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ABSTRACT
Studies show that programs contain much similar code, commonly
known asclones. One of the main reasons for introducing clones
is programmers’ tendency to copy and paste code to quickly du-
plicate functionality. We commonly believe that clones canmake
programs difficult to maintain and introduce subtle bugs. Although
much research has proposed techniques for detecting and remov-
ing clones to improve software maintainability, little hasconsidered
how to detect latent bugs introduced by clones. In this paper, we
introduce a general notion ofcontext-based inconsistenciesamong
clones and develop an efficient algorithm to detect such inconsis-
tencies for locating bugs. We have implemented our algorithm and
evaluated it on large open source projects including the latest ver-
sions of the Linux kernel and Eclipse. We have discovered many
previously unknown bugs and programming style issues in both
projects (with57 for the Linux kernel and38 for Eclipse). We have
also categorized the bugs and style issues and noticed that they ex-
hibit diverse characteristics and are difficult to detect with any sin-
gle existing bug detection technique. We believe that our approach
complements well these existing techniques.

Categories and Subject Descriptors:D.2.5 [Software Engineer-
ing]: Testing and Debugging—code inspections and walk-throughs,
debugging aids

General Terms: Experimentation, Reliability

Keywords: context-based bug detection, code clone-related bugs,
inconsistencies, code clone detection

1. INTRODUCTION
Software projects contain much similar code (i.e., code clones),

which may be introduced by many commonly adopted software de-
velopment practices, such as reusing a generic framework, follow-
ing a specific programming pattern, and directly copying andpast-
ing code. These practices can improve the productivity of software
development by quickly replicating similar functionalities. How-
ever, such practices, especially copying and pasting, can also re-
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duce program maintainability and introduce subtle programming
errors. For example, when enhancements or bug fixes are done
on a piece of duplicated code, it is often necessary to make sim-
ilar modifications to the other instances of the code. As previous
work [24] indicates, it is easy for developers to miss some instances
of the duplicated code and thus to introduce subtle bugs. “I think I
have fixed the bug. Why is it still happening?” and “Why does the
function work well in that way, but not in this way?” may be exam-
ple questions that software maintainers ask and which may allude
to clone-related bugs.

Finding similar code automatically is an important step to al-
leviate the aforementioned issues. Much work [7, 17, 18, 25]has
been done on clone detection. Also, many techniques [16,28]have
been proposed for eliminating similar code to help reduce software
maintenance cost. On the other hand, various studies [19,20,28] in-
dicate that similarity in software is inherent, and clone unification
and removal may not always be desired. The reasons include (1)
limited expressiveness of programming languages: clone instances
may have evolved over a substantial period of time with many inde-
pendent changes so that they cannot be easily unified or removed;
(2) performance concerns: unified code may have worse perfor-
mance; and (3)software development practices: some experimen-
tal code may not be appropriate to be unified. Thus, code clones
would always exist, and clone-related bugs may also lurk around
in mature code. Therefore, we need automatic techniques to detect
and eliminate such errors.

In this paper, we propose a novel technique to discover clone-
related bugs. In particular, we introduce a general notion of context-
based inconsistenciesamong clones (to capture the intuition that
similar code should be used “consistently”) and develop an effi-
cient algorithm for detecting such inconsistencies (to discover la-
tent clone-related bugs). Our approach is based on the central ob-
servation that many bugs are caused by copying and pasting code
and making minor modifications to the pasted code and its sur-
rounding code (i.e., the “context”). If the changes are not consistent
with the context of the duplicated code, or if the code is pasted with-
out appropriate changes for use in the new context,inconsistencies
occur and may strongly indicate bugs in the code.

Figure 1 shows several inconsistencies detected by our approach
among similar code. In the first pair (# 1) of code snippets, lines
408–419 and lines 323–334 are detected as similar code. However,
the enclosingif statements of the two pieces of code are different:
one usesstrncmp which takes three arguments, while the other
usesstrcmp which takes only two arguments in their respective
conditions forif. This turns out to be a logic error in “Code 2.”

For the second pair (# 2) of code snippets, lines 4861–4864 and
lines 2386–2391 are detected as similar code. Their main differ-
ence is that two more statements (lines 2389–2390) in “Code 2”
are enclosed in thefor statement. One can see thatmsgbuf[0] in
“Code 2” is alwaysNULL (i.e., ‘\0’), and thus nothing inmsgbuf



# Code 1 Code 2 (Similar to Code 1 but buggy)
1: File: linux-2.6.19/drivers/scsi/arm/eesox.c File: linux-2.6.19/drivers/scsi/arm/cumana2.c

407: if (length >= 9 && strncmp (buffer, "EESOXSCSI", 9) == 0) {

408: buffer += 9;
409: length -= 9;
410:
411: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) {

......
418: } else
419: ret = -EINVAL;
420: } else
421: ret = -EINVAL;

322: if (length >= 11 && strcmp (buffer, "CUMANASCSI2") == 0) {

323: buffer += 11;
324: length -= 11;
325:
326: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) {

......
333: } else
334: ret = -EINVAL;
335: } else
336: ret = -EINVAL;

2: File: linux-2.6.19/drivers/cdrom/sbpcd.c File: linux-2.6.19/drivers/cdrom/sbpcd.c

4859: if (cmd_type==READ_M2)
4860: {
4861: for (xa_count=0;xa_count<CD_XA_HEAD;xa_count++)
4862: sprintf(&msgbuf[xa_count*3], " %02X", ...);
4863: msgbuf[xa_count*3]=0;
4864: msg(DBG_XA1,"xa head:%s\n", msgbuf);
4865: }

2386: for (i=0;i<response_count;i++)

2387: {

2388: sprintf(&msgbuf[i*3], " %02X", ...);
2389: msgbuf[i*3]=0;
2390: msg(DBG_SQ1,"cc_ReadSubQ:%s\n", msgbuf);

2391: }

3: File: gcc-4.0.1/gcc/fortran/dependency.c File: gcc-4.0.1/gcc/fortran/dependency.c

414: if (l_stride != NULL)

415: mpz_cdiv_q (X1, X1, l stride ->value.integer);

422: if (l_stride != NULL)

423: mpz_cdiv_q (X2, X2, r stride ->value.integer);

Figure 1: Sample context-based inconsistencies among similar code.

would be output. Although the difference does not significantly
impact the functionality of the code, it is still a bug and would
manifest in debugging code.

As another example, the third pair (# 3) of code snippets have
difference in variable naming, which is a local inconsistency within
the clones themselves. In particular, theif condition performs a
NULL check onl_stride, but r_stride is used within theif
statement in “Code 2.” This is suspicious and indeed, it has been
confirmed by the GCC developers as a bug and fixed quickly.

Although such bugs may be discovered by thorough testing, de-
signing “enough” test cases is often difficult and time consuming.
In addition, even if a program exhibits abnormal behavior, it may
still require much time to locate the actual bug locations. Such
bugs may also be difficult to detect using standard program analy-
sis techniques: (1) These techniques usually require certain prop-
erty specifications (e.g., null-pointers cannot be dereferenced, array
accesses must be within bound, and certain temporal safety proper-
ties should hold), but clone-related bugs are diverse and difficult to
specify (cf. Section 3); and (2) Most of these techniques still have
limited scalability, especially for code bases with millions of lines
of code, such as the Linux kernel and Eclipse.

Approach Overview. Figure 2 shows the architecture and main
steps of our bug detection algorithm. First, it uses a clone detection
tool1 to detect code clones in programs (Steps 1 and 2). Then, it
computes inconsistencies in the contexts of clones based onparse
trees (Steps 3 and 4). Next, it classifies the inconsistencies based on
their potential relations with actual bugs and filters out uninterest-
ing inconsistencies (Step 5). Finally, it generates bug reports to be
inspected by developers (Step 6). We describe these steps indetail
in Section 2, and present our implementation and empirical evalu-
ation of the approach in Section 3. Related work will be surveyed
in Section 4, followed by the conclusion in Section 5.

Contributions. This paper makes the following contributions:
• It introduces a general notion of context-based inconsisten-

cies among similar code and presents an efficient algorithm
to detect such inconsistencies for locating clone-relatedbugs;

• It presents a series of classification and filtering heuristics to
rank inconsistencies based on their potential relations with

1We use a tree-based clone detection tool, Deckard [17], in our implementation. How-
ever, any other clone detection tool may be used for this purpose.
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Figure 2: Overview of our bug detection approach.

actual bugs;
• It presents a detailed empirical evaluation of the approachon

large open source projects, including the Linux kernel and
Eclipse. Our approach has revealed many previously un-
known bugs and programming style issues; many reported
bugs have been confirmed and fixed by the developers; and

• It presents a thorough categorization of the discovered bugs
and programming style issues, confirming the hypothesis that
code cloning may introduce subtle errors and revealing the
diverse characteristics of the bugs. Such a categorization
may help developers avoid similar errors in the future.

2. ALGORITHM DESCRIPTION
In this section, we describe the details of our approach: (1)we

first give a few basic definitions related to clones:clone, clone pair,
clone group, andcontexts(Section 2.1); (2) we then define three
types ofcontext-based inconsistenciesamong clones (Section 2.2);
and (3) we next classify these inconsistencies based on their poten-
tial relations with actual bugs (Section 2.3) and present heuristics
for pruning uninteresting ones (Section 2.4). The remaining clones
with un-filtered inconsistencies may indicate bugs and are reported
to developers for inspection.

2.1 Basic Definitions
For the definitions below, we assume there is a generic clone de-

tection algorithmA such thatA(F1, F2) = true if and only if code



fragmentsF1 andF2 are similar code w.r.t. a suitable definition of
similarity (e.g., in terms of tree editing distance [17]).

Definition 2.1 (Clones). A pair of code fragmentsF1 andF2 is
called aclone pair if they are similar,i.e., A(F1, F2) holds. A
group of code fragments{F1, . . . , Fk} is called aclone groupif
A(Fi, Fj) holds for all1 ≤ i, j ≤ k. Each code fragmentFi in a
clone pair or a clone group is called aclone instance.

Definition 2.2 (Context). The contextof a code fragmentF is
the innermost language construct that enclosesF . We further re-
strict contexts to control-flow constructs. For example, inC, if,
switch, for, while statements, and function definitions are such
constructs. In Java, class definitions can also be such constructs.

We use the contexts for clones as the basis for inconsistencyand
bug detection to capture our intuition that similar code should per-
form similar functionalities and should be used under similar con-
texts. Thus clones with different contexts indicate likelybugs. Ad-
mittedly, the actual code surrounding clones may vary, and not all
differences in the surrounding code are equally indicativeof bugs.
Thus, in this paper, we confine the context to be the smallest en-
closing construct that may impact the control flows of a cloneto
ignore context differences that may be too far away from the clone.

We use an example to illustrate our definitions here: in the first
pair of code snippets in Figure 1, the lines 408–419 and 323–334
are a clone pair, and the twoif statements beginning with lines 407
and 322 are the respective contexts for the two clones.

Although the definition of a context is language-dependent,it is
still straightforward to provide a generic algorithm to findthe con-
text of a given clone. Algorithm 1 gives the high-level description
how we find the context of a clone. Given the parse tree of the pro-
gram file which contains the clone, we perform a bottom-up search
in the tree to find the smallest enclosing tree node of the clone that
is a contextual node,i.e., a control-flow construct.

2.2 Context-Based Inconsistencies
We observe that bugs are often introduced when a developer du-

plicates a piece of code and makes inappropriate changes or forgets
to make certain necessary changes. We next formalize context dif-
ferences of clones as indications of such bugs. In particular, we
define three types of context inconsistencies of clones.

Definition 2.3 (Type-1 Inconsistency).Given a pair of clones
F1 andF2 and their corresponding contextsC1 andC2, F1 and
F2 have atype-1 inconsistencyif the kinds ofC1 andC2 (denoted
by KIND(C1) andKIND(C2)), in terms of language constructs, are
different. We denote such an inconsistency byI1(F1, F2) such that
I1(F1, F2) = 1 if KIND(C1) 6= KIND(C2), andI1(F1, F2) = 0
otherwise.

We lift this definition to a clone group. Given a clone groupG,
there exists a unique equivalence partitionG/I1 = {g1, g2, . . . , gk}
of G such that (1)∀i (∀C, C′ ∈ gi I1(C, C′) = 0), and (2)
∀i 6= j (∀C ∈ gi ∀C′′ ∈ gj I1(C, C′′) = 1). We say that
G hastype-1 inconsistencyif k > 1 and letI1(G) = k denote the
type-1 inconsistency ofG.

As an example, Figure 3 shows a clone pair which has type-1
inconsistency. The lines 3559–3567 and 2707–2715 are reported as
a clone pair, and the context for “Code 1” is a function definition,
while the context for “Code 2” is anif statement. In fact, the
inconsistency was confirmed as a bug on line 3558: the developers
omitted the necessary checks to make sure that0 is a valid subscript
anditem is notnull.

Calculating type-1 inconsistencies is as straightforwardas find-
ing contexts: we simply compare the kinds of the nodes returned by
Algorithm 1. Despite their simplicity, type-1 inconsistencies have
interesting potentials for finding many bugs, especially bugs due to
missing checks (cf. Table 4).

Algorithm 1 Find the context of a given clone
1: function CONTEXT(T : tree, F : clone): node

2: Find the smallest subtreeTF in T , s.t., TF properlycontainsF
3: Let R be the root ofTF

4: Find the youngestcontextual ancestor nodeCR of R
5: ReturnCR

6: end function

Definition 2.4 (Type-2 Inconsistency).Given a pair of clones
F1 andF2 and the conditional predicatesP1 andP2 in their con-
texts,F1 andF2 have atype-2 inconsistencyif P1 does not match
P2 in terms of parse tree matching. We denote such an inconsis-
tency byI2(F1, F2) such thatI2(F1, F2) = 1 if P1 andP2 do not
match, andI2(F1, F2) = 0 otherwise. IfF1 or F2 has no corre-
sponding predicates, we letI2(F1, F2) = 0.

We lift this definition to a clone group. Given a clone group
G, there exists a unique partitionG/I2 = {g0, g1, g2, . . . , gk} of
G such that (1)g0 contains exactly those clones with no context
predicates, (2)∀i 6= 0 (∀C, C′ ∈ gi I2(C, C′) = 0), and (3)
∀i 6= j 6= 0 (∀C ∈ gi ∀C′′ ∈ gj I2(C, C′′) = 1). We say that
G hastype-2 inconsistencyif k > 1 and letI2(G) = k denote the
type-2 inconsistency ofG.

This definition is also language-dependent because different lan-
guages may have different definitions of conditional predicates. As
an example, the first pair of code snippets in Figure 1 has no type-
1 inconsistency because both of them areif statements. However,
they have a type-2 inconsistency because theirif conditions invoke
two different functions with different numbers of parameters.

Clones with type-2 inconsistencies may be executed along dif-
ferent control flow paths (which are controlled by the conditions)
and thus behave differently. Such inconsistencies violateour as-
sumption that similar code should perform similarly under similar
situations, and thus may indicate bugs.

A simple way to compare two conditional predicatesP1 andP2

is to compare every node in the parse trees forP1 and P2 in a
pre-order traversal. Although such a strict comparison mayfalsely
report inconsistencies on semantically equivalent but syntactically
different expressions, such asp[i] and*(p+i) in C, it may pro-
vide a reasonable upper-bound estimation on the total number of
type-2 inconsistencies in clone groups. One can also argue that
as long as the purpose of duplicating code is to improve software
productivity (instead of plagiarism), code clones with thesame se-
mantics should often have the same syntactic structure and there
is usually no reason to modify the code to have different syntactic
structures. In practice, some code may become similar due toother
reasons besides direct copying and pasting (e.g., applying a same
programming pattern). Thus semantically equivalent but syntacti-
cally different expressions do exist, and in Section 2.4, weemploy
certain heuristics to reduce false alarms on type-2 inconsistencies.

Definition 2.5 (Type-3 Inconsistency).Given a pair of clones
F1 andF2, F1 andF2 have atype-3 inconsistencyif F1 andF2

contain different numbers ofuniqueidentifiers. We denote such an
inconsistency byI3(F1, F2) such thatI3(F1, F2) = 1 if F1 andF2

have different numbers of unique identifiers, andI3(F1, F2) = 0
otherwise.

We lift this definition to a clone group. Given a clone groupG,
there exists a unique equivalence partitionG/I3 = {g1, g2, . . . , gk}
of G such that (1)∀i (∀C, C′ ∈ gi I3(C,C′) = 0), and (2)
∀i 6= j (∀C ∈ gi ∀C′′ ∈ gj I3(C,C′′) = 1). We say that
G hastype-3 inconsistencyif k > 1 and letI3(G) = k denote the
type-3 inconsistency ofG.

The type-3 inconsistencies capture another kind of differences
in code clones that may be introduced by modifying identifiers
(including names of variables, functions, types, etc.), which is a
common practice during copying and pasting code. Often, notall



Code 1 (missing necessary checks in the shaded part) Code 2
File: org.eclipse.debug.ui/ui/org/eclipse/debug/ File: org.eclipse.debug.ui/ui/org/eclipse/debug/

ui/memory/AbstractTableRendering.java internal/ui/memory/provisional/AbstractAsyncTableRendering.java

3557: int colCnt = fTableViewer.getTable().getColumnCount();

3558: TableItem item = fTableViewer.getTable().getItem(0);

3559: for (int i=0; i<colCnt; i++)
3560: {
3561: Point start = new Point(item.getBounds(i).x, ......
3562: start = fTableViewer.getTable().toDisplay(start);

......
3565: if (start.x < point.x && end.x > point.x)
3566: return i;
3567: }

2697: TableItem item = null;
2698: for (int i=0; i<fTableViewer.getTable().getItemCount(); i++)

item = ......

2705: if (item != null)

2706: {
2707: for (int i=0; i<colCnt; i++)
2708: {
2709: Point start = new Point(item.getBounds(i).x, ......
2710: start = fTableViewer.getTable().toDisplay(start);

......
2713: if (start.x < point.x && end.x > point.x)
2714: return i;
2715: }
2716: }

Figure 3: Sample type-1 inconsistency and bug.

identifiers in clones are modified; occasionally some identifiers that
should be changed are left unchanged, and some that should not be
changed are changed. These cases may lead to different numbers
of unique identifiers in the clones and thus indicate likely bugs.
For example, in the third pair of code in Figure 1, “Code 2” is
similar to “Code 1,” but it has seven unique identifiers (excluding
keywords and punctuations), while “Code 1” only has six. In fact,
it was confirmed by the GCC developers that the “extra” identifier
(r_stride) should have beenl_stride instead.

Compared with type-1 and type-2 inconsistencies, type-3 incon-
sistencies are local to code clones themselves. We calculate the
type-3 inconsistencies by traversing the parse trees of clones and
counting all identifiers that we visit. Alternatively, a simpler lex-
ical scanner can be used to count the numbers. We currently do
not distinguish identifiers for types from identifiers for variables or
functions. Based on the parse trees, we can incorporate suchdiffer-
ences to improve the accuracy of type-3 inconsistencies.

2.3 Classification of Inconsistencies
It is obvious that not all context inconsistencies are actual bugs.

In fact, probably most of such inconsistencies are not bugs when
code is copied and pasted with caution. To better invest manual
efforts when examining the inconsistencies for bugs, we utilize a
series of classification heuristics to rank the inconsistencies so that
we can examine most likely buggy inconsistencies first, or filter out
unlikely buggy clones to reduce false positives.

First, the clone groups can be sorted based on their types of in-
consistencies so that developers can have an order to decidewhich
clones to inspect first for most likely bugs.

Definition 2.6 (Inconsistency Rank).Given a clone groupG,
the inconsistency rankof the group, denoted byRANK(G), is a
4-tuple 〈|G|, I1(G), I2(G), I3(G)〉, where |G| is the number of
clones inG.

Given two clone groupsG1 andG2 and their associated ranks
RANK(Gi) = 〈|Gi|, I1(Gi), I2(Gi), I3(Gi)〉 for i ∈ {1, 2}, the
order betweenG1 and G2 is given by the lexicographical order
betweenRANK(G1) andRANK(G2), i.e.:
8
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Recall that fori ∈ {1, 2, 3}, Ii(G) > 1 indicates the existence
of type-i inconsistencies in the clone groupG. The largerIi(G)
is, the more inconsistencies the group has. However, anIi(G) that
is too high (e.g., > 5) and too close to the total number of clones
in the group (e.g., > 50% of |G|) may mean that there are too

many inconsistencies in the clone group. In such cases, the incon-
sistencies may be intended by developers, and may no longer be
indications of anomalies or bugs. On the other hand, the smaller
Ii(G) is (except for one), the more likely the inconsistencies are
not intended and are indications of bugs. Based on such an intu-
ition, we choose to include only those clone groupsG with small
values ofIi(G) during the ordering of clone groups.

In addition, based on our experience, type-1 inconsistencies may
be further classified into several subtypes, and different subtypes
have different likelihoods to be bugs. Such a type-refinement can
further help the classification of clone groups and reduce false pos-
itives (Section 2.4).

Definition 2.7 (Inconsistency Subtypes).Given a clone pairF1

and F2 and their contextsC1 and C2, the kinds ofC1 and C2

(in terms of language constructs) can be one ofswitch, if, loop,
function-definition(or fundef), andprogram(or prog). The subtype
of F1 andF2, writtenIS(F1, F2), is defined based on the kinds of
C1 andC2:

Subtype-1: IS(F1, F2) = 1, if KIND(C1) = (fundef| prog)
V

KIND(C2) = (fundef| prog)
Subtype-2: IS(F1, F2) = 2, if KIND(C1) = (fundef| prog)

V

KIND(C2) = loop
Subtype-3: IS(F1, F2) = 4, if KIND(C1) = loop

V

KIND(C2) = (switch| if)
Subtype-4: IS(F1, F2) = 8, if KIND(C1) = KIND(C2) = loop
Subtype-5: IS(F1, F2) = 16, if KIND(C1) = (switch| if)

V

KIND(C2) = (switch| if)
Subtype-6: IS(F1, F2) = 32, if KIND(C1) = (switch| if)

V

KIND(C2) = (fundef| prog)

Given a clone groupG, the subtype ofG is the bit-wiseOR of
all possible subtype inconsistencies among the clones inG, i.e.,

IS(G) = ORFi,Fj∈G IS(Fi, Fj).

The subtypes capture our intuitions on the relations between con-
text inconsistencies and latent bugs: (1) Subtype-6 may indicate a
missing conditional check or a redundant check; (2) Subtype-5 and
subtype-4 are actually type-1 consistent, but their conditional pred-
icates within different contexts may help refine possible type-2 in-
consistencies (i.e., different conditional predicates); (3) Subtype-3
and subtype-2 may indicate that a substantial semantic change is
intended among the clones and the code may be less likely a bug;
and (4) Subtype-1 may indicate that the clones and their contexts
have too few differences to introduce a bug.

Also, one can utilize more language-dependent features to refine
the above subtypes. For example, the kinds of contexts in Java may
also includesynchronizedandtry-catch-finally. If a clone in a clone
pair misses such a context, it may indicate lock-based concurrency
errors or un-handled exceptions.

The inconsistency ranks and subtypes form the basis of the fol-
lowing filtering heuristics for bug detection.



2.4 Filtering Heuristics
Many reasons, such as different programming styles, may in-

troduce context inconsistencies that may not be actual bugs. For
example, preferences towhile loops overfor loops may intro-
duce context differences; device driver code for differentmodels of
a printer may be similar but have different conditional checks for
different features of the printers. For bug detection, suchincon-
sistencies are usually false positives and should be prunedbefore
manual inspection. We next present a set of heuristics basedon
inconsistency ranks and subtypes to prune clone groups thatare
unlikely bugs.

The first heuristic is to prune certain type-1 inconsistencies by
considering some contexts as the same:

for ≡ while: we treatfor andwhile as the same context.
switch-case ≡ if-else: we treat aswitch-case statement

and a sequence ofif-else statements as the same context.
fundef ≡ classdef ≡ file: we treat function definitions, class

definitions, and file scopes as the same context.

The second heuristic is to prune type-2 inconsistencies by recog-
nizing some small semantically equivalent expressions:

e1<e2 ≡ e2>e1: we treat conditional expressions of the form
e1<e2 the same ase2>e1, wheree1, e2 are two expressions.

ce ≡ ce!=0: we treat a conditional expressionce the same as the
expressionce!=0 (using C’s syntax).

!ce ≡ ce==0: we treat a conditional expression!ce the same as
the expressionce==0 (using C’s syntax).

e1+e2 ≡ e2+e1: we treate1+e2 the same ase2+e1 because ad-
dition is commutative (similarly for other commutative oper-
ators, such as*, ||, and&&).

. ≡ ->: we treat different field access operators, such as. and->,
the same, and ignore address-of and dereference operators,
such as& and*.

In addition, we also propose several filtering heuristics toprune
clone groups. These heuristics are based on the observationthat
some types of inconsistencies do not strongly indicate bugsbecause
of either too minor changes or too significant changes among the
clones. Given a clone groupG, we have the following filters:

Filter 1: If subtype-1 is set inIS(G), prune the group since such
cases may imply that the clones have no real differences.

Filter 2: If subtype-2 is set inIS(G), prune the group since such
cases may imply that the clones are intended to have signifi-
cant semantic differences because adding or removing loops
is unlikely accidental.

Filter 3: If subtype-3 is set inIS(G) and theif or switchcontext is
not enclosed in anotherloop context, prune the group since
such cases may imply that the clones may be intended to be
semantically different because of loops.

Filter 4: Instead of using the exact tree matching algorithm (Sec-
tion 2.2) to compute type-2 inconsistencies, use more ap-
proximate measures, such as tree editing distances or Eu-
clidean distances [17], to allow small differences in contex-
tual conditions to further prune type-2 inconsistencies.

Filter 5: If G has type-3 inconsistencies and the difference among
the numbers of unique variables in the clones inG is large
(e.g., > 2), prune the group since such cases may imply that
the clones have gone through many modifications and possi-
bly have different semantics.

Filter 6: If the clones inG are very close to each other (e.g., less
than10 lines apart), prune the group since such cases may
imply that the clones were written by the same programmer
during a short period of time and thus may be less likely to
contain inconsistencies.

After filtering, the remaining clone groups can be inspectedfor
actual bugs. We will show that the estimated amount of inspected

code is small w.r.t. the sizes of the original programs. For example,
we manually examined less than12000 lines of code in the Linux
kernel, which are collectively about0.2% of the total5.6 million
lines, to find57 bugs and programming style issues (cf. Section 3).
Considering that the maintenance of duplicated code is still mostly
manual and little work has been done on finding clone-relatedbugs,
the code inspection burden of our approach is light and worthwhile,
especially when compared to manual audits of the entire codebase.

We note that it is possible that our filters may prune certain buggy
inconsistencies. This is a common trade-off one needs to make:
less code inspection burden versus finding more bugs. Section 3
will present results to show that the filters perform well in terms of
reducing false positives with few false negatives.

3. EMPIRICAL EVALUATION
3.1 Implementation

Our bug detection algorithm works on top of a clone detection
tool. In our implementation, we use Deckard—a scalable, language-
independent, tree-based clone detection tool [17]—to detect code
clones as input to our bug detection algorithm.

Deckard is based on a novel characterization of subtrees with
numerical vectors in the Euclidean spaceR

n and a probabilistic
clustering algorithm to efficiently cluster these vectors w.r.t. the Eu-
clidean distance. Given a program in a certain language, Deckard
(1) generates a parser from a formal syntax grammar for the lan-
guage, (2) uses the parser to translate sources files into parse trees,
(3) produces a set of vectors that capture syntactic information of
the trees, (4) clusters the vectors based on the locality-sensitive
hashing algorithm [9], and (5) post-processes the vector clusters to
generate reports of code clones. Deckard’s language-independence
and its scalability and accuracy for clone detection make ita good
choice for our purpose. It is also worth mentioning that our bug
detection algorithm is general and can be applied with otherclone
detection techniques [2,3,6,7,18,21,23,25]. Although those tech-
niques have algorithmic and parametric differences from Deckard,
we do not anticipate any difficulty in using them in our algorithm.

On the other hand, quality and quantity of detected clones clearly
impact the effectiveness of our approach. Deckard has threemain
parameters that may affect the number and quality of its detected
clones [17]. The first one is thesimilarity between two pieces of
code for them to be considered clones. It ranges from0.0 to 1.0;
the larger the similarity is, the less difference is tolerated among
clones,2 and less clones may be reported. The second parameter is
theminimum token numberfor a piece of code to be included. The
larger the minimum token number is, the less clones may be re-
ported. The third parameter,stride, mainly controls the minimum
spatial distance (in terms of tokens in source files) betweentwo
clones. The smaller its value is, the more clones may be reported.
Smaller strides may also produce more overlapping clones, and the
post-processing phase in Deckard may take more time to prune
overlapping segments. If stride is set to∞, only non-overlapping
and syntactically complete pieces of code (e.g., a completeif state-
ment or a completefor statement) are considered for clones.

3.2 Experimental Setup
We now describe the setup for our empirical evaluation. First,

for most of our evaluation, we set Deckard’s similarity to1.0, min-
imum token number to50, and stride to∞. These correspond to
standard choices in other clone detection tools, and we wantto fo-
cus on evaluating the bug detection aspects of our approach.We
note that the numbers of false positives and negatives may vary
with different parameter settings. In Section 3.4, we will evalu-

2Certain language elements, such as identifier names, are treated as the same syntactic
element although they may be different lexically.



Prog. Version # Files # LoC # Clone # LoC Time
Groups (Clones) (sec)

Linux 2.6.19 8733 5639833 7852 358331 289
Eclipse CVS 01/08/07 8320 1832332 2246 70455 160

Table 1: Characteristics of subject programs.

ate the impact of different choices of Deckard’s parameterson the
effectiveness of our approach for bug detection.

Second, we choose well-known large open source projects, such
as the Linux kernel and Eclipse, as the subjects in our evaluation.3

These projects are written in different programming languages, C
and Java, which can help us evaluate the generality and language-
independence of our approach. Table 1 shows some basic statistics
on the projects, including their lines of code and numbers ofsource
files. Table 1 also shows clone-related metrics. For each project,
it lists the number of clone groups detected by Deckard, the total
number of lines of cloned code, and Deckard’s time on clone de-
tection. Thus, the358331 lines of clones in the7852 clone groups
in the Linux kernel and the70455 lines of clones in the2246 clone
groups in Eclipse form the main code base where we search for
bugs in our following experiments.

Finally, our experiments are mainly performed on a machine
with a 3GHz Intel Xeon CPU, 8GB of memory, and Fedora Core 5.

3.3 Detection of Inconsistencies and Bugs
Our approach found many context inconsistencies in our subject

programs. Many of these inconsistencies revealed interesting errors
and programming style issues.

Table 2 shows how many inconsistencies and bugs we found in
the subject programs. For each clone group reported by Deckard,
its inconsistency rank and subtype were calculated (cf.Section 2.2),
and we counted the number of clone groups of each type of in-
consistencies (Columns “# Type-i Inc.”) and the total number of
groups reported as potential bugs (Column “Total # Inc.”). We use
the number of lines of code (Column “Est. of LoC for Inspc.”) in all
the groups, including their contexts, to estimate the amount of code
that we need to inspect for actual bugs. Such numbers may help
readers to understand better the amount of manual effort to inspect
the inconsistent clone groups. The amount of code ranges from
0.2% to 0.7% of the original programs, or from3.2% to 16.2%
of the clones. We believe the manual effort can be justified bythe
large number of detected bugs.

The numbers of actual bugs revealed by each type of inconsis-
tencies are shown in Columns “# Type-i Bugs.” The total num-
bers of bugs, programming style issues, and suspicious clones are
also shown in Columns “Total # Bugs,” “# Style Issues,” and “#
Suspects” respectively. For each remaining clone group after filter-
ing, we manually inspected it to check whether it points to a real
bug. We made such decisions based on our knowledge of the code:
(1) if we have high confidence that an inconsistency causes inap-
propriate behavior in any clone of the group, we classified itas a
bug; (2) if we have high confidence that an inconsistency has no
effect on the intended behavior of the clones, we classified it as a
false positive; (3) if we believe the clones are behaviorally correct
but the code has redundancies or is unnecessarily complicated or
confusing, we classified it as a programming style issue; and(4)
if we are uncertain about an inconsistency or it takes us too long
(more than30 minutes) to understand the code, we classified it as
a suspect. During the examination of a clone group, we may also
perform simple data-flow analysis to help understand the code. For
most clone groups, the code was fairly easy to understand andthe
manual inspection took only several minutes each.

3We also have preliminary experimental data for GCC 4.0.1, Apache 2.2.0, and JDK
1.5.0, and have found many previously unknown bugs in these projects. However, due
to space constraints and the fact that we have not yet inspected all of the bug reports
for these projects, we do not report the data here.

Filter # Inconsistencies # # Sus- # Style Est. of # False
Type-1 Type-2 Type-3 Total Bugs pects Issues LoC Positives

All. 115 350 69 396 33 69 9 11258 285
1 177 527 98 591 40 83 13 16495 455
2 133 485 383 837 39 82 16 36396 700
3 159 506 388 859 40 84 16 37061 719
4 177 445 388 807 38 80 14 35214 675
5 176 524 356 849 41 85 16 34151 707
6 165 474 324 767 38 80 13 34265 636
None. 177 527 388 881 41 85 16 37430 739

Table 3: Effects of filters on false positives and negatives.Each
row corresponds to different filters (Section 2.4). “None” means
no filter was enabled; “All” means all filters were enabled.
They are the same data for Table 2.

We were able to find33 bugs and9 programming style issues in
the Linux kernel and15 bugs and13 style issues in Eclipse when
all filters were enabled. When fewer filters were enabled, we were
able to find more bugs and style issues (Row “Linux w/o filters”and
“Eclipse w/o filters” in Table 2). Table 3 also shows the impact of
different filters (cf. Section 2.4) on bug detection for the Linux ker-
nel. With no filter enabled or all filters enabled, more than450 false
positives were pruned with15 false negatives. This is a trade-off
one has to make between low false positive and negative rates. The
bugs exhibit diverse characteristics (Section 3.3.1), andthey would
be difficult for existing bug detection tools to discover. Considering
the relatively light code inspection that is needed, we believe our
approach is worthwhile for improving quality of the programs. To
date we have received confirmation from developers for two bugs
in the Linux kernel and two bugs in Eclipse (and additional ones
for GCC and Apache) for the bugs that we have reported. We are
continuing analyzing and submitting additional bug reports.

Table 2 also shows the running time of our algorithm (Column
“Detection Time”), excluding the time for clone detection and man-
ual inspection. Most of the time was spent on (re-)parsing ofclones,
the most expensive operation in our approach. As an implementa-
tion improvement, we could store parse trees from Deckard toavoid
re-parsing, trading space for time.

3.3.1 Breakdown of Bugs and Style Issues
In this section, we categorize the detected bugs and programming

style issues in the Linux kernel and Eclipse (Table 4 and 5). In total,
there are41 bugs and16 style issues in the Linux kernel, and21
bugs and17 style issues in Eclipse. We also noticed that the bugs
and style issues have diverse characteristics, confirming that many
different kinds of bugs can be introduced when developers copy
and paste code.

Table 4 lists the main reasons that caused these bugs. Missing
necessary conditional checks before using certain data seems to be
the most common kind of bugs (Row “ID 1”). Figure 3 shows such
an example. Figure 4 shows another error caused by “Wrong func-
tion calls.” Lines 2674–2721 and lines 2724–2773 are clones, and
they have different numbers of unique identifiers. It did nottake
us long to realize that the call topci_bus_write_config_word
on line 2682 should have beenpci_bus_write_config_byte.
Becausepci_bus_write_config_word takes parameters of type
void *, the type checker did not catch the mismatch between the
type of temp_byte and the expected type by the function. At a
coarser granularity, most bugs caused by “Wrong function calls,”
“Wrong variables,” “Wrong data fields,” and “Wrong macros” may
be classified as “Wrong identifiers.” The fact that many bugs fall
into this category confirms that copying and pasting code often re-
quires identifier renaming, which can be error-prone.

Table 5 shows the kinds of style issues found by our approach.
Although some code with style issues may be deliberate, suchas
for debugging, for code obfuscation, for an experimental orimma-
ture feature, or as dummy code, we believe that code with the style
issues listed in Table 5 is generally confusing, results in less opti-
mized code, and reduces program readability and maintainability,
and it should be avoided as much as possible.



Program Detection # Clone # Type-1 # Type-2 # Type-3 Total # # Sus- # Style # False Est. of LoC
Time (sec) Groups Inc. Bugs Inc. Bugs Inc. Bugs Inc. Bugs pects Issues Positives for Inspc.

Linux w/ all bug filters 387 7852 115 10 350 25 69 12 396 33 69 9 285 11258
Linux w/o filters 355 7852 177 11 527 29 388 15 881 41 85 16 739 37430

Eclipse w/ all bug filters 127 2246 146 2 249 13 26 2 265 15 42 13 195 6096
Eclipse w/o filters 125 2246 224 4 390 17 91 4 461 21 50 17 373 11536

Table 2: Numbers of inconsistencies and bugs reported when all or no filters (Section 2.4) were enabled.

Code 1 (wrong function call) Code 2
File: linux-2.6.19/drivers/pci/hotplug/cpqphpctrl.c File: linux-2.6.19/drivers/pci/hotplug/cpqphpctrl.c

2673: if (hold_IO_node && temp_resources.io_head) {
......

2681: temp_byte = (hold_IO_node->base) >> 8;

2682: rc = pci bus write config word (..., temp byte );

......
2700: temp_byte = (io_node->base - 1) >> 8;
2701: rc = pci_bus_write_config_byte(..., temp_byte);

......
2721: }

2724: if (hold_mem_node && temp_resources.mem_head) {
......

2732: temp_word = (hold_mem_node->base) >> 16;

2733: rc = pci bus write config word (..., temp word );

......
2751: temp_word = (mem_node->base - 1) >> 16;
2752: rc = pci_bus_write_config_word(..., temp_word);

......
2773: }

Figure 4: Bug example: a wrong function call.

ID Category # Bugs (Linux) # Bugs (Eclipse)

0 Total 41 21
1 Missed conditional checks 9 8
2 Negated conditions 1 0
3 Inappropriate conditions 1 3
4 Off-by-one 2 1
5 Inappropriate scoping 2 0
6 Missed or inappropriate qualifiers 2 0
7 Wrong variables 3 4
8 Missed or inappropriate locks 4 0
9 Inappropriate logic for corner cases 3 2

10 Unhandled cases or exceptions 2 3
11 Wrong function calls 3 0
12 Wrong data fields 5 0
13 Wrong macros 4 0

Table 4: Categories of detected bugs.

ID Category # Style Issues
Linux Eclipse

0 Total 16 17
1 Redundant conditional checks 1 5
2 Redundant locks 2 0
3 Dead code 0 0
4 Unnecessary obscured code 2 1
5 Less optimized code 2 2
6 Redundant macro checking code 1 0
7 Unhandled application features 2 5
8 Unused variables 3 0
9 Redundant operations 1 0

10 Redundant type casts 1 1
11 Unnecessary name/data aliases 1 1
12 Inconsistencies between code and comments 0 1
13 Redundant error checking code 0 1

Table 5: Categories of detected style issues.

Here, we only give an example for “Less optimized code” in
Figure 5. “Code 1” and “Code 2” were reported as clones, but have
different context conditions. One can see thatnewWidth in “Code
1” is calculated more times than necessary (line 592), while“Code
2” is optimized to calculatewidth only once (line 680). Compilers
may not be able to perform the optimization automatically because
getClientArea() is fairly complicated and the compiler may not
be able to infer thatnewWidth is a constant.

Some of the bugs and style issues can be detected by existing
techniques. For example, missing aNULL check (e.g., Figure 3) can
be revealed by data flow analyses. However, many bugs may in-
volve programming logic errors, such as inappropriate conditions
(e.g., # 1 in Figure 1) and inappropriate scoping (e.g., # 2 in Fig-
ure 1), and are difficult to discover without specifications.Sec-
tion 3.4.2 discusses further how our approach and existing tech-
niques may complement each other.

We also believe that the categories of clone-related bugs and
style issues can be useful in two aspects: (1) They can help devel-

# Reasons for False Positives

1 Different features in devices cause some divergences in their (mostly similar)
driver code.

2 Similar functions accept parameters of different types andneed twists for
different types.

3 Names of types, functions, variables, etc. clash.
4 Some code of similar and simple syntactic structures may notbe real clones.

Table 6: Category of inconsistencies that cause false positives.

opers to understand better possible reasons that cause clone-related
errors and consciously prevent them from happening again inthe
future; (2) Automated tools may be implemented to check code
clones against each of such categories for code validation.

3.3.2 Breakdown of False Positives
Admittedly, our approach reported many false positives although

it found many actual bugs. False positive rates, in terms of the
number of bugs and style issues over the number of identified in-
consistencies, may be up to90%. On the other hand, many bugs
discovered by our approach may be difficult to find with other tech-
niques, and the reported inconsistencies account for only less than
1% of the total number of lines of code in the original programs.
We believe the manual effort involved in applying our approach is
worthwhile for improving program reliability. Next, we analyze
possible reasons for the false positives so that we can reduce them
further in the future.

Table 6 lists several reasons that are responsible for most false
positives in our experiments. Basically, many differencesamong
clones legitimately exist because they are intended to behave dif-
ferently, such as drivers for devices with slightly different features,
and exception handling code for different types of exceptions. Any
such intended behavioral differences may cause a false positive in
our approach because (1) our current definitions for contexts and
inconsistencies do not consider program behavior; (2) all our fil-
ters are mainly syntax-based; and (3) Deckard, the clone detection
tool used in our approach, is also syntax-based and may report se-
mantically different but syntactically similar code as clones. All
of the reasons listed in Table 6 concern program semantics (e.g.,
types, data and control dependencies) and their intended behavior.
It would be interesting to extend the idea of context-based inconsis-
tency and bug detection to semantic-based clones and incorporate
semantic information into the definitions of contexts and inconsis-
tencies and the filters to detect bugs more accurately (discussed
further in Sections 3.4.3 and 3.4.4).

3.3.3 Comparison with CP-Miner
CP-Miner [25] is a token-based clone detection tool for C. Toour

knowledge, it is the only existing tool that looks for bugs directly in



Code 1 (less optimized) Code 2
File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org/ File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org/

eclipse/swt/widgets/ExpandBar.java eclipse/swt/widgets/ExpandBar.java

590: for (int i = 0; i < itemCount; i++) {
591: ExpandItem item = items [i];

592: int newWidth = Math.max (0,getClientArea().width – spacing*2);

593: if (item.width != newWidth) {
594: item.setBounds (0, 0,newWidth, item.height, false, true);
595: }
596: }

680: int width = Math.max (0, getClientArea().width – spacing*2);

681: for (int i = 0; i < itemCount; i++) {
682: ExpandItem item = items [i];
683: if (item.width != width)

item.setBounds(0, 0, width, item.height, false, true);
684: }

Figure 5: An example of programming style issues: less optimized code.

cloned code. In this section, we compare CP-Miner’s effectiveness
with ours on the Linux kernel. Section 4 will discuss other related
bug detection techniques.

CP-Miner also assumes that inconsistencies among clones indi-
cate bugs. However, its definition of inconsistencies islocal to the
clones, similar to our type-3 inconsistencies. Different from our
type-3 inconsistencies, it is based onidentifier mappingsamong
clones: Given a clone pairF1 andF2, every instance of all identi-
fiers inF1 is mapped to an identifier in the same position inF2; and
for each unique identifierID, anUnchangedRatio(ID) is defined as
the following:

UnchangedRatio(ID) ,
# of Unchanged(ID) in F2

Total # of(ID) in F1

For example, in the third clone pair in Figure 1, let Code 1 beF1

and Code 2 beF2, thenUnchangedRatio(X1) = 0

2
= 0 because

both instances ofX1 have been changed toX2. Similarly, we have
UnchangedRatio(l_stride) = 1

2
andUnchangedRatio(value) =

1. Similar to our type-3 inconsistencies,UnchangedRatiois used
to measure whether programmers change identifiers consistently
when they copy and paste code. A non-zero or non-one value for
UnchangedRatiomay indicate inconsistent changes of the identi-
fiers and reveal a potential bug.UnchangedRatiois a finer-grained
metric than our type-3 inconsistencies, and if a clone pair has type-
3 inconsistency, it must have some identifier with a non-zerovalue
for itsUnchangedRatio, which means CP-Miner may generate more
reports than ours and we may miss certain bugs. On the other hand,
our type-3 inconsistencies are more efficient to calculate and report
fewer false positives.

Table 7 shows our experiments on the Linux kernel 2.6.19, us-
ing 50 as the minimum token number and1.0 as the similarity for
both CP-Miner and Deckard. We also set the stride parameter in
Deckard to∞. Deckard reported fewer clones (Column “# Cloned
LoC”) in slightly longer time (Column “Total Run Time”), thus the
initial code base for reporting bugs is smaller for our approach.4

However, our approach still found more bugs and style issues(Col-
umn “# True Pos.”)5 because we look for inconsistencies not only
within clones, but also in the contexts which are beyond the clones.
We also achieved a much lower false positive rate. All reports (Col-
umn “# Positives”) generated by CP-Miner and our approach were
manually inspected by us. Among the251 reports from CP-Miner,
55 cases were classified as suspects.

It is also interesting to note that the intersection betweenthe
problems found by CP-Miner and the problems found by our ap-
proach is empty (Column “Set Diff. of True Pos.”). Among the
13 cases from CP-Miner, five (three were duplicated reports) were
pruned by our filters, and the other eight were not in the clones
reported by Deckard with our parameter setting. After examining
these eight reports, we see no reason why they could not have been
detected by our type-3 inconsistencies if they had been reported as
clones by Deckard with different parameter settings. Thus,it would
4These results do not imply Deckard performs worse than CP-Miner in general. With
different parameter settings, Deckard can detect more clones than CP-Miner in the
same amount of time [17].
5CP-Miner does not report cases whenUnchangedRatio> 0.4 by default. It is also
a trade-off between false positives and negatives chosen byCP-Miner.

Total Run # Cloned # Po- # Sus- # True Pos. Set Diff. of
Time (s) LoC sitives pects (Bug+Style) True Pos.

Our tool 676 358331 396 69 42 42
CP-Miner 582 534202 251 55 13 13

Table 7: Comparison with CP-Miner (Linux kernel 2.6.19).

Time (sec) # Clone # LoC Est. of LoC # Inconsistencies
Clone Detection Groups (clones) for Inspc Type-1 Type-2 Type-3 Total

Similarity (Minimal Token Number 50, Stride∞)

1.0 289 387 7852 358331 11258 115 350 69 396
0.999 288 360 7854 367272 9481 110 280 64 330
0.99 290 402 8462 403545 13945 122 322 155 441
0.95 311 837 15738 599866 63684 788 1919 2089 2637

Minimal Token Number (Similarity1.0, Stride∞)

50 289 387 7852 358331 11258 115 350 69 396
128 277 108 1324 161079 840 2 13 6 18

64 294 370 7805 294931 6393 55 147 83 220
32 330 1042 23780 495037 23990 389 1040 427 1327
16 372 3602 63763 867991 182957 3552 8311 6514 11485
Stride (Similarity1.0, Minimal Token Number 50)

∞ 289 387 7852 358331 11258 115 350 69 396
16 345 507 10828 433778 15044 159 390 154 499
8 370 694 15536 520857 22649 218 500 286 705
4 419 1184 26532 675863 34235 439 782 569 1174
2 517 2199 49235 916752 50862 723 1399 1136 2199

Table 8: Potential effects of different clone detection parame-
ters on false positives and negatives with all filters enabled.

also be interesting to investigate further whether the finer-grained
identifier mapping-based approach in CP-Miner can actuallydetect
more bugs than our simpler type-3 inconsistencies.

3.4 Discussion
We now discuss issues related to our approach’s effectiveness.

3.4.1 Which clones to choose from?
Our approach works on code clones detected by Deckard [17], a

tree-based clone detection tool. The set of clones may vary when
we use different parameters for Deckard, and the bug reportsfrom
our approach may also vary. Table 8 shows such effects by varying
Deckard’s parameters.

Recall from Section 3.1 that the main parameters for Deckardare
similarity, minimum token number, andstride. We experimented
with different similarities (the first segment of Table 8, bysetting
the minimum token number to50 and the stride to∞), different
minimum token numbers (the second segment of Table 8, by setting
the similarity to1.0 and the stride to∞), and different strides (the
third segment of Table 8, by setting the similarity to1.0 and the
minimum token number to50) on the Linux kernel 2.6.19.

As a summary, smaller similarities, smaller minimum token num-
bers, and smaller strides will lead to more clones, and our approach
will also produce more bug reports. It would be interesting to ac-
tually calculate the false positive and negative rates for each of the
parameters and give a more quantitative guide on choosing appro-
priate parameters for different applications. According to our expe-
rience, the similarity1.0, the minimum token number50, and the
stride∞ had a good balance between false positives and negatives.

3.4.2 Why not just existing bug detection techniques?
Many static and dynamic analysis techniques, such as ESC/-

Java [13] and Valgrind [27], exist for bug detection. Staticanalyses



are usually sound—they do not miss bugs with the property that
they are looking for. Dynamic analyses are usually accurate—they
do not report false positives. However, such techniques usually
need to analyze all code in a program for bugs because they do
not know in generalwhereto analyze, and thus may not be able to
scale to programs with millions of lines of code. Also, they usually
require certain property specifications so that they can know what
kinds of bugs to target at, and thus their bug finding capabilities are
limited by available specifications.

Compared with those techniques, our approach has mainly two
advantages: (1) it effectively reduces the amount of code which
requires analysis for bugs; (2) it can hint at possible properties of
latent bugs for more specific analyses through the discovered in-
consistencies. For example, when the type-3 inconsistencyin the
third pair of code snippets in Figure 1 was discovered, a simple
difference analysis of the data and control dependencies ofthe two
snippets revealed that there is a missing data dependency between
r_stride and theif condition. Then we knew that the latent bug
could either be a missingNULL check onr_stride or a wrong use
of r_stride. Such advantages can help guide the existing tech-
niques onwhereandwhat to analyze and make them more scal-
able. In fact, many bugs we found are difficult to be discovered by
any single existing technique. We believe that our approachcom-
plements well the existing techniques. Conversely, incorporating
existing analysis techniques into our approach can provideseman-
tic information to help reduce more false positives and improve the
usability of our approach. The following section elaborates on this.

3.4.3 How to reduce false positives further?
Currently, when a clone group is reported as a possible bug, we

inspect it in the following way: (1) locate the clones in the original
source code and find the actual differences among clones based on
their inconsistency ranks and subtypes; (2) inspect the clones and
their contexts to look for any hints, such as comments and data de-
pendencies, which can explain the differences; (3) performmanual
data-flow analysis to help understand the code whenever necessary.

Many steps in the inspection process can be automated and may
help to prune false positives without human intervention. On one
hand, we often asked ourselves common questions, such as “where
the variable is defined,” “whether the return value of this function
can be null,” and “whether this conditional predicate can ever be
false,” during code inspection. Most of such semantic-related ques-
tions can be easily answered by many program analyses and theo-
rem proving techniques, and help to decide whether an inconsis-
tency is legitimate. As for the purpose of filtering, such techniques
do not need to be accurate as long as they can answer the ques-
tions with low false negative rates. On the other hand, the incon-
sistencies among clones can provide hints at what questionsto ask.
As a simple example, there is a missingNULL check for variable
item in “Code 1” in Figure 3. Based on the difference, it was ob-
vious to ask whetheritem could ever beNULL to decide whether
the missed check is an actual bug. Generalizing such question-
generation schemes and integrating them with other techniques will
be like integrating query generators with answer machines,and it
will be interesting to investigate how many more false positives
may be pruned by an automated code inspection mechanism pro-
vided by such an integration.

As another aspect, our current definitions of contexts and incon-
sistencies are mainlysyntax-based and only consider the smallest
enclosing control-flow construct of a clone. They have not incorpo-
rated any semantics of the clones, and neither do the filters for prun-
ing bug reports. It will be interesting to extend our definitions to
semantic-based representations of programs, such as program de-
pendency graphs [12], so that semantic information, such astypes,
data and control dependencies, can be considered to help detect
more bugs while pruning more intended inconsistencies. Further,

we believe that the basic idea that inconsistencies among clones
are indications of bugs can be directly applied to semantic-based
code clones [21, 23], which are most robust against code modifi-
cations, such as re-ordered statements, non-contiguous code, and
redundant code, than syntax-based clones. Such clones, together
with syntax-based clones, may naturally exclude syntactically sim-
ilar but semantically different code and thus introduce fewer false
positives in the first place.

3.4.4 Applicability
A basic assumption that we have made in this paper is that sim-

ilar code should perform similar functionalities under similar con-
texts and thus context inconsistencies among code clones can be
strong indications of bugs. However, in practice, much similar code
does not satisfy such an assumption. Many inconsistencies among
clones are likely intended and should not be treated as indications
of bugs. If such inconsistencies commonly occur in a program, our
approach would report too many false positives to be useful.

One such situation is when we use smaller similarities to gen-
erate clones (Section 3.4.1). When a smaller similarity is used,
code with more differences may still be treated as clones, and thus
inconsistencies can become more commonly intended. In our ex-
periments, we mainly restricted similarity to1.0 to avoid clones
with too many differences. Although such a restriction may miss
certain bugs, we believe that it currently is a reasonable trade-off
between low false positive and negative rates. In the future, our in-
consistency classification and filtering heuristics can be improved
to tolerate inconsistencies which are introduced by smaller similar-
ities so that false positive rates can be kept low.

Another situation is when clones evolve independently and in-
tentionally deviate from each other in certain aspects. Forexample,
drivers for several different models of a display card from asame
manufacturer have much code in common, but also have many dif-
ferences that handle different features in the different models. Such
inconsistencies among clones may only be indications of different
features instead of bugs. For such cases, simple filtering strategies
may not always be enough for reducing false positives because the
inconsistencies caused by diverse code features may not be eas-
ily described by any specific filtering patterns. Certaininconsis-
tency specificationsfrom developers, indicating what kinds of dif-
ferences are intended, can be helpful for reducing false positives.
Alternatively, we may apply specification mining techniques, such
as [1, 22], to infer such inconsistency specifications first,and then
apply our approach to find unintended inconsistencies only.

4. RELATED WORK
In this section, we discuss closely related work and roughlydi-

vide them into two categories: (1) studies on clones, and (2)bug
detection in clones.

4.1 Studies on Clones
Many algorithms and tools exist for code clone detection. Based

on different characterizations of programs, such techniques can be
(1) string-based (usually lines in source files) [2, 3], (2) token-
based [18,25], (3) tree-based [6,7,17,29], or (4) semantic-based [21,
23]. Because our approach defines inconsistencies based on pro-
gram syntax and does not reply on a particular clone detection
technique, clones detected by any of these techniques can beused
directly in our approach.

Also, many studies [1,5,11,22,26] aim at findingprogramming
rules, structural clones, or specificationswhich are higher-level
similarities in programs than code fragments. For example,“an
allocatora must be followed by a deallocatorb” is an example of
such high-level similarities. Our approach currently onlyoperates
at the code level. It would be interesting to extend our notion of
inconsistencies to such higher-level similarities for bugfinding.



There are also studies that address the questions of clone cov-
erage and evolution and clone removal, other than bug detection.
The goal for clone coverage is to determine what fraction of a
program is duplicated code. It was confirmed that a significant
amount of duplicated code exists in large code bases. For exam-
ple, CCFinder [18] reported29% cloned code in JDK, and CP-
Miner [25] reported22.7% cloned code in the Linux kernel 2.6.6.

The goal of clone evolution is to understand how clones are in-
troduced or removed across different versions of a software. Laguë
et al. [24] examined six versions of a telecommunication software
system and found that a significant number of clones were removed
due to refactoring, but the overall number of clones increased due
to the faster rate of clone introduction. Kimet al. [20] described a
study of clone genealogies and found that: (1) many code clones are
short-lived, so performing aggressive refactoring may notbe worth-
while; and (2) long-lived clones pose great challenges to refactor-
ing because they evolve independently and can deviate significantly
from the original copy.

The goal of clone removal is to reduce duplicated code and im-
prove code readability and maintainability. Baxteret al. [6] extract
and refactor code clones so that programs can be rewritten inmore
generic forms. Jarzabeket al. [15, 16] applied a generative tech-
nique based oncomposition with adaptationto eliminate redun-
dancies in programs, and aimed at unifying and maintaining clones
at meta-levels. However, Rajapakseet al. [28] suggested that uni-
fying clones may not be always desirable because of its impact on
system qualities, such as performance.

4.2 Bug Detection in Clones
Studies have also proposed bug detection techniques based on

the general observation as ours that inconsistencies can beindica-
tions of bugs. CP-Miner [25] and our approach operate at the code
level. Engleret al. [11] and PR-Miner [26] aimed at detecting vi-
olations of programming rules. Ammonset al. [1] and Kremenek
et al.[22] considered the problem in the context of program specifi-
cations. Also related is Xieet al.’s work [31] on using redundancies
in programs, such as idempotent operations, unused values,dead
code, un-taken conditional branches, and redundant null-checks, to
flag possible errors. Dilliget al.[10] used semantic inconsistencies
among uses of the same pointer to find null-pointer dereference er-
rors. In a broader sense, our work is also related to the largebody of
work on bug detection techniques, such as [4,8,13,14,30]. As dis-
cussed in Section 3.4, we believe that our approach complements
well these existing techniques.

5. CONCLUSIONS
In this paper, we have proposed a general notion of inconsis-

tencies for code clones and presented an approach to locate clone-
related errors by detecting such inconsistencies. We have also per-
formed an extensive evaluation of our approach on large opensource
projects, including the Linux kernel and Eclipse. We were able to
discover many previously unknown bugs and programming style is-
sues in these projects, confirming the hypothesis that code cloning
can be error-prone. We also found that, due to the diverse charac-
teristics of the clone-related bugs, they cannot be easily discovered
with any single existing program analysis technique, and thus our
proposed approach complements well these existing techniques for
bug detection.
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