

cost of Baseline is two times the number of classes of identi-
cal traces.

Comparing the cost of Expert with the cost of Baseline indi-

cates the value of Cable in practice. By this measure, the advan-
tage of using Cable increases as the number of different scenario

traces increases.

Cable does not appear to have a large advantage for specifi-
cations built from less than 10 unique scenario traces. For three
of these specifications (XGetSelOwner, PrsTransThl, and Rmv-

TimeOut), the cost of Baseline was very low. For these spec-
ifications the cost for the Expert was also very low. For five
other specifications (Quarks, XSetSelOwner, XtOwnSel, XInter-
nAtom, and PrsAccelTbl), the cost of Baseline was a bit higher,
while the cost of Expert remained very low. Cable shows an ad-
vantage here. Finally, for RegionsAlloc, XFreeGC, and XPutlm-

age, the cost of both methods was a bit higher, although the cost

of Baseline was still slightly higher than the cost of Expert.
Cable was more useful for debugging specifications built from

many tens or hundreds of scenario traces. The improvement was
sometimes dramatic, as in the case of XtFree. Two specifications

