
Goldilocks: A Race and Transaction-Aware Java Runtime

Tayfun Elmas
Koc University, Istanbul, Turkey

telmas@ku.edu.tr

Shaz Qadeer
Microsoft Research, Redmond, WA

qadeer@microsoft.com

Serdar Tasiran
Koc University, Istanbul, Turkey

stasiran@ku.edu.tr

Abstract
Data races often result in unexpected and erroneous behavior. In ad-
dition to causing data corruption and leading programs to crash, the
presence of data races complicates the semantics of an execution
which might no longer be sequentially consistent. Motivated by
these observations, we have designed and implemented a Java run-
time system that monitors program executions and throws a Data-
RaceException when a data race is about to occur. Analogous to
other runtime exceptions, the DataRaceException provides two
key benefits. First, accesses causing race conditions are interrupted
and handled before they cause errors that may be difficult to diag-
nose later. Second, if no DataRaceException is thrown in an ex-
ecution, it is guaranteed to be sequentially consistent. This strong
guarantee helps to rule out many concurrency-related possibilities
as the cause of erroneous behavior. When a DataRaceException
is caught, the operation, thread, or program causing it can be termi-
nated gracefully. Alternatively, the DataRaceException can serve
as a conflict-detection mechanism in optimistic uses of concur-
rency.

We start with the definition of data-race-free executions in the
Java memory model. We generalize this definition to executions
that use transactions in addition to locks and volatile variables for
synchronization. We present a precise and efficient algorithm for
dynamically verifying that an execution is free of data races. This
algorithm generalizes the Goldilocks algorithm for data-race de-
tection by handling transactions and providing the ability to distin-
guish between read and write accesses. We have implemented our
algorithm and the DataRaceException in the Kaffe Java Virtual
Machine. We have evaluated our system on a variety of publicly
available Java benchmarks and a few microbenchmarks that com-
bine lock-based and transaction-based synchronization. Our exper-
iments indicate that our implementation has reasonable overhead.
Therefore, we believe that in addition to being a debugging tool,
the DataRaceException may be a viable mechanism to enforce
the safety of executions of multithreaded Java programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — formal methods, reliability,
validation; D.2.5 [Software Engineering]: Testing and Debugging
— debugging aids, diagnostics, error handling and recovery, mon-
itors; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs — mechanical verifica-
tion
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1. Introduction
Data races in concurrent programs are often symptomatic of a bug
and may have unintended consequences. Unanticipated data races
may have non-deterministic effects and are not desired. Detection
and/or elimination of race conditions has been an area of active
research. This paper presents a novel approach to detecting data-
race conditions in Java programs and makes the following technical
contributions.

• We present Goldilocks: a novel, precise lockset-based dynamic
race detection algorithm. Goldilocks, unlike previous variants
of lockset algorithms, can uniformly and naturally handle all
synchronization idioms such as thread-local data that later be-
comes shared, shared data protected by different locks at dif-
ferent points in time, and data protected indirectly by locks on
container objects. This paper presents a generalized version of
the Goldilocks race-detection algorithm [8] that adds to it two
key capabilities: explicitly handling software transactions [22]
as a high-level synchronization idiom, and distinguishing be-
tween read and write accesses.

• An implementation of the generalized Goldilocks algorithm
was carried out inside the Kaffe Java virtual machine. This
implementation incorporates two techniques that significantly
enhance its performance: partially-lazy evaluation and implicit
representation of locksets, and a sequence of cheap and suffi-
cient checks for race freedom which allow bypassing of lockset
computation.

• To reduce the runtime overhead of race detection, we apply ex-
isting sound static race analysis tools beforehand to determine
and record in Java class files the variables and accesses that
are guaranteed to be race free. The capability to skip checks
on these accesses in a sound manner, combined with the im-
plementation optimizations result in a precise dynamic race
checker whose performance on benchmarks is competitive with
or, in some cases, significantly better than existing dynamic race
checkers for Java programs.

• We present the first formalization of race conditions for pro-
grams that use software transactions along with other Java syn-
chronization primitives. The extended Goldilocks algorithm
and its implementation in the Kaffe JVM explicitly handle
transactions.

• Our Java runtime provides a new runtime exception, Data-
RaceException, that is thrown precisely when an access that
causes an actual race condition is about to be executed. This
brings races to the awareness of the programmer and allows
him to explicitly handle them.
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The Java memory model (JMM) precisely defines the seman-
tics for executions including races. We view the primary purpose
of this to be specifying constraints for Java compilers and virtual
machines in order to provide sanity and security guarantees. Other-
wise, the semantics of Java executions with races are very difficult
to make use of. The JMM defines well-synchronized programs to
be free of data races. We expect that programmers will strive to
ensure that their programs are race free and want to operate un-
der sequential consistency semantics. In this view, an actual race
condition is analogous to an out-of-bounds array access or a null
pointer dereference. The Java runtime presented in this paper raises
a DataRaceException when an actual (not potential) race condi-
tion is about to occur. This provides a mechanism for the program
to always operate under sequentially consistent semantics. If the
programmer has provided exception handling code, the program
continues execution with sequentially consistent semantics, other-
wise the thread that threw the exception is terminated. It is up to
the programmer to interpret the race condition as symptomatic of
a bug and gracefully terminate an operation or the entire program
and fix the bug, or, to make more optimistic use of the DataRace-
Exception as a mechanism for conflict detection between threads,
and, say, roll back the effects of the block of code that triggered the
DataRaceException.

To support DataRaceException, a race detection algorithm
needs to be precise, i.e., not produce false alarms or warnings about
potential races. It is not acceptable to interrupt an execution be-
cause of a potential or false race. Our dynamic race detection al-
gorithm generalizes Goldilocks, the first precise lockset-based al-
gorithm for dynamic race detection. The lockset update rules in
Goldilocks uniformly handle all synchronization disciplines. The
preliminary version of Goldilocks, while being as precise as a
vector-clock-based algorithm, was found to be comparable in per-
formance overhead to a prototype implementation of a lockset-
based algorithm from the literature [20]. In this paper, we gener-
alize Goldilocks to distinguish between read and write accesses
and to handle software transactions explicitly. We implemented
this race detection algorithm as part of the Kaffe Java virtual ma-
chine [24] which now provides a precise DataRaceException. A
number of performance optimizations and new implementation fea-
tures improve the performance of Goldilocks significantly beyond
what was reported in [8].

To reduce the runtime overhead, we apply static analyses [1, 17]
to eliminate dynamic checks on variables that can be proved to
be race free statically. With this pre-elimination, the overheads we
obtained on Java benchmarks are competitive with or better than
other dynamic race detection algorithms in the literature. These
results indicate that the precision of our algorithm does not come
at a performance cost. For many benchmark programs, we found
the overhead of precise race detection with our approach to be low
enough to be possibly tolerable even for deployed code. In other
benchmarks and for programs in which performance is of utmost
importance, the safety-performance trade-off provided by Data-
RaceException may not be acceptable. For these programs, our
Java runtime can serve as a debugging tool that produces no false
alarms.

We imagine, at least in the near future, that programmers will
use software transactions [22] to manage only some of the accesses
to shared data1 and other Java synchronization primitives to man-
age the rest – possibly to some of the same variables that were ac-
cessed within transactions at other points in the execution. We pro-
vide the first formalization of race conditions for executions that
use software transactions in addition to other Java synchroniza-

1 Because most existing transaction implementations do not support I/O and
may require libraries to be re-compiled [4]

tion primitives. We extended Goldilocks’ lockset update rules in
order to handle transactions and also extended our implementation
in Kaffe to provide DataRaceException support for executions
with software transactions. The nature of the lockset rules and the
implementation made it possible to integrate this feature without
significant restructuring.

We require that the semantics of software transactions to spec-
ify when a happens-before relationship exists between two trans-
actions without reference to the particular transactions implemen-
tation. For instance, in this paper, we use the specification that
there is a happens-before edge between transactions that access at
least one common variable. Our formulation of race conditions fa-
cilitates a modular check for races and strong atomicity for pro-
grams that use software transactions. The implementer of software
transactions verifies that the implementation provides the happens-
before edges in the transactions specification. Our race checker as-
sumes that these happens-before edges are implemented properly,
and checks for race-freedom of all accesses, but disregards the in-
ternal operation of the transactions implementation. The transac-
tion implementation is only required to provide a list of the shared
variables accessed by each transaction and a commit point. If no
DataRaceException is thrown, then sequential consistency and
strong atomicity are guaranteed. Further, the specification rather
than the implementation of transactions is used in order to make
this check cheaper. We demonstrate this way of handling transac-
tions in our runtime on a hand-coded transactional data structure.

Section 2 provides examples that motivate the new features of
the Java runtime we built. Section 3 introduces our mathemati-
cal model of Java program executions and defines race conditions
for executions that contain transactions. Section 4 presents our dy-
namic race-detection algorithm. Section 5 describes the implemen-
tation of the algorithm and optimizations for reducing runtime over-
head. Section 6 presents results of experiments using our Java run-
time.

2. Motivating examples
Example 1: This example demonstrates the use of DataRace-
Exception to terminate gracefully a thread about to perform an
access that would have caused a data race before the race leads to
an error. Pseudocode for this example is given in Figure 1 and is
adapted from the Apache ftp-server benchmark used in [17]. The
run() and close() methods shown belong to an object represent-
ing an ftp connection and are executed by two separate threads.
The thread executing the run() method, in a do .. while loop
services requests issued by the user on the command line, one com-
mand per iteration of the loop. A time-out thread executes the
close() method of connection objects that have been idle too
long. In the original benchmark, which did not contain the try
... catch block for DataRaceException, it is possible for the
time-out thread to run the close() method and set, for instance,
the m writer field of the connection object to null right before
the other thread accesses it at line 10 of the run() method. This
race condition causes a NullPointerException. Making run()
a synchronized method would make it impossible for the time-out
thread to execute close(), thus, in a correct implementation, finer-
grain synchronization needs to be used.

In the modified code that uses DataRaceException, when the
thread executing run() is about to access m writer in line 10
after the unsynchronized access by the thread running close(),
a DataRaceException is thrown. The run() thread catches this
exception, stops processing commands on this connection, exits
the do...while loop and allows the time-out thread to close the
connection. Note that, although in this example a race condition
has an immediately noticeable consequence, in other examples
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1 public void run() {
2 // ...
3 // Initialize connection
4 try {
5 do {
6 String commandLine = m_reader.readLine();
7 ...
8 m_request.parse(commandLine);
9 if(!hasPermission()) {
10 m_writer.send(530, "permission", null);
11 continue;
12 }
13 // execute command
14 service(m_request, m_writer);
15 } while(!m_isConnectionClosed);
16 } catch (DataRaceException e) {
17 // Error message: "Connection closed!"
18 break;
29 }
30 }

1 public void close() {
2
3 synchronized(this) {
4 if(m_isConnectionClosed) return;
5 m_isConnectionClosed = true;
6 }
7 ...
8 m_request = null;
9 m_writer = null;
10 m_reader = null;
11 }

Figure 1. Example 1: Demonstrating use of DataRaceException

Class IntBox { int data; }
IntBox a, b; // Global variables

Thread 1: Thread 2: Thread 3:
------------------- -------- -------------
tmp1 = new IntBox(); acq(ma); acq(mb);
tmp1.data = 0; tmp2 = a; b.data = 2;
acq(ma) rel(ma); tmp3 = b;
a = tmp1; acq(mb); rel(mb);
rel(ma); b = tmp2; tmp3.data = 3;

rel(mb);

Figure 2. Example 2

the observable manifestation of the race condition may occur far
enough in the execution to make it very difficult to trace its origin.
Example 2: To support DataRaceException, a precise and effi-
cient dynamic race analysis is needed. Purely vector-clock-based
algorithms are precise but typically computationally expensive
[16]. Lockset-based algorithms are efficient, but are not precise.
They check adherence to a particular synchronization discipline
and declare false races when this discipline is violated. Example 2
(Figure 2) makes use of two idioms typically not handled by ear-
lier lockset algorithms: objects that are local to different threads
at different points in the execution, and objects protected by locks
of container objects. The Goldilocks race detection algorithm de-
clares no false alarms in this example while other lockset-based
algorithms do.

Consider an execution in which all actions of Thread 1 happen
first, followed by all actions of Thread 2 and then of Thread
3. This example mimics a scenario in which an object is created
and initialized and then made visible globally by Thread 1. This
IntBox object (referred to as “o” from now on) is a container object

Foo {int data; Foo nxt};

Thread 1: Thread 2: Thread 3:
------------------ ------------- ------------
Foo t1 = new Foo(); Foo iter; Foo t3;
t1.data = 42; atomic { atomic {
atomic { for (iter = head; t3 = head;
t1.nxt = head; iter != null; head =
head = t1; iter = iter.nxt) t3.nxt;

} iter.data = 0; }
} t3.data++;

Figure 3. Example 3

public class Account {
double bal;
public synchronized withdraw(int amt) { bal -= amt;}}

Account savings, checking;

Thread 1: Thread 2:
------------------------- ------------------------
1 atomic { 1 checking.withdraw(42);
2 savings.bal -= 42;
3 checking.bal += 42;
4 }

Figure 4. Example 4

for its data field, and, is referred to by different global variables
at different points in this execution. Furthermore, the contained
variable o.data is protected by synchronization on the container
object o, and ownership transfer of o.data from one thread to
another sometimes takes place without the o.data field being
accessed at all. How our algorithm correctly captures the absence
of a race in this case is explained in Section 4.1.
Example 3: In this example (Figure 3), software transactions and
thread-locality are used at different times in the execution to protect
access to the same shared data. A race checking algorithm that does
not take into account transactions as a synchronization primitive
would declare a false race in this example. Here, Foo objects form
a linked-list, and while a Foo object is a member of the linked
list, access to it is managed by software transactions. A Foo object
referred to by t1 is created and initialized by Thread 1, during
which time it is thread-local. Then, in an atomic transaction, it is
added to the head of the linked list by Thread 1. While in the
linked list, this Foo object is modified by the loop in Thread 2,
which, in an atomic software transaction, modifies the data fields
of all Foo objects in the list. Thread 3 removes the Foo object
from the list in an atomic transaction. After this, the object is local
to Thread 3. Observe that it is possible to make this example
more sophisticated, for instance, by having the Foo object be shared
among threads and making it lock-protected after its removal from
the list. A correct implementation of software transactions would
create a happens-before relationship between the transactions in
Thread 1, 2 and 3. A race checking algorithm that is not aware of
these happens-before edges would falsely declare a race between
the accesses to the data field of the Foo object in Thread 1 and
Thread 3. Section 4.2 explains how the generalized Goldilocks
algorithm handles this example.
Example 4: In this example (Figure 4), shared data is either pro-
tected by an object lock or is accessed within a transaction, which
might lead one to believe at first glance that there should be no
race conditions. checking and savings are Account objects
with a synchronized withdraw method. Thread 1 contains a soft-
ware transaction that transfers money from savings to checking.
Thread 2 simply performs a withdrawal using the synchronized
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withdraw method. Since the software transaction implementa-
tion might be using a mechanism other than the object locks on
checking and savings to implement the atomic transaction, there
is a potential race condition between Thread 1 and 2’s accesses to
checking.bal. This race condition should be signaled regardless
of the synchronization mechanism used by the transaction imple-
mentation, since this mechanism should not be visible to the pro-
grammer. Observe that completely ignoring accesses inside trans-
actions while performing dynamic race checking would overlook
the race in this case.

3. Preliminaries
This section presents the formalism required to explain the Goldilocks
algorithm in Section 4. The reader may skip ahead to Sections 4.1
and 4.2 for an informal understanding of Goldilocks’ lockset up-
date rules applied to Examples 2 and 3 in the previous section.

Tid represents the set of thread identifiers and Addr represents
the set of object identifiers. Each object has a finite collection of
fields. Field represents the set of all fields and is a union of two
disjoint sets, the set Data of data fields and the set Volatile of
volatile fields. A data variable is a pair (o, d) consisting of an
object o and a data field d. A synchronization variable is a pair
(o, v) consisting of an object o and a volatile field v. Each thread in
a program executes a sequence of actions. Actions are categorized
into the following kinds:

•

SyncKind =
{acq(o), rel(o) | o ∈ Addr} ∪
{read (o, v),write(o, v) | o ∈ Addr ∧ v ∈ Volatile} ∪
{fork(u), join(u) | u ∈ Tid} ∪
{commit(R, W ) | R,W ⊆ Addr × Data}

•
DataKind =
{read (o, d) | o ∈ Addr ∧ d ∈ Data} ∪
{write(o, d) | o ∈ Addr ∧ d ∈ Data}

• AllocKind = {alloc(o) | o ∈ Addr}
• Kind = SyncKind ∪ DataKind ∪ AllocKind

The action kind alloc(o) represents allocation of a new object o.
The action kinds read(o, d) and write(o, d) respectively read and
write the data field d of an object o. A thread is said to access a
variable (o, d) if it executes an action of kind either read(o, d) or
write(o, d). Of course, other kinds of actions (such as arithmetic
computation, function calls, etc.) also occur in a real execution of a
Java program but these actions are irrelevant for our exposition of
race conditions and have consequently been elided.

The action kinds acq(o) and rel(o) respectively represent a
thread acquiring and releasing a lock on object o. We use a special
field l ∈ Volatile containing values from Tid ∪ {null} to model
the semantics of an object lock. An action of kind acq(o) being
performed by thread t blocks until o.l = null and then atomically
sets o.l to t. An action of kind rel(o) being performed by thread t
fails if o.l �= t, otherwise it atomically sets o.l to null . Although
we assume non-reentrant locks for ease of exposition in this paper,
our techniques are easily extended to handle reentrant locks. The
action kind commit(R,W ) represents the committing of a trans-
action that reads and writes the sets of shared data variables R and
W respectively. We do not allow transaction bodies to include syn-
chronization, therefore R, W ⊆ Addr ×Data. The commit action
is explained in more detail in Sections 4 and 5.

The action kinds read(o, v) and write(o, v) respectively repre-
sent a read of and a write to the volatile field v of an object o. An
action of kind fork(u) creates a new thread with identifier u. An
action of kind join(u) blocks until the thread with identifier u ter-
minates. In this paper, when referring to an action, we sometimes

only name its kind when the rest of the information is clear from
the context.

An execution Σ = (σ,
eso−→) of a program consists of a func-

tion σ : Tid → N → Kind and a total order
eso−→ (extended

synchronization order) on the set {(t, n) | σ(t, n) ∈ SyncKind}.
If commit actions are projected out of

eso−→, the remaining total
order is required to be the synchronization order associated with
the execution as given by the Java memory model. Since we view
transactions as high-level synchronization operations, we include
the commit action for each transaction in the extended synchro-
nization order to represent the ordering of the transaction with re-
spect to other synchronization operations. We use σ to define the
program order of thread t denoted by

po−→t. The relation
po−→t is

a total order on the set {t} × N such that (t, m)
po−→t (t, n) iff

m < n. The relation
eso−→ is a total order on the subset of actions

that perform synchronization. The extended synchronizes-with par-
tial order

esw−→ is defined to be the smallest transitively-closed rela-
tion that satisfies the following conditions:

• If σ(t,m) = rel(o), σ(u, n) = acq(o), and (t,m)
eso−→ (u, n),

then (t, m)
esw−→ (u, n).

• If σ(t,m) = write(o, v), σ(u, n) = read(o, v), and (t, m)
eso−→

(u, n), then (t, m)
esw−→ (u, n).

• If σ(t,m) = fork(u), then (t, m)
esw−→ (u, n) for all n ∈ N .

• If σ(t,m) = join(u), then (u, n)
esw−→ (t, m) for all n ∈ N .

• If σ(t, m) = commit(R,W ), σ(u, n) = commit(R′, W ′),
(t,m)

eso−→ (u, n), and (R ∪ W ) ∩ (R′ ∪ W ′) �= ∅, then
(t,m)

esw−→ (u, n).

The last item above expresses an interpretation of software trans-
actions in which a transaction synchronizes with (and happens be-
fore) another iff they access at least one common variable. In this
view, two transactions that access disjoint sets of variables do not
synchronize with each other.

The extended happens-before relation, denoted by
ehb−→, is a

relation on the set Tid ×N . It is the transitive closure of the union
of

esw−→ with the program order
po−→t for each thread t ∈ Tid .

There is an extended race on data variable (o, d) if there exist

t, u ∈ Tid and m, n ∈ N such that both (t, m)
ehb−→ (u, n) and

(u, n)
ehb−→ (t, m) are false and one of the following conditions

hold:

1. σ(t,m) = write(o, d) and σ(u, n) ∈ {read(o, d),write(o, d)}
2. σ(t,m) = write(o, d), σ(u,n) = commit(R,W ), and

(o, d) ∈ R ∪ W

3. σ(t,m) = read(o, d), σ(u, n) = commit(R, W ), and
(o, d) ∈ W

Observe that for executions that contain no transaction com-
mit actions, the extended synchronization order, the extended
synchronizes-with relation, and the extended happens-before re-
lation coincide with the synchronization order, the synchronizes-
with relation and the happens-before relation as defined in the Java
memory model. The projection of the

eso−→ order onto the commit
actions corresponds to the atomic order of transactions as defined in
[11]. Our treatment of transactions simply formalizes one possible
semantics of transactions and does not introduce any extra syn-
chronization or serialization to transaction implementations. In the
transaction semantics we model using the extended happens-before
relation, pairs of shared variable accesses where both accesses be-
long to some transaction are considered to be race-free.
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1. σ(t, n) ∈ {read (o, d),write(o, d)}:

if LS(o, d) �= ∅ and t �∈ LS(o, d)
report data race on (o, d)

LS(o, d) := {t}
2. σ(t, n) = read(o, v):

foreach (o′, d):
if (o, v) ∈ LS(o′, d) add t to LS(o′, d)

3. σ(t, n) = write(o, v):

foreach (o′, d):
if t ∈ LS(o′, d) add (o, v) to LS(o′, d)

4. σ(t, n) = acq(o):

foreach (o′, d):
if (o, l) ∈ LS(o′, d) add t to LS(o′, d)

5. σ(t, n) = rel(o):

foreach (o′, d):
if t ∈ LS(o′, d) add (o, l) to LS(o′, d)

6. σ(t, n) = fork(u):

foreach (o′, d):
if t ∈ LS(o′, d) add u to LS(o′, d)

7. σ(t, n) = join(u):

foreach (o′, d):
if u ∈ LS(o′, d) add t to LS(o′, d)

8. σ(t, n) = alloc(x):

foreach d ∈ Data : LS(x, d) := ∅
9. σ(t, n) = commit(R, W ):

foreach (o′, d):
if LS(o′, d) ∩ (R ∪ W ) �= ∅

add t to LS(o′, d)
if (o′, d) ∈ R ∪ W :

if LS (o′, d) �= ∅ and {t,TL} ∩ LS(o′, d) = ∅
report data race on (o′, d)

LS(o′, d) := {t,TL}
if t ∈ LS(o′, d)

add R ∪ W to LS(o′, d)

Figure 5. The lockset update rules for the Goldilocks algorithm

Other ways of specifying the interaction between strongly-
atomic transactions and the Java memory model can easily be
incorporated into our definition of extended races. For instance,
one can choose to define the extended synchronizes-with order
to include all atomic order edges, or to include a synchronizes-
with edge from transaction commit(R,W ) to commit(R′, W ′)
if R′ ∩ W �= ∅. The algorithms and tools presented in this paper
can easily be adapted to such alternative interpretations of strong-
atomicity.

4. The generalized Goldilocks algorithm
In this section, we describe our algorithm for detecting data races
in an execution Σ = (σ,

eso−→). The algorithm assumes that the
execution is provided to it as some linearization of the extended

happens-before relation
ehb−→. Formally, a linearization of an execu-

tion Σ is a function π that maps N one-one to Tid ×N such that

if (t, m)
ehb−→ (u, n) then π−1(t, m) ≤ π−1(u, n). If an execu-

tion contains a data-race between a pair of accesses, our algorithm
declares a race at one of these accesses regardless of which lin-
earization is picked. For simplicity, the exposition in this section
does not distinguish between read and write accesses. This distinc-
tion and its effect on the Goldilocks algorithm is explained in the
next section.

The algorithm uses an auxiliary map LS from (Addr×Data) to
Powerset((Addr×Volatile∪Data)∪Tid∪{TL}). For each data
variable (o, d), the lockset LS(o, d) may contain volatile variables,
data variables, thread identifiers, or a special value TL (Transaction
Lock). The value TL models a fictitious global lock that is acquired
and released at the commit point of each transaction. Initially, the
map LS assigns the empty set to every data variable (o, d). The
algorithm updates LS as each element in the linearization of σ is
processed. The set of rules for these updates is shown in Figure 5.
The intuitive interpretation of a lockset LS(o, d) is as follows:

• If LS (o, d) is empty, it indicates that (o, d) is a fresh vari-
able which has not been accessed so far. Therefore, an ac-
cess to (o, d) when LS(o, d) is empty is necessarily race-free.
LS(o, d) is initialized to the empty set and is reset to the empty
set whenever o is an object returned by a memory allocation.

• If a thread identifier t is in LS (o, d), then t is an owner of (o, d)
and an access by t to (o, d) is race-free.

• If a lock (o′, l) is in LS(o, d), a thread can become an owner of
(o, d) by acquiring the lock (o′, l). This is because the thread
that last accessed (o, d) released (o′, l) subsequently.

• If a volatile variable (o′, v) is in LS (o, d), a thread can become
an owner of (o, d) by reading (o′, v). This is because the thread
that last accessed (o, d) wrote to (o′, v) subsequently.

• If TL is in LS(o, d), then the last access to (o, d) was per-
formed inside a transaction. Hence, there will be no race on
(o, d) if the next access is also performed inside a transaction.

• If a data variable (o′, d′) is in LS(o, d), a thread can become
an owner of (o, d) by accessing (o′, d′) inside a transaction.
This is because the thread that last accessed (o, d) also accessed
(o′, d′) in a transaction subsequently.

Given this interpretation of LS(o, d), we conclude that an access
of (o, d) by a thread t outside any transaction is race-free if and
only if at that point in the execution either LS(o, d) is empty
or t ∈ LS(o, d). After this access, LS (o, d) contains only t,
representing the constraint that between this access and any future
accesses to (o, d) by other threads, there must be synchronization
actions to hand over ownership of (o, d). Similarly, an access of
(o, d) by a thread t inside a transaction is race-free if and only if at
that point in the execution either LS(o, d) is empty or t ∈ LS(o, d)
or TL ∈ LS(o, d). After this access, LS(o, d) contains only t and
TL, representing the constraint that the next access to (o, d) by a
thread t′ different from t must either be inside a transaction or there
must be synchronization actions to hand over ownership of (o, d)
to t′.

The rules in Figure 5 take as input a linearization π of Σ =
(σ,

eso−→). The pair (t, n) used in the rules represents the value
of π(i) for an arbitrary i ∈ N . Note that each of the rules 2–7
and 9 requires updating the lockset of each data variable. A naive
implementation of this algorithm would be too expensive for pro-
grams that manipulate large heaps. In Section 5, we present an effi-
cient scheme to implement our algorithm by applying these updates
lazily.

The following theorem expresses the fact that our algorithm is
both sound and precise. Given an execution Σ = (σ,

eso−→), we
write that (t, n) accesses the data variable (o, d) in Σ if either
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LS(o.data) = ∅

LS(o.data) = {T1}First access

LS(o.data) = {T1, ma}(T1 ∈ LS) (add ma to LS)

LS(o.data) = {T1, ma, T2}(ma ∈ LS) (add T2 to LS)

LS(o.data) = {T1, ma, T2, mb, T3}(mb ∈ LS) (add T3 to LS)

LS(o.data) = {T3}(T3 ∈ LS) (No race)

LS(o.data) = {T3, mb}(T3 ∈ LS) (add mb to LS)

tmp1 = new IntBox()

tmp1.data = 0

acq(ma)

acq(ma)

tmp2 = a

a = tmp1

rel(ma)

rel(ma)

acq(mb)

b = tmp2

rel(mb)

acq(mb)

b.data = 2

tmp3 = b

rel(mb)

T1

T2

T3

LS(o.data) = {T1, ma, T2}(T2 ∈ LS) (add ma to LS)

LS(o.data) = {T1, ma, T2, mb}(T2 ∈ LS) (add mb to LS)

tmp3.data = 3 LS(o.data) = {T3}(T3 ∈ LS) (No race)

Figure 6. Evolution of LS(o.data) on Example 2 (Section 2).

σ(t, n) ∈ {read(o, d),write(o, d)} or σ(t, n) = commit(R,W )
and (o, d) ∈ R ∪ W .

THEOREM 1 (Correctness). Let Σ = (σ,
eso−→) be an execution,

π a linearization of Σ, and (o, d) a data variable. Let LS b be
the value of the lockset map LS as computed by the generalized
Goldilocks algorithm just before processing the b-th element of π.
Suppose a, b ∈ N are such that a < b, π(a) and π(b) access (o, d)
in Σ, and π(j) does not access (o, d) in Σ for all j ∈ [a+1, b−1].
Suppose πa = (t, m) and πb = (u, n). Then the following
statements are true:

1. u ∈ LS b(o, d) iff π(a)
ehb−→ π(b).

2. TL ∈ LS b(o, d) iff σ(t,m) = commit(R, W ) and (o, d) ∈
R ∪ W .

The proof of this theorem is an extension of the proof of correctness
of the original Goldilocks algorithm [9]. The extension to deal with
transactions is mostly straightforward.

Using the lockset update rules above, Goldilocks is able to
uniformly handle various approaches to synchronization such as
dynamically changing locksets, permanent or temporary thread-
locality of objects, container-protected objects, ownership transfer
of variable without accessing the variable (as in the example in Sec-
tion 4.1). Furthermore, Goldilocks can also handle wait/notify(All),
and the synchronization idioms the java.util.concurrent
package such as semaphores and barriers, since these primitives
are built using locks and volatile variables.

4.1 Precise data-race detection

In this section, we use an execution (Figure 6) of the program
in Example 2 from Section 2 to demonstrate the precision of the
Goldilocks algorithm compared to other lockset-based algorithms
from the literature. Unlike Goldilocks which is both sound and
precise, other lockset algorithms based on the Eraser algorithm [20]
are sound but not precise.

The most straightforward lockset algorithm is based on the as-
sumption that each shared variable is protected by a fixed set of
locks throughout the execution. Let LH (t) represent the set of
locks held by thread t at a given point in an execution. This algo-
rithm attempts to infer this set by updating the lockset LS(o, d) of a
data variable (o, d) to be the intersection LH (t)∩LS(o, d) at each
access to (o, d) by a thread t. If this intersection becomes empty, a
race is reported. This approach is too conservative since it reports
a false race in many situations, such as during unprotected variable

initialization and when the lock protecting a variable changes over
time. For instance, this basic algorithm will report a data-race on
o.data at the very first access of the execution in Figure 6.

Variants of lockset algorithms in the literature use additional
mechanisms such as a state machine per shared variable in order to
handle special cases such as thread locality and object initialization.
However, these variants are neither sound nor precise, and they all
report false alarms in scenarios similar to the one in the example
above. For instance, in spite of using the state-machine accompa-
nying the Eraser algorithm [20], a data-race will be reported at the
last access (tmp3.data = 3) to o.data in the execution.

The fundamental limitation of existing lockset algorithms is that
the lockset of a variable only becomes smaller with time. On the
other hand, our algorithm’s lockset update rules allow a variable’s
locksets to grow during the execution; in fact, the lockset of a
variable may be modified even without the variable being accessed.
These aspects of our algorithm are crucial for detecting changes of
ownership during the execution. The evolution of the lockset of
o.data due to our update rules is illustrated in Figure 6.

The vector-clock algorithm does not declare a false race in this
example and similar scenarios. However, it accomplishes this at
significantly increased computational cost compared to our opti-
mized implementation of the lockset update rules.

4.2 Handling transactions

In this section, we use the program in Example 3 from Section 2 to
demonstrate how Goldilocks handles synchronization due to trans-
actions. Consider an execution of this program shown in Figure 7.
This execution begins in a state in which head = null and conse-
quently the linked list of Foo objects is empty. Let o denote the ad-
dress of the object allocated by the first statement. The transaction
of Thread 1 happens-before the transaction of Thread 2 because
both transactions access the variables head (address denoted by
&head) and o.data. The transaction of Thread 2 happens-before
the transaction of Thread 3 for exactly the same reason. Conse-
quently, the accesses to o.data at t1.data = 42 by Thread 1,
at iter.data = 0 by Thread 2, and at t3.data++ by Thread 3
are ordered by the happens-before relation. Goldilocks is able to
detect these happens-before edges and verify that there is no data-
race between the three accesses. Figure 7 shows the evolution of
the lockset for o.data. The figure treats the end of a transaction as
its commit point and shows the application of rule 9 from Figure 5
there.
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LS(o.data) = ∅

LS(o.data) = {T1}First access

LS(o.data) = {T1, o.nxt, &head}(T1 ∈ LS) (add {o.nxt, &head} to LS)

LS(o.data) = {TL, T2, &head, o.data, o.nxt,T3}({&head, o.nxt} ∩ LS ≠ ∅) (add T3 to LS)

t1 = new Foo()

t1.data = 42

begin_tr

end_tr

begin_tr

t1.nxt = head

head = t1

iter = head

iter != null

iter.data = 0

iter = iter.nxt

iter == null

end_tr

begin_tr

t3 = head

T1

T2

T3

LS(o.data) = {TL, T2}({TL,T2} ∩ LS ≠ ∅) (No race)

head = t3.nxt

LS(o.data) = {T3}(T3 ∈ LS) (No race)

end_tr

t3.data++

LS(o.data) = {TL, T2, &head, o.data, o.nxt}(T2 ∈ LS) (add {&head,o.data,o.nxt} to LS)

LS(o.data) = {T1, o.nxt, &head, T2}({&head,o.data,o.nxt} ∩ LS ≠ ∅) (add T2 to LS)

LS(o.data) = {TL, T2, &head, o.data, o.nxt,T3}(T3 ∈ LS) (add {&head, o.nxt} to LS)

Figure 7. Evolution of LS(o.data) on Example 3 (Section 2).

5. Implementation
We implemented the generalized Goldilocks algorithm in Kaffe [24],
a clean room implementation of the Java virtual machine in C. Our
implementation is integrated into the interpreting mode of Kaffe’s
runtime engine2. The pseudocode for the Goldilocks implementa-
tion is given in Figure 8. We defer the explanation of how transac-
tions are handled in the implementation to Section 5.3 to make the
initial presentation simpler.

We store synchronization events in a linked list called the syn-
chronization event list and represented by its head and tail pointers
in Figure 8. Events are stored in this list in the synchronization or-
der as defined in the Java Memory Model. Synchronization events
are represented by the Cell data structure, which stores the synchro-
nization action kind and the thread performing the action. When
a thread performs a synchronization action, it atomically appends
(see Enqueue-Synch-Event) the corresponding cell to the synchro-
nization event list.

The race-freedom check presented in this paper is implemented
in a decentralized fashion. For each action α that a thread performs,
it calls Handle-Action(t, α). For each shared data variable (o, d), to
serialize the lockset update and race-freedom checks for each ac-
cess to (o, d), our implementation uses a unique lock KL(o, d).
Before a thread accesses (o, d), it acquires KL(o, d) and performs
the lockset update (computes the lockset associated with the ac-
cess) and race-freedom check explained in Theorem 1. In this way,
each thread carries out the race-freedom check for the accesses it
performs, and these checks are linearly ordered by KL(o, d). The
implementation of the variable access in Kaffe is not protected by
KL(o, d).

The lockset update rules in our race-detection algorithm may
require LS(o, d) to be updated for each synchronization event. This
potentially expensive operation and the memory cost of explicitly
representing the individual locksets is avoided by performing lazy
evaluation of locksets as described below.

The record Info corresponds to an access to a data variable (o,d)
during the execution. The owner field of Info is the id of the thread
performed the access. pos is a pointer into the synchronization
event list, to the cell representing the last synchronization event

2 An implementation of our algorithm in the just-in-time compilation mode
is straightforward but requires a lot more code.

record Cell { record Info {
thread : Tid ; pos: ref (Cell);
action : Action ; owner : Tid ;
next : ref (Cell );} alock : Addr ;

ls: ℘(Addr × Volatile ∪ Data) ∪ Tid ∪ {TL}
xact : Boolean; }

head , tail : ref (Cell );
ReadInfo: (Addr × Data × Tid) −→ Info ;
WriteInfo : (Addr × Data) −→ Info ;

Initially head := new Cell ; tail := head ;
ReadInfo := EmptyMap; WriteInfo := EmptyMap;

Enqueue-Synch-Event (t, α):
1 tail→thread := t;
2 tail→action := α;
3 tail→next := newCell();
4 tail := tail→next ;

Check-Happens-Before (info1 , info2):
1 if (info1.xact ∧ info2.xact)
2 return; // no race for transactional variables
3 if ((info2.owner �= info1 .owner )
4 ∧ (info1 .alock is not held by info2 .owner )) {
5 Apply-Lockset-Rules (info1.ls, info1.pos, info2 .pos, info2.owner ) ;
6 info2.alock := (choose randomly a lock held by info1 .owner );
7 }

Handle-Action (t, α):
1 if (α ∈ {acq(o), rel(o), fork(u), join(u), read(o, v)

write(o, v) finalize(x), terminate(t)}) {
2 Enqueue-Synch-Event (t, α);

3 } else if (α = read(o, d)) {
4 info := newInfo ();
5 info .owner := t;
6 info .pos := tail ;
7 info .xact := Is-In-Transaction (t);
8 info .ls := {t};
9 ReadInfo(o, d, t) := info
10 Check-Happens-Before (WriteInfo(o, d), info);

11} else if (α = write(o, d)) {
12 info := newInfo ();
13 info .owner := t;
14 info .pos := tail ;
15 info .xact := Is-In-Transaction (t);
16 info .ls := {t};
17 for each (t ∈ Tid )
18 if (ReadInfo(o, d, t) �= null)
19 Check-Happens-Before (ReadInfo(o, d, t), info);
20 if (WriteInfo(o, d) �= null)
21 Check-Happens-Before (WriteInfo(o, d), info);
22 WriteInfo(o, d) := info
23 for each (t ∈ Tid ) ReadInfo(o, d, t) := null

24} else if (α = commit(R, W )) {
25 Enqueue-Synch-Event (t, α);
26 for each α̃ in (W ∪ R)
27 Handle-Action (t, α̃); // Check race freedom as regular access
28 }
29}

Figure 8. Implementation of the Goldilocks algorithm

that the access comes after. The lsfield contains the lockset of the
variable just after the access. The fields alock and xact will be
explained below while discussing the short-circuit checks and the
transactions.

After an access α1 to a variable, a new Info instance, say info1,
that represents the current access is created. info1.pos is simply set
to the current tail of the list (see lines 6,14 of Handle-Action). At
this point, according to the variable access rule in Figure 5, the
lockset of the variable should contain only the id of the currently
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accessor thread. info1.ls is set after the access in order to reflect
this (see lines 8 and 16 of Handle-Action).

We perform the lockset computation and race-freedom check
lazily, only when an access to a variable happens. At a subsequent
access α2 to (o,d), represented by, say, info2, the lockset LS(o, d)
of (o,d) after α2 is computed and implicitly represented by applying
to the lockset of the last access, info1.ls , the lockset update rules
for the events in the synchronization list between info1.pos and
the current tail of the synchronization list. A race is reported if
the lockset after α2 does not contain the id of the current accessor
thread.

The Check-Happens-Before procedure determines whether there
is a happens before relationship between two accesses represented
by two info data structures. Before applying the lockset update
rules of Figure 5, Check-Happens-Before first applies three cheaper
checks that are sufficient conditions for race-freedom between
the two accesses. These “short-circuit checks” are described in
the next section. Our experimental results indicate that the short-
circuit checks succeed most of the time, and the lockset update
rules are only applied in the case of more elaborate ownership
transfer scenarios. If all the short-circuit checks fail to prove the
happens-before edge, the lockset of the variable is computed lazily
in Apply-Lockset-Rules as described above.

To distinguish between read and write accesses, the implemen-
tation maintains the Info records for the last write access to each
shared data variable (o, d) (WriteInfo(o, d)) and the last read ac-
cess to (o, d) by thread t (ReadInfo(o, d , t)) if this access came
after the last write access. These maps are updated after each ac-
cess to (o,d). Note that, for each data variable, there are poten-
tially as many pointers into the synchronization event list from
ReadInfo as the number of active threads, although, in practice,
we rarely encounter this situation. In this case, instead of checking
the happens-before edge between any two accesses to (o,d), our al-
gorithm checks 1) for each read access whether it happened before
WriteInfo(o, d), and 2) for each write access whether it happened
before ReadInfo(o, d , t) for each thread t.

5.1 Short circuit checks

The first constant-time short-circuit check is effective when two
consecutive accesses to a shared variable are performed by the same
thread. In this case, the happens-before relationship is guaranteed
by program order. This is detected in constant time by checking
whether the thread field of the info data structure is the same as the
thread performing the current access (see line 3 of Check-Happens-
Before).

The second constant-time short-circuit check requires checking
whether a random element of LS(o, d) at the last access, kept in
the alock field of Info, is also held by the current thread. If these
two locks happen to be the same, then the current access is race free
(see line 4 of Check-Happens-Before).

The last short-circuit involves the Apply-Lockset-Rules subrou-
tine and consists of considering only the subset of synchronization
events executed by the current and last accessing thread when ex-
amining the portion of the synchronization event list between info1

and info2. This check is not constant time, but we found that it
saves on the runtime of Apply-Lockset-Rules when the happens-
before edge between info1 and info2 is immediate, i.e., is accom-
plished by a direct transfer of ownership from one thread to another.

5.2 Sound static race analysis to reduce overhead

As is apparent from the implementation pseudocode, the runtime
overhead of race detection is directly related to the number of data
variable accesses checked and the synchronization events that oc-
cur. In the worst-case, this overhead is proportional to the product
of the following two quantities: (i) the sum of the number of syn-

chronization events and shared variable accesses, (ii) the number
of data variables in the execution. This overhead is amortized over
the total number of accesses. In practice, we do not encounter this
worst-case behavior and see a constant-time overhead per access.
To reduce the number of accesses checked at runtime, we use exist-
ing static analysis methods at compile time to determine accesses
or access pairs that are guaranteed to be race-free.

We worked with two static analysis tools for this purpose: a
newer version of the Chord tool [17] and the RccJava static race
detection tool [1]. The output of RccJava is a list of fields that may
be involved in a race condition. The output of Chord is a list R
of pairs of accesses (line numbers in the source code) that may
be involved in a race, i.e., if any execution of the program ever
produces a race, the pair of accesses (α1, α2) is guaranteed to be
in R. Our runtime makes use of R by parsing Chord’s output and
inferring from it the sets of object fields (F) and methods (M) that
are guaranteed to never be involved in a race. It then annotates the
Java class files using the reserved bits of the access flags of classes,
fields and methods to enable/disable race checking on the particular
class, field or method.

5.3 Transactions

To detect races at runtime, our approach requires a transaction man-
ager to provide or make possible for the runtime to collect for each
transaction commit(R, W ) the sets R and W and the place of
commit point of the transaction in the global synchronization or-
der. Note that transaction implementations need to ensure such an
order to implement the required semantics correctly, thus to provide
the latter information, transaction implementations do not need to
perform any additional synchronization. For the transaction im-
plementations in LibSTM [12] and LibCMT [13], this information
is readily available to the runtime, and can be collected easily in
SXM [14] at runtime.

In our implementation (Figure 8), when a transaction commit
action is encountered, we first insert the commit action α (that con-
tains the list of read and write accesses R and W ) as a synchro-
nization action into the synchronization event list. Then, all shared
variable reads and writes within the transaction (i.e., in R and W )
are checked for race-freedom (lines 24-28 of Handle-Action) in the
same way as accesses outside transactions. Note that the collec-
tion of R and W is done in a distributed fashion by each transac-
tion and does not introduce extra synchronization between transac-
tions. We use the xact field of Info in order to indicate whether
an access happened inside a transaction or not (see lines 7,15 of
Handle-Action). xact is used in another short-circuit check (line
1 of Check-Happens-Before); as long as the accesses to (o,d) are
inside transactions, the lockset computation is skipped.

This way of handling the happens-before relationships induced
by transactions avoids processing the synchronization operations
performed by a transactions manager that has already been proven
correct. It infers exactly the desired set of happens-before edges,
and accomplishes this at less of a computational cost than treat-
ing transactions implementations as part of the application pro-
gram. This approach can be viewed as a modular way of check-
ing race-freedom and thus sequential consistency. The implementor
of software transactions guarantees the happens-before edges be-
tween transactions as described in Section 3 and race-freedom for
accesses within transactions. Our Java runtime performs the race-
freedom check for the rest of the accesses using the happens-before
edges provided by the transactions implementation.

5.4 Garbage collection of synchronization events and
partially- eager evaluation

The synchronization events list is periodically garbage collected
when there are entries in the beginning of the list that are not
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Uninstrumented Runtime Without static information With Chord outputs With RccJava outputs Short-circuit checks (%)
Benchmarks # Lines # Threads Just-in-time Interpreted Runtime Slowdown Runtime Slowdown Runtime Slowdown Chord RccJava
colt - 10 6.3 6.8 13.2 1.9 7.8 1.2 - - 66.67 -
hedc 2.5K 10 3.1 7.5 14.5 1.9 11.0 1.5 - - 31.94 -
lufact 1K 10 0.2 0.5 2.0 4.1 0.9 1.8 - - 12.73 -
moldyn 650 5 21.6 135.2 730.2 5.4 712.9 5.3 217.8 1.6 99.53 99.99
montecarlo 3K 5 43.8 44.1 97.2 2.2 47.0 1.1 44.8 1.0 99.93 99.98
philo 86 8 2.9 2.6 2.7 1.0 2.7 1.0 - - 6.62 -
raytracer 1.2K 5 0.4 3.4 61.7 17.9 39.0 11.4 7.4 2.1 51.01 51.01
series 380 10 87.9 88.4 94.1 1.0 93.3 1.0 - - 10.17 -
sor 220 5 31.5 32.8 44.1 1.3 31.5 1.0 - - 16.97 -
sor2 252 10 0.6 11.2 70.8 6.3 25.8 2.3 12.4 1.1 0.00 99.00
tsp 700 10 1.6 2.5 5.5 2.2 3.4 1.3 3.1 1.2 64.54 37.28

Table 1. Results of experiments with the race-aware Kaffe runtime

relevant for the lockset computation of any variable. This is the case
when an entry in the list is not reachable from the lockset pointer
(pos) for any info data structure. We keep track of this information
by maintaining a reference count in every cell data structure. We
periodically discard prefix of the list up to the first cell with non-
zero reference count.

While running Goldilocks on long executions, sometimes the
synchronization event list gets too long. It is not possible to
garbage-collect starting from the head of the list when a variable
is accessed early in an execution but is not used afterwards. In this
case, a long prefix of the list is reachable from the info data struc-
ture representing this early access, which prevents garbage collec-
tion of the entire rest of the list. This phenomenon is a side effect
of the initial Goldilocks implementation performing “completely
lazy” evaluation. Below, we describe a technique, “partially-eager”
lockset evaluation, that we used to address this problem. For sim-
plicity, partially-eager evaluation is explained only for write lock-
sets. The procedure is the same for each read lockset of each thread
for each shared data variable.

Suppose that the initial cell0 has a non-zero reference count,
followed by a long sequence of entries with zero reference counts.
Let InfoSet ⊆ WriteInfo be the set of Info records whose pos
fields refer to cell0. Let cell1 be a later cell in the synchronization
event list. For each variable (o, d) such that WriteInfo(o, d) ∈
InfoSet , no later write access to (o, d) has occurred (otherwise the
WriteInfo data structure would point to a later list entry). Thus,
for each such (o, d), we 1) perform the lockset computation up
to cell1, and store this intermediate result in WriteInfo(o, d).ls ,
and 2) reset WriteInfo(o, d).pos to point to cell1. If there is a
later write access to (o, d), the lockset computation starts with this
intermediate lockset (instead of {WriteInfo(o, d).owner}) and at
cell1. We perform this partial computation of locksets for all info
data structures that refer to cell0. After the reference count of cell0
reaches 0, we garbage-collect the prefix of the list up to cell1. We
repeat this prefix-trimming operation starting with the new head
of the list until the list size is down to a pre-specified number.
This partially-eager lockset evaluation scheme provides a running
time-memory trade off and is necessary for continuously-running
programs which may have very long synchronization event lists
otherwise.

Currently we trigger the partially-eager lockset computation
scheme to trim the first 10% of the entries in the synchronization
event list when garbage collection is triggered in the Kaffe JVM.
We explicitly trigger a garbage collection when the event list grows
longer than one million entries.

6. Experiments
We ran on our race- and transaction-aware JVM a set of bench-
marks well known in the literature. A Linux machine with Intel

Pentium-4 2.80GHz CPU was used. The initial and the maximum
Java heap space were set to 16 MB and 512 MB, respectively.
These limits triggered a moderate number of garbage collection
runs which were necessary for proper trimming of the synchroniza-
tion event list by partially-eager lockset propagation. The experi-
ments were run on the interpreter mode of the Kaffe Virtual Ma-
chine version 1.1.6. We collected the runtime statistics using the
PAPI interface to the hardware performance counters [2]. Arrays
were checked by treating each array element as a separate variable.

To provide a reasonable idea of race checking overhead in our
experiments, when a race was detected on a variable, race checking
for that variable was turned off during the rest of the execution.
Checks for all the indices of an array were disabled when a race is
detected on any index of the array. The Java benchmarks we worked
on do not have handlers for DataRaceExceptions. It is common
in these benchmarks for many more races to occur on a variable
once one race has occurred. Turning off race checking after the first
detected race provides a more reasonable idea of overhead in these
cases because, in normal operation, we do not expect a program to
continuously detect and recover from races on the same variable.

We used eleven benchmark programs to evaluate the perfor-
mance of our implementation in Kaffe. Six of our benchmarks are
from the Java Grande Forum Benchmark Suite. We reduced the
size of inputs to the Grande benchmarks because of the long run-
ning time of the applications. The remaining four benchmarks are
from [23].

We were able to apply the Chord static race analysis tool to all
of the benchmarks and used the resulting race-prone access pairs
as described in Section 5. We only had access to RccJava output
for the following benchmarks: moldyn, montecarlo, raytracer,
sor2, and tsp. In most of these cases, the checks that RccJava was
able to eliminate subsumed those that Chord was able to.

Table 1 presents the performance statistics of the Goldilocks al-
gorithm in different settings of the benchmark programs. The col-
umn titled “Uninstrumented” reports the total runtime of the pro-
grams in the JIT-compilation and the interpreter modes of JVM
with the race detection feature disabled. The other columns present
the running times and the slowdown ratios of the programs on JVM
with race checking enabled. The runtime measurements are given
in seconds. The slowdown ratio is the ratio of the runtime with the
race checking enabled to the uninstrumented runtime of the pro-
gram (both in interpreted mode). For the results in the columns
titled “with Chord outputs”, “with RccJava outputs”, and “short-
circuit checks”, the standard libraries were instrumented as well.
For the results in the columns titled “without static information”
the libraries were not instrumented. For these experiments, instru-
menting libraries at most doubles overhead.

Table 1 also reports the percentages of succeeding short-circuit
checks when the outputs of Chord or RccJava are used. The rest of
the accesses require full lockset computations by traversal of the
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Variables checked (%) Accessed checked (%)
Benchmarks Chord RccJava Chord RccJava
colt 0.1 - 0.0 -
hedc 0.0 - 0.0 -
lufact 1.1 - 2.1 -
moldyn 84.1 83.5 56.6 49.1
montecarlo 15.4 13.7 13.0 39.9
philo 0.2 - 0.1 -
raytracer 80.5 35.3 5.2 1.3
series 0.3 - 2.0 -
sor 0.3 - 0.9 -
sor2 1.3 0.0 36.9 0.0
tsp 60.1 80.0 42.0 23.7

Table 2. Statistics on experiments with static analyses

synchronization event list. These results clearly indicate that for
some programs, most of the happens-before edges can be captured
by using cheaper short-circuit checks, which significantly reduces
overhead. The high percentage of lockset computations for sor2
explains the high overhead incurred for this benchmark. In lufact,
philo, series and sor the percentage of successful short-circuit
checks is high, which led to low runtime overhead. The short-
circuit checks do not help to reduce the overhead with Chord out-
puts for moldyn and raytracer. This is because moldyn and
raytracer use barrier synchronization which is not captured by
Chord, and thus, each volatile variable read and write used to imple-
ment barriers is processed separately in the lockset computations.
The overhead for these examples is much lower when RccJava out-
puts are used, because RccJava eliminates checks for most of the
variables whose accesses are synchronized using barriers. Note that
Eraser-based algorithms do not handle barrier synchronization and
would have declared false alarms for moldyn and raytracer.

Table 2 reports the percentage values for the variables checked
among all the variables created, and the variable accesses checked
among all the accesses that take place during the execution. Us-
ing the output of Chord reduces the slowdown to a small value be-
tween 1 and 2 for most of the benchmarks. Using RccJava outputs
decreases the slowdown for moldyn and raytracer to similar lev-
els, whereas overhead remained high with the outputs of Chord for
these examples. These experiments demonstrate that, with proper
prior static analysis, the overhead of precise race checking at run-
time can be reduced significantly. These results also indicate that,
to be practical, precise race detection at runtime must be preceded
by sound static techniques for determining race-free variables.

6.1 Experiments with transactions

To measure the performance of our implementation of a transaction-
aware race checker, we mimicked the transactions implementa-
tion by source-to-source translation of Grossman et. al. [15] for
a concurrently-accessed data structure. We did this as we did not
have access to the source code for a Java implementation of soft-
ware transactions.

The implementation of transactions in [15] uses Java’s object
locks for synchronization. All shared variable reads and writes in an
atomic transaction are protected by the object locks for the objects
accessed. All shared variable reads and writes that are part of a
transaction take place between the first lock acquire and the first
lock release associated with the transaction. The first lock release
also constitutes the commit point of the transaction.

The data structure we worked on is a Multiset, based on
the benchmark with the same name in [10]. The test program for
Multiset consists of a number of threads accessing a multiset
of integers concurrently by performing insertions, deletions and
queries. The representation for a multiset is an array elements of
objects where each object potentially stores an element of the mul-

#ThreadsUninstrumented Goldilocks with transactions #Accesses#Transactions
Runtime Runtime Slowdown x1000 x1000

5 0.35 0.51 1.46 215 21
10 0.66 0.80 1.21 381 45
20 1.11 1.60 1.44 660 87
50 2.89 3.55 1.23 1460 206

100 5.57 8.19 1.47 2819 407
200 12.15 15.30 1.26 5493 802
500 31.78 40.84 1.29 13648 2006

Table 3. Performance of checking races for transactional Multiset

tiset. The Insert(int[] a) operation attempts to first allocate
space for the a.length entries in elements using a transaction
for each allocation. If this allocation is successful for all a.length
entries, then all of the new multiset elements are made visible to
other threads in an atomic transaction. If the allocation is unsuc-
cessful because of space contention with concurrent threads, the
space allocated in elements is freed in a single atomic transac-
tion. This mimics transaction rollback. To mimic the use of transac-
tions mixed with other synchronization primitives, the arrays used
as arguments to Insert were generated by a factory object shared
among threads. This object and the array objects were manipulated
outside transactions.

To imitate what our JVM expects of a transactions implemen-
tation, shared variable reads and writes between the first lock ac-
quire and the first lock release in each transaction were recorded
by instrumentation code in the JVM to form the sets R and W
associated with a commit(R, W ) action. This commit action was
inserted in the synchronization event list where the first lock release
in a transaction would have been inserted if we were not explicitly
considering transactions.

We measured, for different numbers of threads sharing a multi-
set of size 10, the runtime with race checking enabled for the trans-
actions as described in Sections 4 and 5 (Table 3). The table also
reports the number of shared variable accesses and the number of
transactions in the executions. The results indicate that the runtime
overhead of our approach (which includes the overhead of keep-
ing track of the read and write sets of transactions) when explic-
itly handling transactions is moderate. When we analyze Multiset
executions without taking transactions into account we incur slow-
down factors of more than ten3. This indicates that treating software
transactions as high-level synchronization primitives may reduce
the runtime overhead of race checking.

7. Related work
There are two approaches to dynamic data-race detection, one
based on locksets and the other based on the happens-before re-
lation. Eraser [20] is a well-known lockset-based algorithm for de-
tecting race conditions dynamically by enforcing the locking dis-
cipline that every shared variable is protected by a unique lock. In
spite of the numerous papers that refined the Eraser algorithm to
reduce the number of false alarms, there are still cases, such as dy-
namically changing locksets, that cannot be handled precisely. Pre-
cise lockset algorithms exist for Cilk programs [3] but they cannot
handle concurrency patterns implemented using volatile variables
such as barrier synchronization.

The other approach to dynamic data-race detection is based
on computing the happens-before relation [7, 19, 21] using vec-
tor clocks [16]. Hybrid techniques [18, 25] combine lockset and
happens-before analysis. For example, RaceTrack [25] uses a basic

3 This overhead is not representative as Multiset executions consist entirely
of shared variable accesses each involving a separate lock acquire and
release.
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vector-clock algorithm to capture thread-local accesses to objects
thereby eliminating unnecessary and imprecise applications of the
Eraser algorithm. Our technique, for the first time, computes a pre-
cise happens-before relation using an implementation that makes
use of only locksets.

There is also prior work that used the result of static analysis
to eliminate unnecessary runtime checks. Choi et al. [6] present
an unsound runtime algorithm for data-race detection. They used a
static race reporting algorithm [5] to eliminate unnecessary checks
for well-protected variables.

The work on software transactional memory (STM) is orthog-
onal to our work; our algorithm can be integrated with all the im-
plementations we are aware of. Our definition of data-races in the
presence of transactions was influenced in part by a study of the
interaction between the synchronization induced by software trans-
actions and weaker memory models [11].

8. Conclusion
We present the first formulation of data-races in the presence of
software transactions and a race- and transaction-aware runtime for
Java. We have designed and implemented a precise and efficient
algorithm for detecting data races in dynamic executions. Our al-
gorithm uniformly supports a variety of synchronization mecha-
nisms including software transactions. Through a combination of
static analysis and an efficient implementation of our data-race de-
tection algorithm, we have demonstrated that the runtime overhead
of precise data-race detection required for supporting a DataRace-
Exception can be made reasonable. With improvement of static
analysis techniques and further optimizations in the implementa-
tion, we believe that the runtime overhead can be reduced enough
to be acceptable for continuous monitoring of program executions
during debugging and during deployment for critical programs.
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