
Incremental Regression Testing�

Hiralal Agrawal

Joseph R. Horgan

Edward W. Krauser

Saul A. London

Bellcore

445 South Street

Morristown, NJ 07960

fhira,jrh,ewk,saulg@bellcore.com

Abstract

The purpose of regression testing is to ensure that
bug �xes and new functionality introduced in a new
version of a software do not adversely a�ect the cor-
rect functionality inherited from the previous version.
This paper explores e�cient methods of selecting small
subsets of regression test sets that may be used to es-
tablish the same.

1 Introduction

Software inevitably changes however well conceived
and well written it initially may be. Operational
failures expose faults to be repaired. Mistaken and
changed requirements cause the software to be re-
worked. New uses of old software yield new function-
ality not originally conceived in the requirements. The
management of this change is critical to the continuing
usefulness of the software.

The new functionality added to a system may be
accommodated by the standard software development
processes. Regression testing attempts to revalidate
the old functionality inherited from the old version.
The new version should behave exactly as the old ex-
cept where new behavior is intended. Therefore, re-
gression tests for a system may be viewed as partial
operational requirements for new versions of the sys-
tem.

Figure 1 shows a typical example of a sequence of
time intervals during the life of a software system.
Note that the regression testing intervals occupy a

�This paper was published in the Proceedings of the 1993

IEEE Conference on Software Maintenance, Montreal, Canada,

September 27{30, 1993.

signi�cant fraction of the system's lifetime. Unfortu-
nately, complete regression testing can not always be
accommodated during frequent modi�cations and up-
dates of a system as it is often time consuming. This
may result in the escape of costly, improper changes
into the �eld. Clearly, omiting or arbitrarily reduc-
ing the regression testing interval is not an acceptable
solution to the problem of software revalidation.

After a program has been modi�ed, we must not
only ensure that the modi�cations work correctly but
also check that the unmodi�ed parts of the program
have not been adversely a�ected by the modi�cations.
This is necessary because small changes in one part
of a program may have subtle undesired e�ects in
other seemingly unrelated parts of the program. Even
though the modi�ed program may yield correct out-
puts on test cases speci�cally designed to test the mod-
i�cations, it may produce incorrect outputs on other
test cases on which the original program produced
correct outputs. Thus, during regression testing, the
modi�ed program is executed on all existing regression
tests to verify that it still behaves the same way as the
original program, except where change is expected.

In this paper, we propose some methods using
which the test cases in the regression test suite whose
outputs may be a�ected by the changes to the pro-
gram may be identi�ed automatically. Only these test
cases need to be rerun during regression testing. Fur-
thermore, the bulk of the cost of determining these
tests is relegated to o�-line processing, as depicted in
Figure 2.

We refer to the problem of determining the test
cases in a regression test suit on which the modi�ed
program may di�er from the original program as the
incremental regression testing problem. The solution
to this problem requires that the answer be deter-

1



field-use

development

field-use

initial regression

bug-fixes,

testingtesting

field-use

regression
testing

updates
bug-fixes,
updates

initial version new version next new version

Figure 1: Regression Testing

field-use

incremental
regression

off-line
processing

off-line
processing

development bug-fixes,

initial
testing

testing

incremental
regression

testing

off-line
processing

updates

field-use

bug-fixes,
updates

field-use

Figure 2: Incremental Regression Testing

mined solely on the basis of the analysis of the orig-
inal program, the modi�cations, the regression test
cases, and the original program's execution on these
test cases|the modi�ed programmay not be executed
on any test case. More precisely, the problem may be
stated as follows:

Given a program, P , its regression test set,
T , and a \new" program version, P 0, �nd, T 0,
the minimal subset of T necessary to reval-
idate the part of P 0's functionality that is
inherited from P .

In other words, if P and P 0 may be viewed as functions
over sets of test cases, then determine the smallest
subset, T 0, of T , such that:

P 0(T 0) = P (T 0) =) P 0(T ) = P (T )

Note that the e�ectiveness of T 0 in validating P 0 is
limited by the e�ectiveness of T in validating P . If
T performs an adequate task of validating P , T 0 will
achieve the same for the corresponding functionality
in P 0. By the same token, if T validates only a fraction
of P 's functionality, so will T 0. Also note that besides
T 0, new test cases may be required to validate any
new functionality in P 0 not inherited from P .

The incremental regression testing problem in its
general formulation, as stated above, is an undecidable
problem. In this paper, we present several techniques
to obtain good approximate solutions to this problem.

2 Comparison with Related Work

There are two reasons for repeating existing tests
on a program after it has been modi�ed:

1. To verify that its behavior is unchanged except
where required by the modi�cations.

2. To reevaluate the coverage achieved by the re-
gression test suite using an appropriate coverage
criterion, e.g., statement or data-ow coverage.

Most existing incremental regression testing tech-
niques described in the literature [5, 8, 9, 10, 11,
17, 18, 19, 20] seem motivated by the second rea-
son even though the �rst is of overwhelming practical
signi�cance1. All these techniques essentially address
the following problem: How to achieve the required
coverage of the modi�ed program with minimal re-
work? They are not concerned with �nding the test
cases on which the original and the modi�ed programs
di�er. Thus, they may select test cases that fail to
distinguish the new program from the old for reexe-
cution. Similarly, they may omit test cases on which
the two programs di�er from being selected. The goal
of the techniques proposed in this paper, on the other
hand, is to determine the test cases in the regression
test suite on which the new and the old programs may
produce di�erent outputs. Only these test cases need
to be rerun to establish that the new program pre-
serves the desired functionality of the old program2.

3 A Simple Model

A program may be changed for two reasons: (1) to
�x faults, and (2) in response to changes in its spec-
i�cations. Consider the former reason �rst. In this
case, we must run the new program on all test cases
on which the old program produced incorrect outputs
to verify that the new program produces correct out-
puts on them. For the remaining test cases, the new
program is expected to produce the same outputs as
before. If we can determine a subset of these test cases
where it may be asserted that the new program will
produce the same output as before then we do not

1See [4] for a brief review of the cited techniques and a more

detailed discussion on how they di�er from the techniques pre-

sented here.
2Other test cases may have to be rerun to compute a cov-

erage measure achieved by the regression test suite on the new

program. Existing techniques cited above may be used to e�-

ciently select such test cases.

2



rerun

in
co

rr
ec

t

correct incorrect

output w.r.t. new specifications

re
ru

n

rerun

don’t rerun
co

rr
ec

t

ou
tp

ut
 w

.r.
t. 

ol
d 

sp
ec

ifi
ca

tio
ns

Figure 3: A simple model of the test cases to be rerun

need to execute the new program on them. We only
need to execute it for the remaining test cases.

Now consider the case when a program is modi�ed
to accommodate changes in its speci�cations. In this
case, we must rerun the new program on those test
cases whose outputs, even though correct with respect
to the old speci�cations, are considered incorrect with
respect to the new speci�cations. For the remaining
test cases, as in the previous case, there is no need to
run the new program on a test case if it can be de-
termined that the new program will produce the same
output on it as before. Otherwise, the new program
must be run on that test case.

Figure 3 depicts these cases. The top left rectan-
gle in the �gure represents test cases whose outputs
are correct with respect to both the old and the new
program speci�cations. The shaded oval inside the
rectangle denotes the set of test cases on which the
new program di�ers from the old. The new program
must be executed on these test cases. There is, how-
ever, no method of deciding membership in this set
without running the new program on all tests in the
rectangle. The two dotted ovals represent approxima-
tions of that set given by our techniques. The number
of test cases that lie in the shaded oval is usually much
smaller compared to the number of test cases outside
it. Thus our methods may help signi�cantly cut down
the time and cost of performing regression testing.

For the test cases on which the original program
produces correct outputs, and the same outputs are
also considered correct for the new program, the orig-
inal program may be thought of as an oracle by which
the new program's outputs may be validated. The new
program's output on such a test case will be correct if
it agrees with the original program's output. Other-
wise, changes to the program have introduced a new
fault in it. The methods proposed in this paper may
be used to identify a subset of the regression test cases

where the new program's output is guaranteed to be
the same as that of the old program. There is no need
to execute the new program on these test cases. For
the remaining test cases, on the other hand, no such
guarantees are to be had. Thus we must execute the
new program on them and verify that their outputs
match those of the old program.

4 Incremental Regression Testing

The techniques described in this paper are based
on the following simple observations:

1. If a statement is not executed under a test case,
it can not a�ect the program output for that test
case.

2. Not all statements in the program are executed
under all test cases.

3. Even if a statement is executed under a test case,
it does not necessarily a�ect the program output
for that test case.

4. Every statement does not necessarily a�ect every
part of the program output.

To verify some of these observations, we conducted
an experiment to �nd out what fraction of the pro-
gram's basic blocks are actually executed under each
test case in a test suite used to validate the front-end
modules of ATAC|a structural coverage testing tool
developed at Bellcore [12, 13]. These modules contain
about 14.5 thousand lines of C code, 6.5 thousand ba-
sic blocks, 183 functions, in 27 �les. The test suite
contains 413 test cases. We found that although these
test cases together execute 71% of the basic blocks,
an individual test case, on the average, executes only
11% of the blocks. We also discovered that although
the test cases together exercise 88% of the functions,
an individual test case in the suite, on the average,
exercises only 26% of the functions. The techniques
described in this paper exploit these observations.

Before we present the techniques, for the sake of
simplicity in exposition, let us assume that the changes
made to the program are such that the following two
conditions hold:

� The control ow graph of the program remains
unchanged, i.e., no existing edges are deleted and
no new ones are introduced.

� The def-sets of nodes in the program's control
ow graph remain unchanged, i.e., no changes are
made to the left-hand-sides of assignment state-
ments in the program.

3



equilateral area :=a*2 * sqrt(3)/4;:

the changed

outside the
execution slice!

read (a, b, c);
class := scalene;
if a = b or b = a

if a*a = b*b + c*c
class := right;

if a = b and b = c
class := equilateral;

class := isosceles;

case class of
right

otherwise

end;
area := sqrt(s*(s-a)*(s-b)*(s-c));

write(class, area);

area := b*c / 2;

s := (a+b+c)/2;

:

:

S1:
S2:
S3:

S11:
S12:
S13:

S14:

S4:
S5:
S6:
S7:
S8:
S9:

S10:

statement is

Figure 4: The Execution Slice with respect to T3

failures!

Testcase

a b c class area

T1 2 2 2 equilateral 1.73

T2 4 4 3 isosceles 5.56

T3 5 4 3 right 6.00

T4 6 5 4 scalene 9.92

Input Output

T5 3 3 3 equilateral 2.60

T6 4 3 3 scalene 4.47

Figure 5: An example test suite

In Section 5, we will relax these assumptions and de-
scribe how the techniques that rely on them may be
modi�ed.

4.1 The Execution Slice Technique

Our �rst technique is based on Observations 1 and
2 above. Suppose the program modi�cation consists
of changing a single statement in the program. If, for
a given test case, control never reaches that statement
during the original program's execution, we can be
sure that it will never reach it during the new pro-
gram's execution either. The new and the old pro-
grams will agree in their outputs and we do not need
to run the new program on that test case. This tech-
nique can obviously be generalized to the case when
multiple changes are made: If a test case does not ex-
ecute any of the modi�ed statements, it need not be
rerun.

We refer to the set of statements executed under a
test case as the execution slice of the program with
respect to that test case. Our �rst strategy, therefore,
may be stated as follows:

During the o�-line processing depicted in
Figure 2, �nd the execution slices of the pro-
gram with respect to all test cases in the re-
gression test suite. Then, after the program
is modi�ed, rerun the new program on only
those test cases whose execution slices con-
tain a modi�ed statement.

Consider, for example, the program in Figure 4. It
reads the lengths of the three sides of a triangle (as-
sumed to be in descending order), classi�es the trian-
gle as one of a scalene, isosceles, right, or an equilateral
triangle, computes its area using a formula based on
the class, and �nally, outputs the class and the area
computed. Suppose it was initially tested using the

�rst four test cases, T1 through T4, shown in Figure 5.
The program produces correct outputs on all four test
cases. Suppose T5, also shown in Figure 5, is now
added to the initial test suite. The program correctly
classi�es the triangle as an equilateral triangle for this
test case but incorrectly computes its area as 2.6 in-
stead of the correct value, 3.9. Debugging reveals that
there is a fault in statement S11: It uses the expression
a � 2 instead of a � a.

Suppose the fault is corrected. The new program
must be rerun on T5 to verify that it now produces the
correct output. Should it also be rerun on T1 through
T4? The shaded statements in Figure 4 denote the
execution slice of the original program with respect
to T3. Note that S11 is not executed under this test
case. As it is the only place where the new program
di�ers from the old, the changed statement will not
be reached when the new program is executed under
T3 either. Thus we can be sure that the new program
will produce the same output on T3 as the original pro-
gram. This analysis also holds for T2 and T4. Hence
there is no need to execute the new program on T2, T3,
and T4. Thus the regression testing in this case con-
sists of executing the new program on just two test
cases, T1 and T5, out of the �rst �ve test cases in Fig-
ure 5.

Now suppose the same program is executed on T6,
also shown in Figure 5. The program incorrectly clas-
si�es this triangle as a scalene triangle instead of clas-
sifying it as an isosceles triangle. Further debugging
reveals another fault in the program: The second
operand of the logical-or operation in the predicate
in S3 is incorrectly speci�ed as b = a instead of b = c.
After we correct this fault, we must run the new pro-
gram on T6 to verify that the fault has been �xed.
Which other test cases should we rerun? The execu-
tion slice technique in this case would imply that it
should be rerun on all test cases as S3 is executed un-

4



write(class, area);

equilateral area :=a*a * sqrt(3)/4;:

read (a, b, c);
class := scalene;
if a = b or b = a

if a*a = b*b + c*c
class := right;

if a = b and b = c
class := equilateral;

class := isosceles;

case class of
right

otherwise

end;
area := sqrt(s*(s-a)*(s-b)*(s-c));

area := b*c / 2;

s := (a+b+c)/2;

:

:

S1:
S2:
S3:

S11:
S12:
S13:

S14:

S4:
S5:
S6:
S7:
S8:
S9:

S10:

the changed

outside the
dynamic slice!

statement is

Figure 6: The Dynamic Program Slice for T1

if a = b or b = a

write(class, area);

equilateral area :=a*a * sqrt(3)/4;:

read (a, b, c);
class := scalene;

if a*a = b*b + c*c
class := right;

if a = b and b = c
class := equilateral;

class := isosceles;

case class of
right

otherwise

end;
area := sqrt(s*(s-a)*(s-b)*(s-c));

area := b*c / 2;

s := (a+b+c)/2;

:

:

S1:
S2:
S3:

S11:
S12:
S13:

S14:

S4:
S5:
S6:
S7:
S8:
S9:

S10:

the changed

outside the
dynamic slice!

statement is

Figure 7: The Dynamic Program Slice for T4

der all of them3. Clearly, applying the �x in this case
will not a�ect the program output for the test cases
that classify the triangle as an equilateral or a right
triangle. In the next section we describe a technique
that does not have this problem.

Instead of computing an execution slice at the state-
ment level, we may also compute it at the function
or the module level. That is, instead of determining
which program statements are executed under each
test case, we may simply determine which functions
or modules are invoked under each test case. Then,
we need to execute the new program on a test case
only if a modi�ed function or module was invoked dur-
ing the original program's execution on that test case.
This approach will give us a more conservative solution
than that obtained using the statement level execution
slices. But it also permits much lighter instrumenta-
tion making it more practical to use for large systems.

4.2 The Dynamic Slice Technique

Observation 3 suggests that not every statement
that is executed under a test case has an e�ect on
the program output for that test case. For example,
although the predicate in S3 is executed under T1 it
does not a�ect the output under this test case. Even
if it is modi�ed so that it evaluates di�erently, it will
not make any di�erence because the value of `class' in
this case is overwritten by S8.

If there was a way to determine, for each test case,
the statements that have an e�ect on the program
output, then we could easily identify the relevant test
cases to be rerun. Dynamic program slices provide us
exactly this functionality [3]. The dynamic program
slice with respect to the output variables gives us the
statements that are not only executed but also have

3For the purposes of this example assume that short circuit

evaluation of a predicate, as in C, is not permitted.

an e�ect on the program output under that test case.
A dynamic program slice is obtained by recursively
traversing the data and control dependence edges in
the dynamic dependence graph of the program for the
given test case [1, 3].

Our second strategy, therefore, may be stated as
follows:

During the o�-line processing depicted in
Figure 2, �nd the dynamic program slices
with respect to the program output for all
test cases in the regression test suite. Then,
after the program is modi�ed, rerun the
new program on only those test cases whose
dynamic program slices contain a modi�ed
statement.

Figure 6 shows the dynamic program slice with re-
spect to the program output for T1. Note that it does
not include the modi�ed statement, S3. Thus, we need
not run the new program on this test case. The dy-
namic slice technique requires that besides T6 the new
program be executed on just one more test case, T2.
The dynamic program slices with respect to other test
cases do not include the modi�ed statement.

Note that the above strategy only requires that we
determine whether or not a modi�ed statement be-
longs to a dynamic program slice. The nature of the
modi�cation does not matter. Figure 7 shows the dy-
namic program slice with respect to T4. As the change
lies outside the slice, the above strategy implies that
the new program need not be rerun on T4. The change
here, as mentioned earlier, consisted of replacing the
expression b = a by b = c in S3. If we execute the
new program on T4, it will, as expected, produce the
same output as the old program. But what if we had
erroneously changed the faulty expression to b = b

instead of b = c? The dynamic slice strategy would
still imply that the new program need not be rerun on

5



T4 because it only depends on which statements were
changed, not on how they were changed. The new
program in this case, however, will produce a di�erent
output on T4 compared to the original program. Thus
the dynamic slice technique will fail to identify T4 as a
relevant test case to be rerun in this case. In the next
section, we present a technique that does not have this
problem.

4.3 The Relevant Slice Technique

A dynamic program slice with respect to the pro-
gram output includes only those statements that were
executed and actually had an e�ect on the output. Be-
sides such statements, we also need to identify those
statements that were executed and did not a�ect the
output, but could have a�ected it had they evaluated
di�erently. We need to �nd such statements because
if any changes are made to them they may evaluate
di�erently and change the program output.

Korel and Laski have de�ned a notion of \potential
inuence" in the context of fault localization that is
very close to the functionality we described above [16].
According to that de�nition, a use of a variable, v, at
a location, l, in a given execution history is said to be
potentially dependent on an earlier occurrence, p, of
a predicate in the execution history if (1) v is never
de�ned between p and l but there exists another path
from p to l along which v is de�ned, and (2) l is not
control dependent on p. Thus the use of `class' in S9
in Figure 7 is potentially dependent on the predicates
in S3, S5, and S7, because each of them could have
potentially caused other paths to be traversed along
which `class' is de�ned, thereby potentially a�ecting
its value at S9. Unfortunately, this de�nition may also
cause some unnecessary predicates to be identi�ed as
potentially a�ecting a use of a variable. For example,
consider the following code segment:

1: x = : : :;
2: if (C1) f
3: if (C2)
4: x = : : :;
5: y = : : : x : : :;

g

6: z = : : : x : : :;
Suppose C1 evaluates to true and C2 evaluates to

false, i.e., the execution history of the above segment
consists of the path <1,2,3,5,6>. The use of `x' on
line 5 in this case is potentially dependent on C2 but
not on C1 as line 5 is control dependent on C1. The
use of `x' on line 6 is similarly potentially dependent on
C2. But, according to the above de�nition, it is also
potentially dependent on C1 as there exists another

static_defs = static reaching definitions ofvar at loc;
dynamic_def = the dynamic reaching definition ofvar at loc;
control_nodes = the closure of the static control dependences

initialize potential_deps to null;
mark all nodes in the dynamic dependence graph betweenloc

for each node,n, in the dynamic dependence graph starting at

if n belongs to control_nodes then

mark all the dynamic control dependences ofn

if n is marked as visited then

markn as visited;

of the statements in static_defs;

and dynamic_def as unvisited;

loc and going back up to dynamic_def do

betweenn and dynamic_def as visited;

return potential_deps;

continue; /* i.e., skip this node */

addn to potential_deps;

end-if;
end-for;

Figure 8: An algorithm to compute the potential de-
pendences of a variable, var , at a location, loc, in a
given execution history.

path, <2,3,4,5,6>, along which `x' is de�ned and line 6
is not control dependent on C1. But, in this case, even
if C1 had evaluated to false instead of true it would
not have a�ected the value of `x' on line 6. Therefore,
we would not want the use of `x' on line 6 in this case
to be potentially dependent on C1. We would only
want it to be potentially dependent on C2 because if
C2 had evaluated to true instead of false it would have
a�ected the value of `x' on line 6.

The following revised de�nition of potential depen-
dence does not have the above problem. The use of a
variable, v, at a location, l, in a given execution his-
tory is said to be potentially dependent on an earlier
occurrence, p, of a predicate in the execution history
if (1) v is never de�ned between p and l but there ex-
ists another path from p to l along which v is de�ned,
and (2) changing the evaluation of p may cause this
untraversed path to be traversed.

According to this de�nition, in the above example
the use of `x' on line 6 is potentially dependent on C2
but not on C1 as changing the evaluation of C1 from
true to false cannot cause the unexecuted assignment
of `x' on line 4 to be executed. Figure 8 shows an algo-
rithm to compute potential dependences of a variable
use for a given execution history.

If we include a predicate in a slice because it may
potentially a�ect the program output, we must also in-
clude the statements that in turn a�ect the included
predicate in the slice. But we should only include the
data and potential dependences of this predicate, not
its control dependences. Including the control depen-
dences will nullify the very reasons for revising the

6



de�nition of potential dependence above. For exam-
ple, doing so will require that C1 be also included in
the slice with respect to `x' on line 6 in the example
above because C2 is control dependent on C1 even
though changing C1 will not a�ect the value of `x' in
this case.

We refer to the set of statements that, if modi�ed,
may alter the program output for a given test case
as the relevant slice with respect to the program out-
put for that test case. Remember that the modi�-
cations should be such that they do not violate the
two assumptions made in Section 4 about them (these
assumptions are relaxed in Section 5). The dynamic
program slice with respect to the program output for
a given test case gives the statements that were exe-
cuted and had an e�ect on the program output. If a
change is made to any of these statements it may ob-
viously a�ect the program output. To �nd the other
statements which, when modi�ed, may alter the pro-
gram output, we need to identify the predicates on
which the statements in the dynamic slice are poten-
tially dependent, as well as the closure of data and
potential dependences of these predicates. This can
be easily achieved by adding another set of edges to
the dynamic dependence graph [1, 3] denoting the po-
tential dependences, and �nding all nodes that may
be reached from any node in the dynamic program
slice by following just the data and the potential de-
pendence edges. The set of the statements that corre-
spond to the nodes selected above, including those in
the dynamic program slice, gives us the desired rele-
vant slice.

Our third strategy, therefore, may be stated as fol-
lows:

During the o�-line processing depicted in
Figure 2, �nd the relevant program slices
with respect to the program output for all
test cases in the regression test suite. Then,
after the program is modi�ed, rerun the new
program on only those test cases whose rele-
vant slices contain a modi�ed statement.

Figure 9 shows the relevant slice for T4. Note that
the modi�ed predicate in S3 belongs to the relevant
slice. Thus the above technique will require that the
new program also be rerun on T4. Besides T4, this
strategy will require that the new program be rerun
on the two test cases identi�ed by the dynamic slice
technique, T2 and T6. The relevant slices for these
two test cases are the same as that in Figure 9, except
that S4 is included in their relevant slices instead of
S2. Of the six test cases shown in Figure 5, the change
in S3 may a�ect the program output only for T2, T4,

if a = b and b = c

if a*a = b*b + c*c

if a = b or b = a

write(class, area);

equilateral area :=a*a * sqrt(3)/4;:

read (a, b, c);
class := scalene;

class := right;

class := equilateral;

class := isosceles;

case class of
right

otherwise

end;
area := sqrt(s*(s-a)*(s-b)*(s-c));

area := b*c / 2;

s := (a+b+c)/2;

:

:

S1:
S2:
S3:

S11:
S12:
S13:

S14:

S4:
S5:
S6:
S7:
S8:
S9:

S10:

the changed

belongs to the
relevant slice!

statement

Figure 9: The Relevant Program Slice for T4

and T6. The relevant slice technique identi�es exactly
these three test cases to be rerun.

Note that the algorithm to compute potential de-
pendences shown in Figure 8 requires, among other
things, the computation of static data dependences.
Unfortunately, precise static data dependences are
hard to compute when the program makes use of
pointers, arrays, and dynamic memory allocations.
One must make conservative assumptions while com-
puting reaching de�nitions in the presence of such fea-
tures. For example, in the presence of unconstrained
pointers, as in C, one must, in general, assume that
an indirect assignment via a pointer may conceiv-
ably modify any variable. We do not need to make
such conservative assumptions while computing the
dynamic data dependences because when executing
the program on a given test case, we know the pre-
cise memory locations pointed to by pointer variables.
Therefore, we may obtain precise dynamic program
slices even in the presence of unconstrained pointers
[1]. We may not obtain precise relevant slices as their
computation depends on imprecise static data depen-
dence information.

It may be pointed out that it is not just the algo-
rithm in Figure 8 that requires static information to
compute potential dependences. Any other algorithm
to compute potential dependences would require the
same static information, because, by de�nition, poten-
tial dependence requires searching for paths that were
not executed but could have a�ected the program out-
put had they been executed.

4.4 Other Techniques

The di�erence between a dynamic program slice
and the corresponding relevant slice is that the latter
also includes certain predicates on which statements
included in the former are potentially dependent (as

7



well as certain dependences of those predicates). Thus
the predicates included in the relevant slice form a su-
perset of those included in the dynamic slice. In the
presence of indirect references via pointers, all predi-
cates that have been executed but not included in the
dynamic slice that also control an unexecuted assign-
ment via a pointer would tend to be included in the
relevant slice. If the program contains many indirect
references, the di�erence between the set of executed
predicates and the set of predicates included in the
relevant slice will tend to reduce. Thus, a simpler
but more conservative approach would be to add all
predicates that were executed to the slice being con-
structed. Adding these predicates would require that
we also recursively add their data dependences to the
slice. We refer to the resulting slice as an approximate
relevant slice. It is a superset of the corresponding rel-
evant slice but a subset of the corresponding execution
slice. The advantage of using an approximate relevant
slice over a relevant slice is that the former does not
require the computation of potential dependences that
may be imprecise anyway.

Observation 4 suggests that not every program
statement necessarily a�ects every output variable.
For example, in Figure 4, S11 may a�ect the value
of `area' but not that of `class.' This observation may
be used to further reduce the number of test cases that
need to be rerun. We may determine the subset of the
output variables that may be a�ected by the modi�-
cations by examining the static program slice [14, 21]
with respect to each output variable and checking if it
contains a modi�ed statement. Also, during the o�-
line processing, instead of �nding the combined rele-
vant slice with respect to all output variables, we may
�nd the relevant slices with respect to individual out-
put variables. Then, in order to decide if a test case
should be rerun after the program is modi�ed, we may
check if the relevant slice with respect to an a�ected
output variable contains a modi�ed statement instead
of checking if the combined relevant slice contains the
same.

Figure 10 shows the inclusion relationships among
various types of slices. The inclusion relationships
among the sets of test cases selected to be rerun by
the techniques based on these slices mirror the same
relationships.

5 Relaxing the Assumptions

In Section 4 we assumed that no statements are
added to or deleted from the program and no changes
are made to the left-hand-sides of assignments. In
other words, changes were con�ned to modifying the

execution slice

approximate

relevant slice

dynamic slice

 relevant slice

Figure 10: Inclusion relationships among various types
of slices.

expressions in predicates and the right-hand-sides of
assignments. Note that the execution slice technique
does not rely on these assumptions at all. Thus it will
also work after these assumptions are relaxed. In this
section, we discuss how the relevant slice technique
may be modi�ed to work in the absence of these as-
sumptions. The dynamic slice and other techniques
may be adapted similarly.

Let us �rst consider the case of deletion of an as-
signment, x = : : :. The e�ect of this deletion is the
same as though the right-hand-side of the assignment
had been \changed" to x. Therefore, the relevant slice
technique in this case would be to rerun the new pro-
gram on any test case whose relevant slice contains
the deleted assignment.

Now consider the case where an assignment,
x = exp, has been added to the program. Let
u1; u2; : : : ; un be the corresponding reaching uses of
x in the new program. The e�ect of adding the new
assignment would be the same as though the uses of x
in all ui's had been replaced by exp. Thus the ad-
dition may be treated as though all ui's had been
\changed". Therefore, the relevant slice technique in
this case would be to rerun the new program on any
test case whose relevant slice contains a ui.

Now suppose an assignment, x = exp; in the pro-
gram has been changed to y = exp. The e�ect of this
change is the same as though the original assignment
had been deleted and the new assignment had been
added to the program. Thus the relevant slice tech-
nique in this case would be to rerun the new program
on test cases that need to be rerun under any of these
two changes.

Deleting a predicate has the same e�ect as though
that predicate had been replaced by the boolean con-
stant, true. Therefore, the relevant slice technique in
this case would be to rerun the new program on a test
case if its relevant slice contains the deleted predicate.

Next, consider the case where a predicate, pred,
has been added to the program at a location, loc. Let

8



s1; s2; : : : ; sn be the statements that are directly con-
trol dependent on pred in the new program. Before
the predicate was inserted, all si's were always exe-
cuted whenever the control reached loc. But the new
predicate may prevent some or all of the si's from be-
ing executed depending on its value. Therefore, the
relevant slice technique in this case would be rerun
the new program on any test case whose relevant slice
contains an si.

Moving a statement from one location to another
may be treated as if the statement had been deleted
from its original location and inserted at its new lo-
cation. Thus, in this case we should rerun the new
program on all test cases that qualify to be rerun un-
der either of these two changes.

6 Other Applications

The techniques presented in this paper also have
other applications besides incremental regression test-
ing. We briey discuss two of them here: debugging
and mutation testing.

Debugging a program that produces an incorrect
output on a test case involves searching the program
for faulty statements which, when corrected, will cause
it to produce di�erent, correct output. The techniques
described in this paper do just that|identify state-
ments which when modi�ed may cause the new pro-
gram to produce a di�erent output on a given test
case. Thus, the same techniques may also be used to
expedite debugging. In fact, dynamic program slicing
[3, 15], and the notion of potential dependence [16]
used to de�ne relevant slices in this paper, were �rst
proposed in the context of debugging.

Mutation testing requires that a program be tested
on enough test cases that can \kill" all or a desired
fraction of the nonequivalent mutants of the program
[6, 7]. A mutant is obtained by applying a simple
syntactic change to the program, e.g., replacing a `<'
operator in a predicate by a `>' operator, replacing a
variable reference by another compatible variable, etc.
A test case is said to kill a mutant if the mutant pro-
duces a di�erent output on that test case compared
to that produced by the original program. The tech-
niques presented in this paper may be used to deter-
mine if a test case might kill a mutant without exe-
cuting the mutant on that test case: If the mutated
expression lies outside the relevant slice with respect
to a test case then it may not kill that mutant. Thus
we need not execute it on this test case.

7 Concluding Remarks

We have two tools|Spyder, that provides dy-
namic slicing facilities [2], and Atac, that provides
structural coverage-based testing facilities [13]; both
work on C programs. We are modifying Spyder so
it may also compute relevant slices. Atac already in-
directly provides facilities to obtain execution slices.
We plan to experiment with the techniques proposed
in this paper using these tools to empirically determine
the di�erences in the numbers of test cases identi�ed
to be rerun by these techniques.

The amount of regression testing e�ort saved us-
ing the techniques discussed here obviously depends
on the nature of test cases in the regression test suite
as well as the extent and the locations of the changes
made. If the test cases are numerous and they each ex-
ercise small parts of the program's functionality then
using these techniques should lead to greater savings.
If, on the other hand, we only have a few test cases
and each of them exercises most of the program's func-
tionality then our methods will be less useful. The
program locations where changes are made may also
have a major e�ect on the amount of savings implied
by using these techniques. A single change to an ini-
tialization statement that a�ects the program output
for almost all test cases means almost all test cases
must be rerun. On the other hand, even if changes
are made to many parts of the program that are rarely
executed by the regression tests, our techniques may
mean signi�cant savings.

Many large applications may be intolerant of the in-
trusive instrumentation required by most of the tech-
niques described in this paper, particularly during the
system testing stage. The function or module level
execution slice technique may be the only practical
technique to use in these cases, as the instrumenta-
tion required in this case is fairly light weight. The
remaining techniques, however, may be useful during
unit testing. Experimentation using large programs
and test suites will give us a clearer view of the rela-
tive usefulness of various techniques proposed here.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spa�ord.
Dynamic slicing in the presence of unconstrained
pointers. In Proceedings of the Fourth Symposium
on Testing, Analysis and Veri�cation (TAV4),
pages 60{73. ACM Press, Oct. 1991.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spa�ord.
Debugging with dynamic slicing and backtrack-

9



ing. Software Practice and Experience, 23(6):589{
616, June 1993.

[3] H. Agrawal and J. R. Horgan. Dynamic program
slicing. In Proceedings of the SIGPLAN'90 Con-
ference on Programming Language Design and
Implementation. ACM Press, June 1990. SIG-
PLAN Notices, 25(6):246{256, June 1990.

[4] H. Agrawal, J. R. Horgan, E. W. Krauser, and
S. L. London. Incremental regression testing. In-
ternal memorandum, Bell Communications Re-
search, Morristown, New Jersey, Dec. 1992.

[5] S. Bates and S. Horwitz. Incremental program
testing using program dependence graphs. In
Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 384{396. ACM
Press, Jan. 1993.

[6] R. A. DeMillo, D. S. Guindi, K. S. King, W. M.
McCracken, and A. J. O�utt. An extended
overview of the Mothra mutation system. In
Proceedings of the Second Workshop on Software
Testing, Veri�cation and Analysis, pages 142{
151. ACM Press, July 1988.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on test data selection: Help for the practic-
ing programmer. IEEE Computer, 11(4):34{41,
Apr. 1978.

[8] K. Fischer, F. Raji, and A. Chruscicki. A method-
ology for retesting modi�ed software. In Proceed-
ings of the National Telecommunications Confer-
ence, pages B6.3.1{B6.3.6. IEEE Computer Soci-
ety Press, 1981.

[9] R. Gupta, M. J. Harrold, and M. L. So�a. An
approach to regression testing using slicing. In
Proceedings of the Conference on Software Main-
tenance, pages 299{308. IEEE Computer Society
Press, 1992.

[10] M. J. Harrold and M. L. So�a. An incremental
approach to unit testing during maintenance. In
Proceedings of the Conference on Software Main-
tenance, pages 362{367. IEEE Computer Society
Press, 1988.

[11] J. Hartmann and D. J. Robson. Techniques for
selective revalidation. IEEE Software, pages 31{
36, Jan. 1990.

[12] J. R. Horgan and S. L. London. Data ow cov-
erage and the C language. In Proceedings of the
Fourth Symposium on Testing, Analysis and Ver-
i�cation (TAV4), pages 87{97. ACM Press, Oct.
1991.

[13] J. R. Horgan and S. L. London. ATAC: A data
ow coverage testing tool for C. In Proceedings
of the Symposium on Assessment of Quality Soft-
ware Development Tools, pages 2{10. IEEE Com-
puter Society Press, May 1992.

[14] S. Horwitz, T. Reps, and D. Binkley. Interpro-
cedural slicing using dependence graphs. ACM
Transactions on Programming Languages and
Systems, 12(1):26{60, Jan. 1990.

[15] B. Korel and J. Laski. Dynamic slicing of com-
puter programs. Journal of Systems and Soft-
ware, 13(3):187{195, Nov. 1990.

[16] B. Korel and J. Laski. Algorithmic software fault
localization. In Proceedings of the Twenty-Fourth
Annual Hawaii International Conference on Sys-
tem Sciences, volume II, pages 246{252, 1991.

[17] H. K. Leung and L. White. Insights into regres-
sion testing. In Proceedings of the Conference on
Software Maintenance, pages 60{69. IEEE Com-
puter Society Press, 1989.

[18] T. J. Ostrand and E. J. Weyuker. Using data
ow analysis for regression testing. In Proceedings
of the Sixth Annual Paci�c Northwest Software
Quality Conference, pages 233{247. Lawrence
and Craig, Sept. 1988.

[19] B. Sherlund and B. Korel. Modi�cation oriented
regression testing. In Proceedings of the Fourth
International Software Quality Week, San Fran-
cisco, CA, May 14-17, 1991, 1991.

[20] A.-B. Taha, S. M. Thebaut, and S.-S. Liu. An
approach to software fault localization and reval-
idation based on incremental data ow analysis.
In Proceedings of the Thirteenth Annal Interna-
tional Computer Software and Applications Con-
ference (COMPSAC 89), pages 527{534. IEEE
Computer Society Press, 1989.

[21] M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, SE-10(4):352{357, July
1984.

10


