
Debugging in Parallel

James A. Jones
College of Computing

Georgia Institute of
Technology
Atlanta, GA

jjones@cc.gatech.edu

James F. Bowring
Department of Computer

Science
College of Charleston

Charleston, SC
BowringJ@cofc.edu

Mary Jean Harrold
College of Computing

Georgia Institute of
Technology
Atlanta, GA

harrold@cc.gatech.edu

ABSTRACT
The presence of multiple faults in a program can inhibit the abil-
ity of fault-localization techniques to locate the faults. This prob-
lem occurs for two reasons: when a program fails, the number of
faults is, in general, unknown; and certain faults may mask or ob-
fuscate other faults. This paper presents our approach to solving
this problem that leverages the well-known advantages of parallel
work flows to reduce the time-to-release of a program. Our ap-
proach consists of a technique that enables more effective debug-
ging in the presence of multiple faults and a methodology that en-
ables multiple developers to simultaneously debug multiple faults.
The paper also presents an empirical study that demonstrates that
our parallel-debugging technique and methodology can yield a dra-
matic decrease in total debugging time compared to a one-fault-at-
a-time, or conventionally sequential, approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Reliability

Keywords
Fault localization, automated debugging, program analysis, empir-
ical study, execution clustering

1. INTRODUCTION
Debugging software is an expensive and mostly manual process.

This debugging expense has two main dimensions: the labor cost
to discover and correct the bugs, and the time required to produce a
failure-free program.1 A developer generally wants to find a good

1We refer to a program that is being tested as failure-free instead
of fault-free or bug-free because, although we can know that none
of the test cases in a test suite fail, we cannot, in general, know
whether faults remain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

trade-off between these dimensions that reflects the developer’s re-
sources and tolerance for delay. Of all debugging activities, fault
localization is among the most expensive [15]. Any improvement
in the process of finding faults will generally decrease the expense
of debugging.

In practice, developers are aware of the number of failed test
cases for their programs, but are unaware of whether a single fault
or many faults caused those failures. Thus, developers usually tar-
get one fault at a time in their debugging. A developer can inspect
a single failed test case to attempt to find its cause using an exist-
ing debugging technique (e.g., [4, 17]), or she can utilize all failed
test cases using a fault-localization technique (e.g., [8, 9, 10, 12]).
After a fault is found and fixed, the program must be retested to de-
termine whether previously failing test cases now pass. If failures
remain, the debugging process is repeated. We call this one-fault-
at-a-time mode of debugging and retesting sequential debugging.

In practice, however, there may be more than one developer
available to debug a program, particularly under urgent circum-
stances such as an imminent release date. Because, in general, there
may be multiple faults whenever a program fails on a test suite, an
effective way to handle this situation is to create parallel work flows
so that multiple developers can each work to isolate different faults,
and thus, reduce the overall time to a failure-free program. Like the
parallelization of other work flows, such as computation, the prin-
cipal problem of providing parallel work flows in debugging is de-
termining the partitioning and assignment of subtasks. To perform
the partitioning and assignment requires an automated technique
that can detect the presence of multiple faults and map them to sets
of failing test cases (i.e., clusters) that can be assigned to different
developers.

Other researchers have presented techniques that cluster test cases.
Podgurski and colleagues [5, 13] explore the use of multivariate
projection to cluster failed executions according to the faults that
cause them. Zheng and colleagues [18] cluster failing executions
based on fault-predicting predicates. Liu and Han [11] explore the
use of two distance measures for failing test cases. Although these
techniques provide test-case clustering, they do not fully target or
reach our goal of parallelizing the debugging effort.

To parallelize the debugging effort, we have developed, and present
in this paper, a new technique—parallel debugging—that is an al-
ternative to sequential debugging. Our technique automatically par-
titions the set of failing test cases into clusters that target different
faults, called fault-focusing clusters, using behavior models and
fault-localization information created from execution data. Each
fault-focusing cluster is then combined with the passing test cases
to get a specialized test suite that targets a single fault. Conse-
quently, specialized test suites based on fault-focusing clusters can
be assigned to developers who can then debug multiple faults in

16

parallel. The resulting specialized test suites provide a prediction
of the number of current, active faults in the program.

In this paper, we also present a new set of metrics that can be
used to evaluate the effectiveness of the sequential and parallel de-
bugging modes. Using these metrics, we empirically demonstrate
the utility of the parallel mode.

The main benefit of our technique for parallel debugging is that
it can result in decreased time to a failure-free program; our em-
pirical evaluation supports this savings for our subject program.
When resources are available to permit multiple developers to de-
bug simultaneously, which is often the case, specialized test suites
based on fault-focusing clusters can substantially reduce the time to
a failure-free program while also reducing the number of testing it-
erations and their related expenses. Another benefit is that the fault-
localization effort within each cluster is more efficient than without
clustering. Thus, the debugging effort yields improved utilization
of developer time, even if performed by a single developer. Our
empirical evaluation shows that, for our subject, using the clusters
provides savings in effort, even if debugging is done sequentially.
A third benefit is that the number of clusters is an early estimate of
the number of existing active faults.

A final benefit is that our technique automates a debugging pro-
cess that is already naturally occurs in current practice. For exam-
ple, on bug-tracking systems for open-source projects, multiple de-
velopers are assigned to different faults, each working with a set of
inputs that cause different known failures. Our technique improves
on this practice in a number of ways. First, the current practice
requires a set of coordinating developers who triage failures to de-
termine which appear to exhibit the same type of behavior. Often,
this process involves the actual localization of the fault to determine
the reason that a failure occurred, and thus a considerable amount
of manual effort is needed. Our techniques can categorize failures
automatically, without the intervention of the developers. This au-
tomation can save time and reduce the necessary labor involved.
Second, in the current practice, coordinating developers categorize
failures based on the failure output. Our techniques look instead at
the execution behavior of the failures, such as how control flowed
through the program, which may provide more detailed and rich
information about the executions. Third, the current practice in-
volves developers finding faults that cause failures using tedious,
manual processes such as using print statements and symbolic de-
buggers on a single failed execution. Our techniques can automat-
ically examine a set of failures and suggest likely fault locations in
the program.

The main contributions of this paper are:

• Description of a new mode of debugging—parallel debug-
ging—that provides a way for multiple developers to debug
simultaneously a program for multiple faults by automati-
cally producing specialized test suites for targeting individ-
ual faults.

• Development of a new set of metrics for evaluating the ef-
fectiveness of parallelizing debugging effort that we used to
evaluate our technique and that can be used by others to eval-
uate other parallel-debugging techniques.

• Results of an empirical evaluation of the effectiveness of
fault localization for multiple faults in both the default, se-
quential-debugging mode and the two parallel-debugging modes.
For 100 8-fault versions of a program, our results show that
parallel debugging yielded a 50% reduction in critical ex-
pense to a failure-free program over the traditional mode.

2. FAULT LOCALIZATION
In this section, we overview the fault-localization technique that

we utilize.
In practice, software developers locate faults in their programs

using a highly involved, manual process. This process usually be-
gins when the developers run the program with a test case (or test
suite) and observe failures in the program. The developers then
choose a particular failed test case to run, and iteratively place
breakpoints using a symbolic debugger, observe the state until an
erroneous state is reached, and backtrack until the faults are found.
This process can be time-consuming and ad-hoc. Additionally, this
process uses results of only one execution of the program instead
of using information provided by many executions of the program.

In prior work [7, 8], we defined a technique called TARANTULA

that addresses these limitations of the current practice of locating
faults. TARANTULA assigns a suspiciousness to each statement in
the program based on the number of passed and failed test cases
in a test suite that executed that statement. The intuition for this
approach to fault localization is that statements in a program that
are primarily executed by failed test cases are more likely to be
faulty than those that are primarily executed by passed test cases.
The suspiciousness of a statement, s, is computed by

suspiciousness(s) =
%failed(s)

%failed(s) + %passed(s)
(1)

In Equation 1, %failed(s) is a function that returns, as a percent-
age, the ratio of the number of failed test cases that executed s to
the total number of failed test cases in the test suite. %passed(s),
likewise, is a function that returns, as a percentage, the ratio of the
number of passed test cases that executed s to the total number of
passed test cases in the test suite. The suspiciousness score can
range from 1, denoting a statement that is highly suspicious, to 0,
denoting a statement that is not suspicious. A statement with a high
suspiciousness score is one that is primarily executed by failed test
cases, and likewise, a statement with a low suspiciousness score is
one that is primarily executed by passed test cases. TARANTULA

can work on any coverable entity such as branches, statements, and
invariants. However, in this discussion we apply it at the statement
level.

Using the suspiciousness, we sort the coverage entities of the
program under test to provide a rank for each statement. The set of
entities that have the highest suspiciousness is considered first by
the developer when looking for the fault. If, after examining these
statements, the fault is not found, the developer can examine the
remaining statements in order of decreasing suspiciousness scores.
This ordering of suspiciousness scores specifies a ranking of enti-
ties in the program. For evaluation purposes, each set of entities
at the same rank is assigned a rank equal to the greatest number of
statements that would need to be examined if the fault were the last
statement in that rank to be examined.2

To illustrate the TARANTULA technique, consider the example
in Figure 1. The program inputs three integers, and outputs the
median of the three integers. The program contains two faults: one
on line 7 and the other on line 10. To the right of the code is a test
suite containing ten test cases. For each test case, its input is shown
at the top of the column, its coverage is shown by the black dots
in the column, and its pass/fail result is shown at the bottom of the
column. The columns to the right of the test-case columns give the
suspiciousness and rank, respectively, for the statements. (In the

2This rank computation, presented by Renieris and Reiss [14], has
been used for evaluation and comparison of fault-localization tech-
niques.

17

Cluster 1

 int x,y,z,m;
 mid() {

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 8: else

 9: if (x>y)

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status P P

1,
2,

3

5,
5,

5

P

 7: m = y; // fault1. correct: m=x

 10: m = z; // fault2. correct: m=y

P
3,

2,
2

0.50

0.50

0.50

0.00

0.00

0.00

0.50

su
sp

ic
io

us
ne

ss

ra
nk

9

9

9

10

13

9

4

4

4

13

13

9

P

1,
1,

4

P

5,
3,

4

0.43

0.50

0.60

0.60

0.60

0.75 1

5,
2,

6

FF

2,
1,

3

F

3,
2,

1

F

5,
4,

2

3,
3,

5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Test Cases

Cluster 2

Figure 1: mid() and all test cases before any faults are located.

figure, the first two failed test cases are labeled Cluster 1 and the
second two failed test cases are labeled Cluster 2—these clusters
will be defined and discussed subsequently.)

To illustrate, consider the computation of suspiciousness for state-
ment 1, which is executed by all ten test cases. The failed percent-
age is 100% (i.e., 4/4) and the passed percentage is also 100% (i.e.,
6/6). Using Equation 1, the resulting suspiciousness is 100/(100+
100) or 0.5. Next, consider the computation of rank for state-
ments 7-10. Statement 10 is the only statement with suspicious-
ness of 0.75 (the greatest computed suspiciousness) and thus, the
only statement with rank 1. Statements 7-9 have a suspiciousness
of 0.6, so each of these statements gets assigned a rank of 4—the
maximum number of statements that may be examined.

3. SEQUENTIAL AND PARALLEL
DEBUGGING

The sequential and parallel debugging modes, described in Sec-
tion 1, are analogous to many types of sequential and parallel work
flows. One such example is the parallelization of computation on
multi-processor computers. On a multi-processor computer, a task
is divided into subtasks that are processed simultaneously with co-
ordination between the processors. There is a cost of this coordi-
nation, and thus, the total processing effort is often higher in the
parallel computation than the sequential one. However, because
of better utilization of the processors and the divide-and-conquer
strategy, the task can often complete faster when computed in par-
allel.

To illustrate, consider Figures 2 and 3 that represent sequential
and parallel computation of a task, respectively. In the figures, the
solid arrows represent the cost of the subtasks and the dotted ar-
row in Figure 3 represents the overhead of performing the tasks in
parallel. The figures illustrate that, whereas there is some cost asso-
ciated with the parallelization of the task, with parallel processing,
the overall time to complete the task can be much less than in the
sequential processing of the task. Also, Figure 2 shows that in the
sequential processing, only one of the processors is utilized in the
computation of this task.

Figures 2 and 3 illustrate two dimensions of this parallelization—
the completion time of the task and the degree of parallelization that
was accomplished for the task. The “width” of these figures depicts
the former dimension, and the “height” depicts the latter. In Fig-
ure 2, the width shows that the task took a relatively long time to

Time

Processor 1

Processor 2

Processor 3

Subtask 1 Subtask 2 Subtask 3

Figure 2: Sequential processing of a task.

Time

Processor 1

Processor 2

Processor 3

Subtask 1

Subtask 2

Subtask 3

Figure 3: Parallel processing of a task.

complete, and the height shows that there was little parallelization
of the task—in this case, there was no parallelization of the task. In
Figure 3, the width shows that the task took a relatively short time
to complete, and the height shows that the task was parallelized
to a large degree—in this case, the task was fully parallelized. For
the parallelization of the debugging task, we can also measure these
two dimensions. The completion of the debugging task can be mea-
sured as the time to debug the faults causing the failures, and the
degree of parallelization of the debugging task can be measured as
the number of developers that can simultaneously debug the pro-
gram.

Like the parallelization of a computation task, some debugging
subtasks, such as locating one fault, can dominate other tasks. For
example, a program that contains four faults may cause a number of
test cases to fail. Upon inspection, we may find that all of the failed
test cases fail due to one fault. After that dominating fault is found
and fixed, the program is re-tested. This re-testing reveals that there
are still a number failed test cases, but these failed test cases are
now caused by the remaining three faults. This phenomenon is
illustrated in Figure 4. In the example, Fault 1 must be located and
fixed before Faults 2, 3, and 4 can be located and fixed because all
failed test cases fail due to Fault 1. Only after Fault 1 is fixed do
Faults 2, 3, and 4 manifest themselves as failures.

Time

Developer 1

Developer 2

Developer 3

Fault 1 Fault 2

Fault 3

Fault 4

Figure 4: Fault 1 dominates Faults 2, 3, and 4.

Unlike the parallelization of a computation task, the cost for each
fault subtask can change as a result of the parallelization. In fact,
we have found empirically that the fault subtasks are often more
efficient in the parallelized version. In the parallelized version, the
test suite for each fault subtask is generated specifically for that
fault. Thus the fault localization is often more effective at locating
that fault than the non-specialized, full test suite.

The key to the parallelization of debugging is the creation and
specialization of test suites that target different faults. We create
these specialized test suites from the original test suite T . Each

18

Test Cases

 int x,y,z,m;
 mid() {

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 8: else

 9: if (x>y)

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status P P

3,
3,

5

1,
2,

3

5,
5,

5

P

 7: m = y; // fault1. correct: m=x

P
3,

2,
2

0.50

0.50

0.50

0.00

0.00

0.00

0.50

su
sp

ic
io

us
ne

ss

ra
nk

7

7

7

3

13

2

1

13

13

13

13

7

P

1,
1,

4

P

5,
3,

4

0.73

0.80

0.00

0.00

0.00 13

5,
2,

6

FF

2,
1,

3

P

3,
2,

1

P

5,
4,

2

0.67

 10: m = y; // fault2 corrected

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 5: Example mid() and all test cases after fault2 was located and
fixed.

specialized test suite is composed of all passing test cases in T
and some subset of the failing test cases in T . Our technique au-
tomatically partitions the failing test cases in T into subsets that
exhibit similar failures. With these specialized test suites, our tech-
nique applies a fault-localization algorithm to automatically find
the likely locations of the faults. These specialized test suites and
fault-localization results are assigned to different developers to de-
bug. After each developer has found and fixed a fault, and commit-
ted the changes back to the change management system, the pro-
gram is retested. If the program still exhibits failures, the process
is repeated.

Consider the example presented in Figure 1. In the traditional,
sequential mode of debugging, the developer would be aware that
there were four failed test cases, but would be unaware of the num-
ber of faults that caused them. Thus, a typical, sequential process
that she follows might be:

1. Examine the statement at the highest level of suspicion: state-
ment 10. She would realize that it was, in fact, faulty and
would correct the bug.

2. Rerun the test suite to determine whether all of the faults
were corrected. She would witness that two of the failed
test cases now pass and two of the formerly failed test cases
still fail. Figure 5 depicts the coverage and new, recomputed
fault-localization results.

3. Examine the statement at the highest level of suspicion: state-
ment 7. She would realize that it was, in fact, faulty and
would correct the bug.

4. Rerun the test suite. In this case, she would witness that all
test cases pass.

Consider again the example in Figure 1. To demonstrate the
utility of parallel debugging, assume that there exists a technique
that can automatically determine that there are two distinct types
of failures in this program and can automatically cluster them. The
groupings of “Cluster 1” and “Cluster 2” are depicted in Figure 1.
Given this clustering, a test suite can be generated for each cluster
by combining all passed test cases with each cluster, and the fault-
localization results can be calculated on this new, specialized test
suite. The specialized test suites are shown in Figures 6 and 7. Each
of these test suites and fault-localization results can be given to a
different developer to debug. A parallel process that they follow in
this circumstance might be:

t8

 int x,y,z,m;
 mid() {

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 8: else

 9: if (x>y)

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status P P

3,
3,

5

1,
2,

3

5,
5,

5

P

 7: m = y; // fault1. correct: m=x

 10: m = z; // fault2. correct: m=y

P

3,
2,

2

P

1,
1,

4

P

5,
3,

4

F

3,
2,

1

5,
4,

2

F

0.50

0.50

0.50

0.00

0.00

0.00

0.50

su
sp

ic
io

us
ne

ss

ra
nk

7

7

7

13

13

13

3

3

13

13

7

0.00

0.00

0.00

0.75

0.75

0.86 1

13

Test Cases
t1 t2 t3 t4 t5 t6 t7

Figure 6: Example mid() with Cluster 1.

Test Cases

 int x,y,z,m;
 mid() {

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 8: else

 9: if (x>y)

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status P P

3,
3,

5

1,
2,

3

5,
5,

5

P

 7: m = y; // fault1. correct: m=x

 10: m = z; // fault2. correct: m=y

P

3,
2,

2

P

1,
1,

4

P

5,
3,

4

F

2,
1,

3

5,
2,

6

F

0.50

0.50

0.50

0.00

0.00

0.00

0.50

su
sp

ic
io

us
ne

ss

ra
nk

7

7

7

13

2

1

13

13

13

13

7

0.60

0.67

0.75

0.00

0.00

0.00 13

3

t1 t2 t3 t4 t5 t6 t9 t10

Figure 7: Example mid() with Cluster 2.

1. Examine the statements at the highest level of suspicion: state-
ment 7 for one developer and statement 10 for the other de-
veloper. They would each realize that those were, in fact,
faulty and would correct them.

2. Rerun the test suite to determine if all of the faults were cor-
rected. In this case, they would witness that all of the test
cases pass.

This example demonstrates how an automated technique may re-
duce the overall time to achieve a failure-free program. Also notice
that fault1 on line 7 was made more noticeable by the removal
of the “noise” generated by fault2 on line 10 without the need to
actually correct fault2.

4. TECHNIQUES FOR CLUSTERING
FAILURES

To achieve our goal of enabling developers to simultaneously
debug multiple faults in parallel, we defined a parallel-debugging
process, which is shown by the dataflow diagram3 in Figure 8. The
program under test, P , is instrumented to produce P̂ . When P̂ is
executed with test suite T , it produces a set of passing test cases

3Rectangles represent processing components, edges represent the
flow of data between the components, and labels on the edges rep-
resent the data.

19

...

F
TP

Cn

C2

C1

ch 1

ch 2

ch n

Instrument Execute

Integrate
Changes Debug

Debug

Debug 1

2

n

Cluster

T

P

P

P

T

Figure 8: Technique for debugging in parallel.

Refinement
T Ci

Ci

Cluster

Technique 1
Behavior D Cp

Technique 2
TF

Clustering
Model

Calculation

Stopping−
Criterion

Localization
Clustering

Fault−

F

Figure 9: Two alternative techniques to cluster failed test cases for
parallel debugging.

TP and a set of failing test cases TF , along with execution infor-
mation, such as branch or method profiles. TF and the execution
information are input to the clustering technique, Cluster, to pro-
duce a set of fault-focused clusters C1, C2, ..., Cn that are disjoint
subsets of TF . Each Ci is combined with TP to produce a special-
ized test suite that assists in locating a particular fault. Using these
test suites, developers can debug the program in parallel—shown
as Debugi in the figure. The resulting changes, ch1, ch2, ..., chn,
are integrated into the program. This process can be repeated until
all test cases pass.

The novel component of this parallel-debugging process, Clus-
ter, is shown in more detail in Figure 9. We have developed two
techniques to Cluster failed test cases. This section presents details
of these techniques.

4.1 Clustering Based on Profiles and
Fault-localization Results

Our first fault-focused clustering technique, shown as Technique
1 in Figure 9, first clusters behavior models of executions of failed
test cases, TF , to produce a complete clustering history (or den-
drogram) D (described in Section 4.1.1). The technique then uses
fault localization information to identify a stopping criterion for
the D, and produces a preliminary set of clusters, Cp (described in
Section 4.1.2). The technique finally refines Cp by merging those
clusters that appear to be focused on the same faults and outputs
the final set of clusters, Ci (described in Section 4.1.3). The first
step is based on instrumentation profiles, and the second and third
steps are based on fault-localization results.

4.1.1 Clustering profile-based behavior models
To group the failed test cases according to the likely faults that

caused them, we use a technique for clustering executions based on
agglomerative hierarchical clustering [3].4 For each test case, this
technique creates a behavior model that is a statistical summary

4See Bowring et al. for details of this clustering technique [3].

f1

10 9 8 7 6 5 4 3 2 1Level

f10

c10.4

c10.3

c10.2

c10.1

c10.5

c10.6

c10.7

c10.8

c10.9

c10.10
c9.9

c9.8

c9.7

c9.6

c9.5

c9.4

c9.3

c9.2

c9.1

c8.8

c8.7

c8.6

c8.5

c8.4

c8.3

c8.2

c8.1

c7.7

c7.6

c7.5

c7.4

c7.3

c7.2

c7.1

c6.6

c6.5

c6.4

c6.3

c6.2

c6.1

c5.5

c5.4

c5.3

c5.2

c5.1

c1.1

c2.2

c2.1

c3.3

c3.2

c3.1

c4.4

c4.3

c4.2

c4.1

f9

f8

f7

f6

f5

f4

f3

f2

Figure 10: Dendrogram for 10 failing test cases.

of data collected during program execution. The specific models
are discrete-time Markov chains (DTMCs) and clustering occurs
iteratively with the two most similar models merged at each itera-
tion. Every execution is represented by its branching behavior. The
branching profile of an execution is represented by the percentage
of times that each branch of a predicate statement was taken. Sim-
ilarity is measured with a similarity metric—in this research, that
metric is the sum of the absolute difference between matching tran-
sition entries in the two DTMCs being compared. Each pair of exe-
cutions is assigned a similarity value that is computed by taking the
sum of the differences of the branch percentage profile. Our tech-
nique initially sets the stopping criterion for the clustering to one
cluster, so that the clustering proceeds until one cluster remains.

To illustrate the clustering, consider Figure 10, which shows a
dendrogram [6]5 that depicts an example clustering of ten execution
models. The left side of the figure shows the ten individual failed
test cases represented as f1...f10. At each “level” of the dendro-
gram, the process of clustering the two most similar test cases is
shown.6 Initially, at level 10, failed test cases f1, ..., f10 are placed
in clusters c10.1 through c10.10, respectively. Then, the clustering
algorithm finds that c10.9 and c10.10 have the most similar be-
havior models, and groups these two clusters to get a new cluster,
labeled as c9.9, which results in nine clusters at level 9. This clus-
tering continues until there is one cluster, c1.1.

Conventionally, a good stopping criterion for the clustering, which
is difficult to determine [6], is based on the practitioners’ domain
knowledge. Because our domain is debugging, we have developed
a technique that inputs the dendrogram and computes the stopping
criterion based on fault-localization information. We describe this
stopping criterion in the next section.

4.1.2 Using fault localization to stop clustering
We use a fault-localization algorithm for this secondary assess-

ment of the clustering. We use our TARANTULA technique to pro-
vide a prediction of the location of the fault for each specialized test
suite. A number of other fault-localization techniques might also be
used for this purpose (e.g., [10, 12])—we chose TARANTULA be-

5A dendrogram is a tree diagram frequently used to illustrate the
arrangement of clusters produced by a clustering algorithm.
6If multiple pairs are equally “most similar,” one such pair is cho-
sen at random.

20

L
es

s
su

sp
ic

io
us

M
or

e
su

sp
ic

io
us

N
ot

 o
f

in
te

re
st

N
ot

 o
f

in
te

re
st

R
an

ki
ng

 o
f

st
at

em
en

ts
: A

R
an

ki
ng

 o
f

st
at

em
en

ts
: B

ra
nk

ra
nk

A
su

sp
ic

io
us

su
sp

ic
io

us
B

MostSusp

Figure 11: Similarity of fault-localization results is performed by
identifying two sets of interest Asuspicious and Bsuspicious and per-
forming a set similarity.

cause studies have shown it to be among the most effective [7], and
because of its availability.

Figure 10 shows the process of grouping clusters until one cluster
remains. Unless there is only one behavior represented by the test
cases, at some point during this clustering, two clusters are merged
that are not similar. In the context of fault localization, unless there
is only one fault, at some point in the clustering process, the failing
test cases that fail due to one fault are merged with failing test cases
that fail due to another fault. We want our technique to stop the
clustering process just before this type of clustering occurs.

Our technique identifies the clustering-stopping criterion by lever-
aging the fault-localization results. The technique computes the
fault-localization ranks (the ranking of all statements in the pro-
gram from most suspicious to least suspicious based on the Taran-
tula heuristic) for each individual failed test case (shown at the left
side of Figure 10) using a test suite of all passing test cases with that
one failed test case. Then, every time a merge is made in the clus-
tering process, our technique calculates the fault-localization ranks
using the members of that cluster and the passed test cases. Thus,
with regard to a dendrogram, such as Figure 10, our technique com-
putes fault-localization ranks at every merge point of two clusters.

Using these fault-localization ranks at all merge points in the
dendrogram, our technique uses a similarity measure to identify
when the clustering process appears to lose the ability to find a
fault—that is, clusters two items that contribute to find a different
suspicious region of the program. To measure the similarity of two
fault-localization results, we first define the suspicious area of the
program as the set of statements of the program that are deemed
“most suspicious” for each of the results. This process is depicted
in Figure 11.

To decide whether two fault-localization results identify the same
suspicious region of the program, we must establish the threshold
that differentiates the most suspicious statements from the state-
ments that are not of interest. We call this threshold MostSusp.
For example, we may assign the value of 20% to MostSusp—this
means that the top 20% of the suspicious statements in the rank are
in the most suspiciousness set, and that the lower 80% are not of
interest.

To compare the two sets of statements, we use a set-similarity
metric called Jaccard set similarity. The Jaccard metric computes
a real value between 0 (completely dissimilar) and 1 (completely
similar) by evaluating the ratio of the cardinality of the intersection
of these sets and the cardinality of the union of these sets. The sim-
ilarity of two sets, A and B, is computed by the following equation:

similarity(A, B) =
|A ∩ B|
|A ∪ B| (2)

f10
f1

f2

f3

f4

f5

f6
f7

f8

f9

Figure 12: Pairwise similarity of suspiciousness computed using each
failed test case is shown by a connecting line. Clusters are formed by
taking a closure of the similar test cases.

To determine whether the two sets are similar or dissimilar, we
must establish the threshold for the similarity metric. We call this
threshold Sim. For example, we may assign the value of 0.7 to
Sim—this means that two sets of suspicious statements will be in
the same cluster if their similarity value is at or above 0.7. In prac-
tice and in our experiments, these thresholds, MostSusp and Sim,
are determined during a training phase that shadows the debugging
process.

To determine where to stop the clustering, our technique tra-
verses the dendrogram in reverse—starting at the final cluster. At
each step, the technique examines the merged clusters at that level,
and computes the similarity, using Equation 2, of the fault-localiza-
tion ranks of the merged cluster with its constituent clusters. When
at least one of the constituent clusters is dissimilar to the merged
cluster, the traversal has found new information, and thus, the traver-
sal continues (i.e., this is not the stopping point for the clustering).
For example, in Figure 10, the fault-localization result of c1.1 is
compared with the fault-localization result of each c2.1 and c2.2
using Equation 2. If c1.1 is dissimilar to either c2.1 or c2.2, the
traversal continues.

4.1.3 Using fault-localization clustering to refine clus-
ters

After the clusters are identified using profiles and fault-localiza-
tion results, our technique performs one additional refinement. Oc-
casionally, similar fault-localization results are obtained on multi-
ple “branches” of a dendrogram. To merge these similar clusters,
the technique groups clusters that produce similar fault-localization
results.

To identify the places where this refinement of the clustering
can be applied, we perform a pairwise comparison of the fault-
localization results of the clusters at the stopping-point level of the
dendrogram. For this comparison, we use the Jaccard similarity
parameterized for this task. Then we merge the similar clusters.

For example, in Figure 10, consider that the stopping point of the
clustering was determined to be best at level 5. A pairwise similar-
ity would be calculated for the five clusters at this level by inspect-
ing the similarity of the suspicious statements that each targets. If
it found that clusters c5.4 and c5.5 were similar, these would be
combined to produce the final set of clusters.

4.2 Clustering Based on Fault-localization
Results

Our second fault-focusing technique, shown as Technique 2 in
Figure 9, uses only the fault-localization results. The technique
first computes the fault-localization suspiciousness rankings for the
individual failed test cases, TF , and uses the Jaccard similarity

21

metric to compute the pairwise similarities among these rankings.
Then, the technique clusters by taking a closure of the pairs that are
marked as similar.

For example, consider Figure 12, which shows the same ten
failed test cases depicted in Figure 10. Each failed test case is de-
picted as a node in the figure. The technique combines each failed
test case with the passing test cases to produce a test suite. The
technique uses TARANTULA to produce a ranking of suspicious-
ness for each test suite, and these rankings are compared using the
Jaccard metric in the same way described in Section 4.1.2 and 4.1.3.
The technique records the pairs of rankings that are deemed similar
(above the similarity threshold). In Figure 12, a pairwise similarity
between failed test cases is depicted as an edge. We produce clus-
ters of failed test cases by taking a closure of the failed test cases
that were marked similar. Using the example in Figure 12, test case
nodes that are reachable over the similarity edges are clustered to-
gether. In this example, failed test cases f1 and f2 are combined
to a cluster, f6, f7, f8, f9, and f10 are combined to a cluster, and
f3, f4, and f5 are each singleton clusters.

5. METRICS FOR EVALUATION
To evaluate our new parallel-debugging technique, we need to

measure how well it reduces costs in each of the two main dimen-
sions of debugging: labor to find and fix the bugs and time to a
failure-free program. Thus, we developed two metrics—total de-
veloper expense and critical expense to a failure-free program. This
section presents these metrics and required supporting measures.

In previous empirical studies of the effectiveness and compar-
ison of fault-localization techniques, a metric (e.g., [4, 7, 12]),
computed using statements’ ranks, has been used for measuring
developer’s effort in locating the fault. This metric was originally
presented by Renieris and Reiss [14]. In each of these studies, the
technique was used to find just one fault. The metric, Score, is de-
fined as the percentage of the program that need not be examined to
find the fault using the rank described in the preceding discussion,
and is computed by the following equation:

Score =

„
1 − rank of fault

size of program

«
∗ 100 (3)

To evaluate the localization of multiple faults, we use a variation
of this metric. Instead of evaluating the fault-localization effective-
ness in terms of the percentage of the program that need not be
examined to find the fault (as described by Equation 3), we use the
inverse: the percentage of the program that must be examined to
find the fault. This value is indicative of the time or effort that the
developer would spend in finding a single fault in the program if
she examined the program using the ranks computed by the fault-
localization technique. This metric, which we call Expense, is
computed by the following equation:

Expense =
rank of fault

size of program
∗ 100 (4)

To illustrate the Expense metric, consider again Figure 1. If a
developer were debugging the program using the fault-localization
results for the ten test cases, she would start by examining the most
suspicious statement—statement 10. She would verify that this
statement is in fact faulty, and fix the fault. For the fault in state-
ment 10, Expense would be 1/13∗100 or 7.69%—that is, 7.69%
of the program needed to be examined to find the fault.

After the developer finds and fixes the fault in statement 10, she
would retest the program to see if any additional faults were de-
tected, and find that two of the previously failing test cases now
pass but two test cases still fail. Figure 5 shows the results for

this retesting and the new fault-localization results. Using the new
ranks, the developer would first examine statement 7, which is in
fact faulty. For the fault on statement 7, the Expense would be
1/13 ∗ 100 or 7.69%—that is, 7.69% of the program needed to be
examined to find this fault. After the fault on statement 7 was found
and fixed, retesting would reveal that all of the test cases now pass.

The debugging process just described is sequential debugging—
a single fault was found and fixed, the program was retested, and
the process iterated until the program was failure-free. The total
developer expense is then the sum of the Expense for each iter-
ation of debugging. In this example, the total Expense cost is
7.69% + 7.69% = 15.38%.

Now consider that, using the techniques defined in Section 4,
we were able to cluster the failing test cases into two clusters—
Cluster1 (test cases 7 and 8) and Cluster2 (test cases 9 and 10)—
as in Figure 1. Figures 6 and 7 show the resulting test suites and
their fault-localization results. Figure 6 shows the specialized test
suite consisting of the failed test cases from Cluster 1 and the pass-
ing test cases. Using this specialized test suite, the fault is success-
fully located in statement 10, with a rank of 1 and an Expense of
7.69%. Figure 7 shows the specialized test suite consisting of the
failed test cases from Cluster 2 and the passing test cases. Using
this specialized test suite, the fault is successfully located in state-
ment 7, with a rank of 1 and an Expense of 7.69%.

For this example, the total developer expense can be assessed
as the sum of Expense for each fault. In both of these cases—
sequentially in Figures 1 and 5, and in parallel in Figures 6 and
7—the total developer expense is 7.69% + 7.69% = 15.38%. The
advantage of the parallel debugging scenario over the sequential
debugging scenario is that in the parallel debugging scenario, two
developers could have been working simultaneously to produce a
failure-free program in a shorter time. This example illustrates the
need for metrics that can assess both the total developer expense
and the time required for a failure-free program.

We calculate a metric to assess the total developer expense and
denote this metric as D. D is used to assess the total of all devel-
opers’ efforts to find the faults in a program, both in parallel and
in sequence. D is computed as the sum of the developer Expense
for each fault in the program, and is computed by the following
equation:

D =

|faults|X
i=1

Expensei (5)

The total developer expense, D, for the example in Figure 1,
both in sequence and in parallel, is 15.38%. In the sequential
mode, the developer expense occurs in sequence—that is, one de-
veloper is active for the first fault, and one developer is active for
the second fault. In the parallel mode, two developers can work
simultaneously—one on each fault. D captures an important as-
pect of the cost that can be translated into essential quantities such
as employee-hours and payroll-expense to the company. However,
it misses another important aspect of these debugging modes—the
time to deliver a failure-free program.

Thus, we compute another metric to assess the critical expense to
a failure-free program and denote this metric as FF . FF is used to
assess the relative savings in terms of the time to deliver a failure-
free program, i.e., the expense of the limiting, or critical path to a
failure-free program. FF is computed as the sum of the maximum
developer expense at each debugging iteration7, which is the crit-

7Figure 4 shows an example of why more than one debugging iter-
ation may be necessary

22

Developer Expense

Fault2

Fault1

Fault1

Fault1
Developer1

Developer2

Developer3

Developer4

1 3 42 50

Figure 13: The cost model accounts for when the clustering technique
produces multiple test suites that target the same fault.

ical path to achieving a failure-free program, and is computed by
the following equation:

FF =

|iterations|X

i=1

max{Expensef |f is a fault subtask at iteration i}
(6)

Note that, in the sequential mode of debugging, the D and FF
values are always equal—the total developer expense and the crit-
ical expense to a failure-free program are equal because both are
calculated as the sum of the one-at-a-time developer expense.

These two metrics, total developer expense (D) and critical ex-
pense to a failure-free program (FF), capture the two important
dimensions of debugging in parallel. The goal of this work is to
reduce the critical expense to a failure-free program while not dras-
tically increasing the total developer expense of parallel debugging
over sequential debugging. For the example in Figure 1, the FF
value is reduced from 15.38% in the sequential mode to 7.69% in
the parallel mode, while the D value stays the same in both. Thus,
for this example, we are successful in accomplishing this goal.

Note that both D and FF might exceed 100%. This is a con-
sequence of our metrics representing multiple faults and our desire
to define Expense related to the Score metric that has been used
in many previous experiments. However, for simplicity, we drop
the percentage notation from the D and FF values and use them as
metrics for relative comparison in the following sections.

It is worth noting at this point that the Expense metric also
accounts for errors in the clustering process. Particularly, when
the clustering approach produces multiple clusters for finding the
same fault, multiple developers would be unnecessarily expend-
ing effort when a single developer would be a more efficient use
of developer effort. We assume that the developers that are si-
multaneously debugging communicate with one another when a
fault has been found. This communication limits the expense ex-
pended by any other developer that may be working to find the
same fault. When a developer receives notice from another de-
veloper that a fault has been found, he can check to see if that
fault is the one causing his failures, and if so, stop his debug-
ging efforts. Thus, the expense metric is calculated as the prod-
uct of the minimum of the redundant effort and the number of de-
velopers working on that fault. Figure 13 shows an example of
where the clustering technique produces three clusters that target
the same fault and a fourth cluster that targets another fault. In
this example, the expense required to find fault 1 is calculated as
Expense1 = 3 ∗ min(2, 3, 4) = 6, where the minimum of these
three developers’ expenses is depicted with the dotted line at a
value of 2. The total developer expense for this example is cal-
culated as D = Expense1 + Expense2 = 6 + 5 = 11. Thus, we
capture the inherent inefficiencies that sometimes occur because of
inaccurate clustering.

6. EMPIRICAL STUDY
To compare the sequential mode of debugging with the two parallel-

mode-debugging techniques, described in Section 4, we implemented
our technique by integrating three existing systems. The Aristo-
tle Analysis System [2], written in C, analyzes and instruments C
programs. Argo, written in C#, models and clusters program exe-
cutions. TARANTULA, written in Java, provides fault-localization
and visualization of results. We also wrote Perl and shell scripts for
cross-platform scaffolding and results processing.

With this integrated system, we conducted an empirical study.
This section overviews the empirical set up and presents the results
of the study.

6.1 Variables and Measures
Our studies manipulated one independent variable—the technique

for creating the fault-focusing clusters that drive the debugging pro-
cess. The techniques that we examine are

S : sequential

P1 : parallel technique 1 that clusters using execution profiles with
fault-localization-result refinement (Section 4.1)

P2 : parallel technique 2 that clusters using fault-localization re-
sults (Section 4.2)

Our studies measure each technique’s effectiveness using the two
dependent variables described in Section 5—the total developer ex-
pense (D) and the critical expense to a failure-free program (FF).
To compare these techniques, we calculate the sample means of
these measures for each technique. Then, we evaluate the statisti-
cal significance of the differences of the sample means of the three
techniques.

6.2 Object of Analysis
Our object of analysis is Space, a program developed by the Eu-

ropean Space Agency. Space is a program written in C and con-
sists of 3,660 executable statements. There are 33 known faults
for Space, discovered during the program’s development. A test
suite for Space was constructed from 10,000 test cases generated
randomly by Vokolos and Frankl [16] and 3,585 test cases created
by researchers in the Aristotle Research Group [2]. This test suite
guarantees that each executable branch program is exercised by at
least 30 test cases.

6.3 Experimental Protocol
Our experimental protocol created 100 8-fault versions of Space

by choosing from the available faults at random. We simulated a
developer’s test suite for each version by choosing a test suite at
random from a collection of 1000 branch-adequate test suites, each
with an average of 156 test cases. Over the course of evaluating all
debugging modes, we generated a total of 1147 derivative multi-
fault versions. For example, in the sequential mode, we started
with an 8-fault version, ran it with the test suite, and detected and
removed one fault. Then we generated the 7-fault version using
the remaining seven faults and ran it with the same test suite. The
sequential fault-removal process repeated, creating the 6-, 5-, 4-
, 3-, 2-, and 1-fault versions until no executions in the test suite
failed. In the two parallel modes, we also started with the 8-fault
version, determined the number of clusters and found the faults that
they focused, removed those faults, and repeated the process with
another iteration of debugging in parallel with a derivative faulty
version containing only the remaining faults.

To determine the best threshold parameterization, as described
in Section 4, we sampled various parameters using ten 8-fault ver-
sions. We selected from these the best candidates for use in our

23

Source Mean Std. Dev. 99% lower 99% upper

DS 36.63 22.35 31.06 42.20

DP1 31.50 26.63 24.86 38.14

DP2 26.43 22.42 20.84 32.02

DS − DP1 5.13 15.49 1.27 8.99

DS − DP2 10.20 13.54 6.82 13.57

DP1 − DP2 5.07 13.14 1.80 8.34

Table 1: Total developer expense, D.

study of the remaining 90 8-fault versions. This “training” of the
parameters for a program is similar to how we would prescribe
training in the field. For both clustering techniques, P1 and P2, we
used only the top 20% of the most suspicious lines—MostSusp =
20%. For determining the stopping criterion for the clustering, we
used a threshold of Sim = 68% (roughly two standard deviations)
in the Jaccard similarity scores. However, for clustering based on
sets of suspicious code, we used a threshold of Sim = 50% in the
Jaccard similarity scores.

We gathered the D and FF scores for each of the 90 versions
and report their mean and standard deviation. We also compute the
pairwise difference of the three different techniques’ scores. The
DS , DP1, DP2, and their pairwise differences (and likewise for
FF) can be taken as a sample of the entire population of all 8-fault
versions for our subject program. Because our sample size is ade-
quately large, their distribution approximates a normal distribution.
Thus, we compute a two-sided t-interval with a confidence level of
99%. Interpret this statistic to mean that with 99% confidence, the
mean of the sample will be in the range defined by the lower and
upper bounds. For the samples calculated by differencing two data
points, if both bounds have the same sign, then we have confidence
(with 99% certainty) that one mean is always larger than the other
for the entire population.

6.4 Results and Analysis
As detailed in Section 5, our two principal metrics for compar-

ing the costs of the three investigated modes are total developer
expense D and critical expense to failure-free FF.

6.4.1 Total developer expense
Table 1 (and Figure 14) shows the comparative results for total

developer expense D. The columns show the sample source, mean,
and standard deviation, followed by the lower and upper 99% con-
fidence interval bounds calculated for a two-sided t-interval for the
mean of the sample. The first three rows show statistics derived by
measuring D for each of the three modes. For example, for the se-
quential debugging mode, the sample mean of DS for the 90 8-fault
versions of Space is 36.63 with standard deviation of 22.35. The
two-sided t-interval with a confidence level of 99% for this mean
is between 31.06 and 42.20.

The last three rows show statistics about the pair-wise differences
among the individual means of the three debugging modes. For
example, in the fourth row, the difference between the means DP1

and DS is 5.13, with a standard deviation of 15.49. The two-sided
t-interval for the difference of the means DS − DP1 is between
1.27 and 8.99

The results show that the most expensive developer expense is
for the S mode and the least is for the P2 mode. When comparing
the means of these two debugging modes in row five, we see that
DS is expected, with a 99% confidence, to be greater than DP2 by
a value between 6.82 and 13.57. These results mean that the use of

Source Mean Std. Dev. 99% lower 99% upper

FFS 36.63 22.35 31.06 42.20

FFP1 18.19 13.74 14.76 21.61

FFP2 20.95 15.00 17.21 24.69

FFS − FFP1 18.44 13.96 14.96 21.92

FFS − FFP2 15.68 12.03 12.68 18.68

FFP1 − FFP2 -2.76 7.72 -4.69 -0.84

Table 2: Critical expense to failure-free, FF .

D−score

0

5

10

15

20

25

30

35

40

S P1 P2 S P1 P2

FF−score

Figure 14: Mean score for the total developer expense, D, and the
critical expense to failure-free, FF , for the three techniques.

fault-focusing clusters and the resultant test suites yields reduced
total developer expense even if the debugging is done by a single
developer.

6.4.2 Critical expense to a failure-free program
Table 2 (and Figure 14) presents the comparative results for the

critical expense to a failure-free program FF. The table is con-
structed identically to Table 1. Here, for example, for the sequen-
tial debugging mode, the sample mean for FFS for the 90 8-fault
versions of Space is 36.63 with standard deviation of 22.35. The
two-sided t-interval with a confidence level of 99% for this mean is
between 31.06 and 42.20. Note that DS and FFS are necessarily
identical, as explained in Section 5.

The results show that the greatest expense to failure-free is for
the S mode and the least is for the P1 mode. When comparing the
means of these two debugging modes in row four, we see that the
mean of FFS is expected, with a 99% confidence, to be greater
than the mean of FFP1 by a value between 14.96 and 21.92. Fur-
thermore, when we compare the means of the two parallel debug-
ging modes in row six, we see that FFP1 is expected, with a 99%
confidence, to be less than FFP2 by a value between 0.84 and 4.69
(negating the values shown.) These results mean that both parallel
modes are better than the sequential mode, and that for this subject
P1 outperforms P2 in terms of FF . The results show that the use
of the P1 debugging mode yields a 50% reduction in the critical
expense to a failure-free program over the S mode.

6.5 Discussion
Notable in the results is that the S mode is the most expensive

both in the developer expense, D, and in the critical expense to
failure-free, FF. Both parallel techniques provide a savings over
the sequential mode. This means that the fault-focusing ability of
either clustering technique has economic benefits as measured in
expense.

24

These results demonstrate that even for a single developer, clus-
tering failing test cases will be beneficial. The D score shows the
expense that would be incurred if the developer were to debug the
program sequentially using each of these methods (S, P1, and P2).
For example, suppose the developer were to use the P2 technique
of clustering, but were to debug the program one fault at a time.
Tables 1 and 2 show both total developer expense (D) and the to-
tal expense to failure free (FF) that he would expend. The results
show that, regardless of whether debugging in sequence or in paral-
lel, clustering failed test cases reduces developer expense in finding
the faults.

The choice of P1 or P2 may depend on the development or-
ganization’s resources and circumstance. If the goal is to deliver
a failure-free program as fast a possible, then P1 may be a bet-
ter choice than P2. However, if the goal is to minimize devel-
opment expense, then P2 may provide a net savings. We inves-
tigated this trade-off to determine the reason that each technique
demonstrated different strengths. The P2 technique seems to clus-
ter more aggressively than P1. P1 and P2 respectively have an
average of 2.08 and 1.62 parallel fault subtasks across all versions
and iterations. P1 may incur more total expense due to the under-
clustering situation described in Section 5 and depicted in Fig-
ure 13. Moreover, because each of the techniques that we imple-
mented has merit, we reason that clustering executions for the pur-
pose of fault-localization may be conducted in a number of ways
to good effect. Although more research is necessary to determine
the best clustering technique, we have demonstrated the promise of
parallelizing the debugging effort in such an automated way.

6.6 Threats to Validity
Although this empirical study provides evidence of the potential

usefulness of the parallel-debugging techniques developed in this
research, there are several threats to the validity of the empirical
results that should be considered in their interpretation.

Threats to the external validity of an experiment limit generaliz-
ing from the results. The primary threat to external validity for this
study arise because only one medium-sized C program has been
considered. Thus, we cannot claim that these results generalize to
other programs. In particular, no generalization can be made as to
the effectiveness of parallel debugging. However, a variety of faults
were randomly combined to produce the 100 8-fault versions used
in this research and thus, these versions are useful for exploring the
presented techniques.

Threats to the internal validity occur when there are unknown
causal relationships between independent and dependent variables.
In this study, we have postulated a simplistic development scenario
that removes these causal relationships. However, for real devel-
opers, there will be causal relationships between total expense and
the debugging mode chosen. For example, developers will interact
with each other, which may change the expense in either direction.

Also, we assume that a developer can identify the fault by in-
specting the code—that is, she can follow the order of statements
that is specified and determine at each one whether it is faulty. We
do think that the amount of code that must be examined while fol-
lowing the prescribed order of the fault-localization technique is
indicative of the technique’s effectiveness. This issue must be ex-
plored further with human studies.

The integration of multiple bug fixes may be more error-prone
than one-at-a-time bug fixing. This may cause new bugs to be in-
troduced as the parallel debugging proceeds. Our experiment does
not address this difficulty; further studies are needed to explore this
difficulty.

7. RELATED WORK
The main component of our technique is the automatic cluster-

ing of failing executions according to their causes. Dickinson and
colleagues show that clustering of executions can isolate failing ex-
ecutions from passing executions [5]. In later work, Podgurski and
colleagues show that profiles of failing executions can be automat-
ically clustered according to similar causes or faults [13]. Their
approach depends on a supervised classification strategy informed
by multivariate visualizations that assist the practitioner. In con-
trast, our technique is completely automated and attempts to cluster
failed executions according to their root cause by combining infor-
mation from execution profiles with information about the relative
failure-causing suspiciousness of lines of code.

Zheng and colleagues present an approach to finding bug predic-
tors in the presence of multiple faults [18]. The authors show that
test runs can be clustered to give a different bug-predictor profile or
histogram. They also present a result that is similar to our findings:
that some bug predictors dominate others—they call these super
bug predictors. We found a similar results although from a different
perspective: we found that some faults prevent others from being
active. Beyond this, our work differs from theirs in that we present
a methodology for debugging multiple faults in parallel. Also, we
present an experiment that presents the costs of debugging multiple
faults.

Liu and Han present two pairwise distance measures for fail-
ing test cases [11]. They demonstrate the difference of a profile-
based distance measure (usage mode) and fault-localization-based
distance measure (failure mode) by means of multidimensional-
scaling plots. For their subject programs and plots that they present,
they propose that the failure-mode distance measure is better able
to isolate failures caused by different faults. Our work differs from
theirs in a number of ways. First, unlike their multidimensional
plots of executions, our work provides an automatic way to cluster
failed test cases without interpretation by the developer. Second,
our experiments do not confirm their finding that usage-mode or
profile-based distances is inferior to failure-mode or fault-localization-
based distances. Although, we are not able to generalize to other
programs, our experiments show that each type of clustering may
have its own strengths. Finally, their work targets a sequential-
mode of debugging by removing faults that are creating noise for
finding the most dominant fault at each iteration. Our work aims to
enable the parallelization of the debugging task.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a description of a parallel debugging

process that offers an alternative to the conventional sequential de-
bugging process by both reducing total developer cost and reduc-
ing the time to a failure-free program. We presented two parallel-
debugging techniques that create specialized sets of test cases that
can be assigned to different developers for simultaneous debug-
ging. We also have developed a novel technique for establishing
a useful stopping criterion in the clustering of failing executions,
providing an early prediction of the number of active faults.

We also presented an empirical study that demonstrates the cost-
saving potential of these two parallel-debugging techniques. No-
table in the empirical results is that, for the object studied, sequen-
tial debugging is the most expensive both in developer expense, D,
and in the critical expense to failure-free, FF. Each of the parallel-
debugging techniques provides a savings over sequential debug-
ging. This means that the fault-focusing ability of either clustering
technique has potential economic benefits. It also means that even
a single developer will benefit by using fault-focused test suites as

25

a debugging aid. Both of our clustering techniques showed merit.
This result demonstrates the promise of clustering executions for
the purpose of localizing multiple faults. Other clustering tech-
nique may be shown to have their own merits.

Finally, the two metrics—total developer expense and critical
expense to a failure-free program—can provide parameters for a
cost model for parallel debugging where a developer can decide
the combination of factors that are best for his resources and time
requirements. These metrics can be utilized to evaluate future re-
search into the parallelization of debugging.

We have identified a number of research directions for future
work that result from this work. First, during parallel debugging,
one developer could finish his debugging while another developer
is still debugging. In this situation, fixes could be distributed to
other developers or one bug fix may affect the debugging efforts
of another developer. We plan to investigate enhancing our paral-
lel debugging technique so that it will provide recommendations
for such situations. Second, organizational and situational con-
straints will likely dictate the best way to debug in parallel. For
example, an imminent release date may call for a more aggressive
parallelization if redundant developers can be afforded in an effort
to quickly resolve critical bugs. Also, an organization may have a
limited number of developers—the parallelization should take this
into account. We plan to develop a cost model that is informed by
the program and test suite as well as organizational constraints to
customize the technique. Third, assignment of suspected faults and
specialized test suites to the developers that will debug them can be
automated. Based on information such as source-code revision his-
tory, ownership or familiarity of the suspected faulty code can be
mapped to developers. We plan to explore the possibility of auto-
matically assigning developers to faults when multiple faults can be
debugged simultaneously in the same spirit as presented in Refer-
ence [1]. Finally, we plan to perform further experiments on more
subject programs of larger sizes with a varying number of faults.

9. ACKNOWLEDGMENTS
This work was supported in part by NSF awards CCF-0541049,

CCF-0429117, and CCF-0306372 to Georgia Tech, by Tata Con-
sultancy Services, Ltd. The anonymous reviewers provided many
helpful suggestions to improve the paper. Andy Podgurski also
provided many suggestions to improve the paper.

10. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In Proceeding of the International Conference on
Software Engineering, pages 361–370, May 2006.

[2] Aristotle Research Group. ARISTOTLE analysis system,

2007. http://www.cc.gatech.edu/aristotle/.

[3] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning

for automatic classification of software behavior. In

Proceedings of the International Symposium on Software
Testing and Analysis, pages 195–205. ACM Press, July 2004.

[4] H. Cleve and A. Zeller. Locating causes of program failures.

In Proceedings of the International Conference on Software
Engineering, pages 342–351, May 2005.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures

by cluster analysis of execution profiles. In Proceedings of
the International Conference on Software Engineering,

pages 339–348, May 2001.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. John Wiley and Sons, Inc., 2001.

[7] J. Jones and M. J. Harrold. Empirical evaluation of the

tarantula automatic fault-localization technique. In

Proceedings of the International Conference on Automated
Software Engineering, pages 273–282, November 2005.

[8] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test

information to assist fault localization. In Proceedings of the
International Conference on Software Engineering, pages

467–477, May 2002.

[9] J. Jones, A. Orso, and M. Harrold. Gammatella: Visualizing

program-execution data for deployed software. Information
Visualization, 3(3):173–188, Autumn 2004.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.

Scalable statistical bug isolation. In Proceedings of the
Conference on Programming Language Design and
Implementation, June 2005.

[11] C. Liu and J. Han. Failure proximity: A fault

localization-based approach. In Proceedings of the
International Symposium on the Foundations of Software
Engineering, pages 286–295, November 2006.

[12] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:

statistical model-based bug localization. In Proceedings of
European Software Engineering Conference and
Foundations on Software Engineering, pages 286–295,

September 2005.

[13] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,

J. Sun, and B. Wang. Automated support for classifying

software failure reports. In Proceedings of the International
Conference on Software Engineering, pages 465–474, May

2003.

[14] M. Renieris and S. Reiss. Fault localization with nearest

neighbor queries. In Proceedings of the International
Conference on Automated Software Engineering, pages

30–39, October 2003.

[15] I. Vessey. Expertise in debugging computer programs.

International Journal of Man-Machine Studies: A process
analysis, 23(5):459–494, 1985.

[16] F. Vokolos and P. Frankl. Empirical evaluation of the textual

differencing regression testing techniques. In Proceedings of
the International Conference on Software Maintenance,

November 1998.

[17] X. Zhang, N. Gupta, and R. Gupta. Locating faults through

automated predicate switching. In Proceedings of the
International Conference on Software Engineering, pages

272–281, May 2006.

[18] A. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken.

Statistical debugging: Simultaneous identification of

multiple bugs. In Proceedings of the International
Conference on Machine Learning, pages 1105–1112, June

2006.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

